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Abstract 

Solar radiation is the fundamental driving force of the Earth’s system. In the upper water column, interactions such 
as absorption and scattering by water constituents decrease light intensity (photon quantity) and alter light quality 
(spectral distribution of photons). Although changes in solar intensity have been extensively studied over the years, 
variations in light quality with depth have received comparatively little scholarly attention. This dearth of research may 
be due to the lack of simple and cost-effective instruments for measuring light quality, unlike commercial instruments 
available for measuring solar intensity. In this study, we present a simple approach that uses an underwater camera 
and a diffuser to measure light quality, represented by the hue angle (HA) of the downwelling irradiance. Our results 
reveal that the HA from this simple, low-cost device aligns closely with measurements from an expensive hyperspec-
tral radiometer across various water types, ranging from oceanic to coastal waters (R2 = 0.94, mean absolute percent-
age difference = 1.64%). The widespread adoption of this approach could significantly enhance our understanding 
of the impact of solar radiation on the biogeochemical processes in aquatic environments.
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1  Introduction
Light is a critical factor that regulates the growth of 
marine phytoplankton, with the vertical distribution of 
underwater light fields playing a pivotal role in modu-
lating their vertical zonation and primary productivity 
(Kirk 2011). Therefore, exploring the impacts of under-
water light fields on phytoplankton’s ecological and 
physiological functions has become a key focus in mod-
ern marine science (MacIntyre et  al. 2002; Stomp et  al. 
2004). Many studies have investigated the impact of light 
on phytoplankton growth through light intensity, such 

as photosynthetically active radiation (PAR; Sathyen-
dranath et  al. 1989; Alver et  al. 2014; Dutkiewicz et  al. 
2019). Other studies have found that insufficient light 
could suppress photosynthetic activity, whereas excessive 
light density may induce photoinhibition or cellular dam-
age (Behrenfeld and Falkowski 1997; Xie et al. 2015). As a 
result, phytoplankton exhibit a photoacclimation mecha-
nism to adapt to varying light intensities (Six et al. 2007). 
As the efficiency of phytoplankton photosynthesis varies 
significantly across different light wavelengths, light qual-
ity, which represents the spectral information of solar 
radiation at different wavelengths, can also affect phy-
toplankton growth. For example, under the same inten-
sity, red light (620–750 nm) contributes markedly less to 
photosynthesis than blue-green wavelengths (450–550 
nm) due to its rapid attenuation in shallow layers, while 
blue light (380–500 nm) can penetrate the deeper parts 
of the ocean, becoming the dominant driver of photosyn-
thesis in deeper euphotic zones (Hintz et al. 2021). How-
ever, existing studies that have evaluated phytoplankton 
responses to light conditions have mainly focused on 
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light intensity metrics. In comparison, the impacts of 
light quality on the physiological and ecological functions 
of phytoplankton have rarely been explored.

To characterize the vertical distribution of light qual-
ity, Lee et  al. (2022) employed the hue angle (HA, in 
degrees) of the downwelling irradiance (Ed, in W/m2/
nm), enabling them to quantify light quality variations in 
the upper water column using a simple index. By defini-
tion, HA represents the relative proportions of the red, 
green, and blue (RGB) tristimulus values in the chroma-
ticity space (Wyszecki and Stiles 2000). In particular, HA 
has emerged as a new optical property for water qual-
ity monitoring. Over the years, the HA of surface water 
has been demonstrated as a more robust alternative to 
the Forel-Ule index (FUI;  Bonney 1892; Wernand and 
van der Woerd 2010); therefore, it has been widely used 
for water quality monitoring (Lehmann et al. 2018; Shen 
et al. 2019; Wang et al. 2020). Furthermore, HA measure-
ments from RGB photos or composited images, espe-
cially when combined with machine-learning methods, 
can further enhance the capability of water quality moni-
toring (Malthus et al. 2020; Xiao et al. 2022).

At present, hyperspectral radiometers, such as the 
HyperOCR of Seabird Scientific, are the primary instru-
ments used to measure hyperspectral Ed and sub-
sequently estimate the HA of Ed (i.e., light quality). 
However, these instruments are costly, thereby limiting 
their broad applications in measuring underwater light 
quality across different aquatic environments. To address 

this limitation, in the present study, we developed a 
cost-effective and easy-to-deploy approach by integrat-
ing a GoPro camera with an optical diffuser. This simple 
‘device’ captures underwater RGB photos and obtains 
water HA at varying depths. The subsequent sections 
will provide a comprehensive description of the deploy-
ment of this device, data quality control, and calibration 
procedures for the proposed approach. Such an approach 
ensures that accurate and consistent HA measurements 
can be obtained from the GoPro and diffuser, as well as 
the HyperOCR.

