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Abstract

Solar radiation is the fundamental driving force of the Earth's system. In the upper water column, interactions such

as absorption and scattering by water constituents decrease light intensity (photon quantity) and alter light quality
(spectral distribution of photons). Although changes in solar intensity have been extensively studied over the years,
variations in light quality with depth have received comparatively little scholarly attention. This dearth of research may
be due to the lack of simple and cost-effective instruments for measuring light quality, unlike commercial instruments
available for measuring solar intensity. In this study, we present a simple approach that uses an underwater camera
and a diffuser to measure light quality, represented by the hue angle (HA) of the downwelling irradiance. Our results
reveal that the HA from this simple, low-cost device aligns closely with measurements from an expensive hyperspec-
tral radiometer across various water types, ranging from oceanic to coastal waters (R>=0.94, mean absolute percent-
age difference=1.64%). The widespread adoption of this approach could significantly enhance our understanding

of the impact of solar radiation on the biogeochemical processes in aquatic environments.

Keywords Ocean color, Light quality, Hue angle, Underwater camera, Upper ocean

1 Introduction

Light is a critical factor that regulates the growth of
marine phytoplankton, with the vertical distribution of
underwater light fields playing a pivotal role in modu-
lating their vertical zonation and primary productivity
(Kirk 2011). Therefore, exploring the impacts of under-
water light fields on phytoplankton’s ecological and
physiological functions has become a key focus in mod-
ern marine science (Maclntyre et al. 2002; Stomp et al.
2004). Many studies have investigated the impact of light
on phytoplankton growth through light intensity, such
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as photosynthetically active radiation (PAR; Sathyen-
dranath et al. 1989; Alver et al. 2014; Dutkiewicz et al.
2019). Other studies have found that insufficient light
could suppress photosynthetic activity, whereas excessive
light density may induce photoinhibition or cellular dam-
age (Behrenfeld and Falkowski 1997; Xie et al. 2015). As a
result, phytoplankton exhibit a photoacclimation mecha-
nism to adapt to varying light intensities (Six et al. 2007).
As the efficiency of phytoplankton photosynthesis varies
significantly across different light wavelengths, light qual-
ity, which represents the spectral information of solar
radiation at different wavelengths, can also affect phy-
toplankton growth. For example, under the same inten-
sity, red light (620—750 nm) contributes markedly less to
photosynthesis than blue-green wavelengths (450-550
nm) due to its rapid attenuation in shallow layers, while
blue light (380-500 nm) can penetrate the deeper parts
of the ocean, becoming the dominant driver of photosyn-
thesis in deeper euphotic zones (Hintz et al. 2021). How-
ever, existing studies that have evaluated phytoplankton
responses to light conditions have mainly focused on
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light intensity metrics. In comparison, the impacts of
light quality on the physiological and ecological functions
of phytoplankton have rarely been explored.

To characterize the vertical distribution of light qual-
ity, Lee et al. (2022) employed the hue angle (HA, in
degrees) of the downwelling irradiance (E, in W/m?%/
nm), enabling them to quantify light quality variations in
the upper water column using a simple index. By defini-
tion, HA represents the relative proportions of the red,
green, and blue (RGB) tristimulus values in the chroma-
ticity space (Wyszecki and Stiles 2000). In particular, HA
has emerged as a new optical property for water qual-
ity monitoring. Over the years, the HA of surface water
has been demonstrated as a more robust alternative to
the Forel-Ule index (FUIL Bonney 1892; Wernand and
van der Woerd 2010); therefore, it has been widely used
for water quality monitoring (Lehmann et al. 2018; Shen
et al. 2019; Wang et al. 2020). Furthermore, HA measure-
ments from RGB photos or composited images, espe-
cially when combined with machine-learning methods,
can further enhance the capability of water quality moni-
toring (Malthus et al. 2020; Xiao et al. 2022).

At present, hyperspectral radiometers, such as the
HyperOCR of Seabird Scientific, are the primary instru-
ments used to measure hyperspectral E; and sub-
sequently estimate the HA of E; (i.e, light quality).
However, these instruments are costly, thereby limiting
their broad applications in measuring underwater light
quality across different aquatic environments. To address
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this limitation, in the present study, we developed a
cost-effective and easy-to-deploy approach by integrat-
ing a GoPro camera with an optical diffuser. This simple
‘device’ captures underwater RGB photos and obtains
water HA at varying depths. The subsequent sections
will provide a comprehensive description of the deploy-
ment of this device, data quality control, and calibration
procedures for the proposed approach. Such an approach
ensures that accurate and consistent HA measurements
can be obtained from the GoPro and diffuser, as well as
the HyperOCR.

2 Data and methods

2.1 Field measurements

This study utilized measurements from two field surveys
conducted in the northern South China Sea and the west-
ern Pacific Ocean. The sampling locations of all measure-
ments are presented in Fig. 1, and their corresponding
geographic coordinates are listed in Table 1. The north-
ern South China Sea represents a typical coastal environ-
ment with high spatial heterogeneity in terms of water
quality, characterized by chlorophyll-a concentrations
ranging from 0.1 to 5 mg/m>. In comparison, the west-
ern Pacific Ocean features open-ocean conditions, with
lower chlorophyll-a concentrations (ca. 0.1 mg/m?) and
relatively less temporal variability. Data from the western
Pacific were collected during a winter cruise (December
2020-January 2021), resulting in three stations with nine
high-quality vertical profiles after quality control (see

P
,,,,,, Y~ K
50N fezn T [,? PN
40° < i%i)
5 =
China . % Jﬁj/\/\k/-// 10° "g
) : s
o Q
30 // %
g
e ‘ =
200 [ : M22, £
2 g3 —1 o
)/ \C 2,(;:;2 Pacific Ocean 10 §
®]
" Sea S & KlZi
10° P e
H]1
H526 Wi é A . Station e lE
100° 110° 120° 130° 140° 150°E

Fig. 1 Sampling locations of all the field measurements. The background represents data on the annually averaged chlorophyll-a concentration
in 2023 from MODIS-Aqua, which were acquired through the NASA OceanColor website (https://oceancolor.gsfc.nasa.gov/)
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Table 1 Station names with their geographic coordinates and
sampling times

Station name Longitude (E) Latitude (N) Sampling time (UTC
+8h)
K12a 135°00' 12°45' 2021.01.24 06:48
K13a 131°00 11°00' 2021.01.26 07:08
M22 155°00' 20°00° 2021.01.11 08:37
H3 118%24' 24°00 2023.06.06 15:48
H11 117°48' 22°51 2023.06.07 14:43
H16 116°15 22°15' 2023.06.08 08:36
H17 116°09’ 22°23 2023.06.08 10:35
H25 11513 22°24' 2023.06.09 10:05
H26 115°12' 22004 2023.06.09 12:05

Section 2.2). The northern South China Sea dataset was
collected in June 2023, comprising six stations and 10
vertical profiles after quality control.

In this study, the hyperspectral E; data were measured
using a HyperOCR irradiance radiometer mounted on
the free-falling Profiler II system (Sea-Bird Scientific,
Fig. 2a). Additionally, a GoPro camera with an opti-
cal diffuser attached to its lens (Fig. 2c) was housed in a
waterproof casing and mounted on the Profiler II system
to take zenith-view images simultaneously with the E,
measurements (Fig. 2b). The HyperOCR recorded 3-4
hyperspectral E, data per second. Ancillary information,
including time, depth, and tilt angle, was simultaneously
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recorded with E, data. Notably, to simultaneously meas-
ure the downwelling irradiance above the sea surface
(E,), an additional HyperOCR irradiance radiometer was
mounted on the deck. The GoPro camera was configured
to automatically capture photos every 5 s, during which
the acquisition times were also recorded. Typically, due
to the presence of sunlight (photos not shown here), a
strong light spot with saturated brightness appears in
the center of the GoPro photos when taking zenith-view
photos underwater. Therefore, we employed the semio-
paque white diffusing glass from Edmund Optics and
attached it to the GoPro lens to diffuse the light field in
the water column. The selected diffuser had a size of 25
mm X 25 mm, a thickness of 1.25 mm, and a transmission
efficiency of ca. 30% in the visible band. The size of such
a diffuser is perfectly suited to cover the GoPro cam-
era lens (Fig. 2¢). We used two different GoPro cameras
during the coastal (GoPro Hero 6) and the open ocean
(GoPro Hero 8) cruises.

2.2 Data matching and processing

The overall data processing workflow is summarized
in Fig. 3, which particularly illustrates the parallel han-
dling of the hyperspectral E; and GoPro-derived HA
for subsequent data analysis. The workflow comprised
four steps, including (1) data processing, (2) calcu-
lation of HA, (3) quality control, and (4) data match
and regression analysis. These steps were designed
to ensure spatiotemporal alignment, enhance data

\

HyperOCR
irradiance
radiometer

(2)

25mm X 25mmX 125 mm

Fig. 2 lllustration of the concurrent hue angle (HA) measurement system with the (@) Profiler Il and (b and ¢) GoPro camera
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Fig. 3 Flowchart showing the processing and matching procedure
for the two measuring systems

quality, and establish robust relationships between the
camera- and hyperspectral-derived HAs.

2.3 Data processing and quality control
To obtain Level 4 data products, raw data were col-
lected using the Profiler II instrument and processed
using the ProSoft software (v. 7.7.19 b2). The output
Level 4 product included hyperspectral measurements
of E; and E,, instrument tilt angle, and correspond-
ing PAR data at various times and depths. RGB photos
were directly obtained from the GoPro camera.
Quality control was performed based on three cri-
teria: the instrument tilt angle, consistency in the
time series of the surface PAR, and the vertical dis-
tribution of the underwater PAR. Given that large
instrument tilt angles (> 3°) result in deviations in E,
measurements from the true values, all E; measure-
ments with tilt angles exceeding 3° were discarded.
Rapid fluctuations in the surface PAR indicate short-
term environmental changes (e.g., cloud movement),
which introduce temporal alignment uncertainties
when interpolating the E -measured HA to the GoPro-
measured HA. This resulted from the differences in
the sampling frequency when the timestamps of the
two devices were left unsynchronized. In addition, to
ensure that all measurements were conducted under
a relatively stable dynamic environment, the vertical
profile of PAR, which typically followed an exponential
decrease with depth, was also checked for each deploy-
ment. Thus, the hyperspectral E; measurements were
retained only for conditions in which the surface PAR
was stable throughout the deployment period (5-8
min), and the PAR profiles exhibited an exponentially
decreasing trend.
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2.4 Calculation of the HA and regression analysis

The formula used by Lee et al. (2022) was adopted to
calculate the HA from hyperspectral E; to quantify
light quality variations in the upper water column. For
the hyperspectral E; data measured by Profiler II, the
RGB tristimulus values were first computed by inte-
grating E;(A) over the visible spectrum (400-700 nm),
weighted by the CIE standard color-matching func-
tions 7(1), g(4), and b(%) (Novoa et al. 2015; Wang et al.
2015):

R= [ Eg(WF(A)d.
G = [y Ea(DZ(A)di- (1)
B =[50 Eq(2)b(2)d

Next, the chromaticity coordinates (x, y) were derived
from the following normalized RGB values:

X = R
_ KEtE . )
Y = R¥GIB

The HA (in °) was then calculated following Lee et al.
(2022):

180
HA =90 — atan2(y — 0.333,x — 0.333) —. 3)
T

As for the raw photos acquired by the GoPro camera,
these were read using the Matlab function imread, result-
ing in a three-dimensional (3D) array of 3000 X 4000
%X 3 RGB values of the photo stored in each of the 3000
X 4000 matrices (i.e., corresponding to the photo reso-
lution). Then, the RGB values were extracted from each
matrix and averaged across the entire photo. As a prelim-
inary quality control measure, the outermost 200 pixels
of each matrix were excluded from calculating the mean
RGB value due to potential edge effects. The obtained
mean RGB values of each photo were then used to calcu-
late the chromaticity coordinates (x, y) and HA following
Egs. (2) and (3), respectively. Due to the difference in the
sampling frequency (Section 2.1), the GoPro-derived HA
(i.e., HA-GoPro) values were temporally interpolated to
match those from the hyperspectral E; (i.e., HA-hyper)
based on the timestamp. Finally, a quadratic expres-
sion was used to relate HA-GoPro to HA-hyper, and the
model coefficients were obtained through least squares
fitting.

2.5 Statistical metrics

Here, four metrics were employed to evaluate the perfor-
mance of the calibrated model: the coefficient of deter-
mination (R%), mean absolute percentage difference
(MAPD), root mean squared difference (RMSD), and
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mean absolute difference (MAD). Their corresponding
mathematical formulations are expressed as follows:

_ i 0 — yi)2

R* = ) @)
doim1 (7 —J’i)z
I iy
MAPD = ;Zi=1 ks 100%, (5)
Ie—r . )
RMSD = \/nzi=1 @i —»)" (6)
I .
MAD = Zzi:1|yi—yi ; )

where y; and y; denote the HA-hyper (i.e., the refer-
ence HA value) and the converted HA from HA-GoPro
through the quadratic expression, respectively, ¥ is the
mean value of HA-hyper, and # represents the number of
data points.

3 Results and discussion

3.1 Results for the oceanic waters

Through the data quality procedure, measurements at
three stations (K12a, K13a, and M22-3, respectively;
Table 1) in the western Pacific Ocean were retained for
subsequent analysis. At each station, Profiler II was
deployed three times, yielding nine vertical profiles of
the hyperspectral E; and GoPro photos. As an example,
the third profile from station K12a (denoted K12a-3)
was used here to illustrate the vertical distributions of E,

90r (a) Profile K12a-3 spectral E, 70

Downwelling irradiance (uW/cm?/nm)

700

600

Wavelength (nm)
Fig. 4 (a) Depth profiles of the downwelling irradiance at station K12a-3 and (b) zenith-view photos captured by the GoPro camera with a diffuser
atincreasing depths

500 800 900

Depth (m)
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and the corresponding RGB photos at different depths
(Fig. 4). Notably, the data from the surface layer (i.e,
within 2 m) were removed due to large instrument tilt
angles during the quality control procedure.

As shown in Fig. 4a, E; in the red domain attenuated
rapidly with depth, decreasing to near zero at 30 m. In
contrast, blue light exhibited slower attenuation, with
residual spectral detected at depths of 70 m. The corre-
sponding RGB photos revealed a gradual shift in water-
color from green and light blue at the surface ocean to
dark blue at greater depths (Fig. 4b), as only blue light
was retained at these depths. After matching the HA-
GoPro to the HA-hyper based on the timestamp, we
obtained 186 pairs of HA measurements from the two
devices for all nine deployments. Next, we employed a
quadratic polynomial expression to calibrate the non-
linear relationship between HA-GoPro and HA-hyper
(Fig. 5a). The calibrated model is expressed as follows:

y = —0.0287x + 11.18x — 853.37, (8)

where x and y represent HA-GoPro and HA-hyper,
respectively.

As shown in Fig. 5a, a strong agreement was observed
between the two HA measurements over a large range
of HA, where the HAs measured from the GoPro and
Hyperspectral E; cameras ranged within 170°~200° and
215°-240°, respectively. Despite the difference in the
measured HA range between the two devices, almost all
the matched HA-GoPro and HA-hyper data fell within
the 95% confidence intervals (CI) of the calibrated model,
suggesting high confidence in the developed model. The
robustness of the calibrated model was further illustrated
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Fig.5 The relationship between HAs measured from hyperspectral £;and GoPro Camera for oceanic water samples. a The calibrated relationship
between HA-GoPro and HA-hyper, with the red line representing the fitting curve and the gray shading indicating the 95% confidence intervals (Cl).
The green points are marked as outliers exceeding the 95% Cl. b Validation of the converted HA from HA-GoPro against the reference HA-hyper

by the statistical results in Fig. 5b, in which the con-
verted HA from HA-GoPro aligned very well with HA-
hyper, as most data points were distributed closely to the
1:1 line. Furthermore, the high R? values of 0.90 and the
low errors in the converted HA (MAPD = 0.7%, RMSD =
1.1°, MAD = 0.9°) suggested good agreement between the
converted HA and the reference HA-hyper. Therefore,
these metrics confirm the model’s robustness in oceanic
waters, suggesting the possibility of obtaining highly
accurate HA measurements from a GoPro camera with
a diffuser.

3.2 Results for the coastal waters

For the coastal cruise, measurements at six stations (H3,
H11, H16, H17, H25, and H26, respectively; see Table 1)
in the northern South China Sea, with 10 vertical profiles,
were retained after the quality control procedure. For

120 (a) Profile H3-2 spectral E, 20
g 18
% 1007
R3) 16
T ‘.
Y g
Q ~—~
5 60 12 =
= &
E i 10 8
g 8
3 200 6
g
g 4
= ' —— ‘

300 500 600 700 800 900
Wavelength (nm)

Fig. 6 Same as in Fig. 4 but for the coastal station H3-2

(b)

example, the hyperspectral E; measurements and corre-
sponding GoPro photos collected from the second profile
at station H3 (denoted H3-2) are presented here. The var-
iations in the spectral E; and RGB photos with increasing
depth are shown in Figs. 6a and 6b, respectively.

As shown in Fig. 6, the decrease in E; was more pro-
nounced in the coastal stations than in the oceanic sta-
tions, which can be attributed to the greater optical
complexity and higher concentrations of water constitu-
ents in the coastal waters. For example, the chlorophyll-
a concentration at H3-2 was 3.3 mg/m® compared to
0.04 mg/m? at the oceanic station K12a-3 (Fig. 4). More
importantly, in comparison to the overall blue color in
the oceanic waters, the color of the coastal waters at H3-2
changed from light green to deep green with increasing
depths. Consequently, HA for all the measurements in
coastal waters spanned from 130° to 170° and from 160°
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to 220° for HA-GoPro and HA-hyper, respectively. Simi-
lar to the approach applied to the oceanic water measure-
ments, we used a quadratic regression model to relate
HA-GoPro to HA-hyper for coastal waters (Fig. 7a). The
fitted quadratic equation is expressed as follows:

y = 0.0346x% — 8.946x + 749.97, (9)

where x and y represent HA-GoPro and HA-hyper,
respectively.

As shown in Fig. 7a, the relationship between HA-
GoPro and HA-hyper appeared less robust than that in
oceanic waters. Although most data points fell within
the 95% ClI, the data points were much more scattered
than those of the oceanic measurements (Fig. 5). The
validation results in Fig. 7b also confirmed the rela-
tively degraded performance of the calibrated model in
coastal oceans, with lower R* values (= 0.75) and higher
errors of the converted HA from HA-GoPro (MAPD=
3.0%, RMSD= 7.2°, MAD= 5.8°) compared to that in
oceanic waters. The relatively larger uncertainties for
the calibrated model could be attributed to the effects
of the complex water constituents in the coastal waters,
such as colored dissolved organic matter and suspended
sediments. The GoPro camera, which is equivalent to a
three-channel broadband radiometer, may not be able
to accurately capture the nonlinear influence of com-
plex water constituents on the hyperspectral E; and
the subsequent HA in the dynamic coastal oceans. As
such, extensive measurements may be required to fur-
ther evaluate the capability of our proposed approach in
measuring HA in coastal waters. Nevertheless, generally
speaking, a MAPD value of 3.0% for the converted HA
from HA-GoPro is acceptable for providing reasonable
HA measurements using the proposed device. Future
enhancements or refinements of the calibrated model for

(a) Calibration
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Fig.7 Same as in Fig. 5, but for data collected from coastal waters
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coastal oceans will require additional simultaneous field
measurements using hyperspectral E; and GoPro photos
across diverse water types.

3.3 Relationship between HA-GoPro and HA-hyper for all
data collected in oceanic and coastal waters

Using all the data collected in this study, we recalibrated
the model to convert HA-GoPro to HA-hyper, ena-
bling us to obtain the relationship between HA-GoPro
and HA-hyper across all water types. The calibration
and validation of the converted model for HA-GoPro
using data collected from oceanic and coastal waters are
shown in Fig. 8. In this aspect, HA-GoPro exhibited a
broader range, spanning from 130° to 190°, whereas HA-
hyper ranged from 160° to 240° (Fig. 8a). The calibrated
model is also fitted through a quadratic function and is
expressed as follows:

y = —0.0062x% + 3.291x — 164.939, (10)

where x and y represent HA-GoPro and HA-hyper,
respectively.

As shown in Fig. 8 an overall satisfying relationship
can be observed between the converted HA from HA-
GoPro and HA-hyper for the combined dataset, with
approximately 89% of the data points falling within the
95% CI. The error metrics also demonstrated the overall
good agreement (R*= 0.94, MAPD = 1.6%, RMSD= 4.9,
MAD= 3.3°) between the converted HA from GoPro and
HA-hyper. Unsurprisingly, the data points deviating from
the fitting curve, particularly the outliers (green points in
Fig. 8a), originated from measurements in coastal waters.
Nevertheless, these error statistics, with an MAPD of
1.6%, confirmed the robustness of the proposed simple
approach in obtaining relatively high-accuracy measure-
ments of HA across oceanic and coastal waters.
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Fig. 8 Same asin Fig. 5, but for all data collected in this study, including oceanic and coastal water measurements

3.4 Limitations and perspectives

Despite the overall satisfactory conversion from HA-
GoPro to HA-hyper, there is still room for further
improvement in the HA measurements using GoPro.
For example, the relatively large deviations observed for
measurements from coastal waters may require further
optimization. On the one hand, more concurrent meas-
urements across different types of coastal waters and
varying light conditions are necessary to expand the cali-
bration dataset, thus enhancing data representativeness
and the model’s applicability. Ensuring data representa-
tiveness in the calibration dataset could be an ideal pre-
requisite for obtaining high-accuracy HA measurements
by GoPro across different water types. On the other hand,
because the Profiler II and GoPro were not precisely syn-
chronized, interpolating between hyperspectral E; and
GoPro photos based on timestamps may have resulted
in uncertainties, especially for scenarios in which HA
changed rapidly within 5 s (i.e., the sampling frequency of
GoPro). Thus, future experiments must ensure the exact
synchronization between Profiler II and GoPro prior to
deployment.

Finally, the use of different GoPro cameras (i.e., GoPro
Hero 6 in the South China Sea cruise and GoPro Hero
8 in the western Pacific cruise) may have led to some
systematic bias when developing a model based on data
collected from the two cruises (Fig. 8). Fundamentally,
the color captured by each camera could be influenced
by various factors, such as the focus and depth of field,
camera hardware configurations (camera and lens prop-
erties), image processing algorithm (adjusting contrast,
saturation, and sharpness), setting in white balance and
exposure, and spectral response of the RGB channel.
However, these factors could differ largely from cam-
era to camera, especially for cameras manufactured

by different companies. Thus, using calibration coeffi-
cients for each camera would be necessary. To minimize
the potential impact of camera settings on the color of
underwater photos, we recommend calibrating the pho-
tos taken in the auto mode for the HA measurement.
Such an approach facilitates the direct application of the
calibrated coefficients by other researchers. Our subse-
quent efforts will focus on providing detailed calibration
coefficients and establishing a standard calibration proto-
col for various commercial underwater cameras, includ-
ing different models of GoPro and DJI Osmo Action.
With high confidence in the HA measured by our pro-
posed device, further efforts will focus on expanding the
measurements of HA profiles across the global ocean.
To conveniently collect HA measurements, this sim-
ple device equipped with calibrated coefficients to con-
vert to HA can be easily mounted on other underwater
instruments, such as a conductivity-temperature-depth
sampler. In addition to providing insights into the dis-
tributions of underwater light quality, the extensive HA
measurements across the global ocean can also be used to
investigate their impacts on phytoplankton biomass and
productivity. Doing so could provide valuable insights
into the regulatory mechanisms of light quality on the
physiological and ecological functions of phytoplankton.
Furthermore, similar to the many successful appli-
cations of water quality monitoring using RGB images
captured by digital cameras (Gao et al. 2020, 2022),
future efforts could focus on correlating the measured
HA with the bio-optical properties found in the water
column. For example, the color of the GoPro-captured
photos exhibited a monotonic shift from light blue to
dark blue with increasing depth in oceanic waters (see
Fig. 4b), while shifts from cyan to green occurred in
coastal waters as depth increased. These distinct and
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region-dependent color changes, along with vertical
variations, can be fundamentally attributed to differ-
ences in the optical properties of the waterbody in these
two regions, such as the inherent optical properties and
the diffuse attenuation coefficient (K, in m™'). There-
fore, it may be possible to estimate these optical prop-
erties from the GoPro-measured HA when extensive
matched measurements are available. Such estimations
can be conducted using regression or machine-learning
approaches.

4 Conclusions
In this study, we proposed a simple approach/device to
measure the light quality of the upper ocean, quantified
by the HA of the downwelling irradiance, using a GoPro
camera and a diffuser. The HA measured using this sim-
ple device aligned very well with that of an expensive
hyperspectral radiometer for measurements collected in
oceanic and coastal waters. Despite the relatively larger
uncertainties in the coastal waters, the overall uncertainty
in the measured HA by GoPro was only 1.6% in terms
of MAPD across all the data collected in this study. Such
high accuracy provides confidence in using this simple
device for taking HA measurements in the upper ocean.
Furthermore, the simplicity and portability of the pro-
posed device make it ideal for convenient HA profil-
ing measurements across various bodies of water. With
additional HA measurements, it would be possible to
explore the impacts of light quality on the physiological
and ecological functions of phytoplankton. We anticipate
that the HA, along with light density, temperature, and
nutrients, will become a key factor used by the scientific
community to investigate the regulatory mechanisms of
phytoplankton growth.
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