2 � Data and methods
2.1 � Field measurements
This study utilized measurements from two field surveys 
conducted in the northern South China Sea and the west-
ern Pacific Ocean. The sampling locations of all measure-
ments are presented in Fig.  1, and their corresponding 
geographic coordinates are listed in Table 1. The north-
ern South China Sea represents a typical coastal environ-
ment with high spatial heterogeneity in terms of water 
quality, characterized by chlorophyll-a concentrations 
ranging from 0.1 to 5 mg/m3. In comparison, the west-
ern Pacific Ocean features open-ocean conditions, with 
lower chlorophyll-a concentrations (ca. 0.1 mg/m3) and 
relatively less temporal variability. Data from the western 
Pacific were collected during a winter cruise (December 
2020–January 2021), resulting in three stations with nine 
high-quality vertical profiles after quality control (see 

Fig. 1  Sampling locations of all the field measurements. The background represents data on the annually averaged chlorophyll-a concentration 
in 2023 from MODIS-Aqua, which were acquired through the NASA OceanColor website (https://​ocean​color.​gsfc.​nasa.​gov/)

https://oceancolor.gsfc.nasa.gov/


Page 3 of 10Yang et al. Intelligent Marine Technology and Systems            (2025) 3:13 	

Section 2.2). The northern South China Sea dataset was 
collected in June 2023, comprising six stations and 10 
vertical profiles after quality control.

In this study, the hyperspectral Ed data were measured 
using a HyperOCR irradiance radiometer mounted on 
the free-falling Profiler II system (Sea-Bird Scientific, 
Fig.  2a). Additionally, a GoPro camera with an opti-
cal diffuser attached to its lens (Fig. 2c) was housed in a 
waterproof casing and mounted on the Profiler II system 
to take zenith-view images simultaneously with the Ed 
measurements (Fig.  2b). The HyperOCR recorded 3–4 
hyperspectral Ed data per second. Ancillary information, 
including time, depth, and tilt angle, was simultaneously 

recorded with Ed data. Notably, to simultaneously meas-
ure the downwelling irradiance above the sea surface 
(Es), an additional HyperOCR irradiance radiometer was 
mounted on the deck. The GoPro camera was configured 
to automatically capture photos every 5 s, during which 
the acquisition times were also recorded. Typically, due 
to the presence of sunlight (photos not shown here), a 
strong light spot with saturated brightness appears in 
the center of the GoPro photos when taking zenith-view 
photos underwater. Therefore, we employed the semio-
paque white diffusing glass from Edmund Optics and 
attached it to the GoPro lens to diffuse the light field in 
the water column. The selected diffuser had a size of 25 
mm × 25 mm, a thickness of 1.25 mm, and a transmission 
efficiency of ca. 30% in the visible band. The size of such 
a diffuser is perfectly suited to cover the GoPro cam-
era lens (Fig. 2c). We used two different GoPro cameras 
during the coastal (GoPro Hero 6) and the open ocean 
(GoPro Hero 8) cruises.

2.2 � Data matching and processing
The overall data processing workflow is summarized 
in Fig. 3, which particularly illustrates the parallel han-
dling of the hyperspectral Ed and GoPro-derived HA 
for subsequent data analysis. The workflow comprised 
four steps, including (1) data processing, (2) calcu-
lation of HA, (3) quality control, and (4) data match 
and regression analysis. These steps were designed 
to ensure spatiotemporal alignment, enhance data 

Table 1  Station names with their geographic coordinates and 
sampling times

Station name Longitude (E) Latitude (N) Sampling time (UTC 
+ 8 h)

K12a 135°00’ 12°45’ 2021.01.24 06:48

K13a 131°00’ 11°00’ 2021.01.26 07:08

M22 155°00’ 20°00’ 2021.01.11 08:37

H3 118°24’ 24°00’ 2023.06.06 15:48

H11 117°48’ 22°51’ 2023.06.07 14:43

H16 116°15’ 22°15’ 2023.06.08 08:36

H17 116°09’ 22°23’ 2023.06.08 10:35

H25 115°13’ 22°24’ 2023.06.09 10:05

H26 115°12’ 22°24’ 2023.06.09 12:05

Fig. 2  Illustration of the concurrent hue angle (HA) measurement system with the (a) Profiler II and (b and c) GoPro camera
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quality, and establish robust relationships between the 
camera- and hyperspectral-derived HAs.

2.3 � Data processing and quality control
To obtain Level 4 data products, raw data were col-
lected using the Profiler II instrument and processed 
using the ProSoft software (v. 7.7.19 b2). The output 
Level 4 product included hyperspectral measurements 
of Ed and Es, instrument tilt angle, and correspond-
ing PAR data at various times and depths. RGB photos 
were directly obtained from the GoPro camera.

Quality control was performed based on three cri-
teria: the instrument tilt angle, consistency in the 
time series of the surface PAR, and the vertical dis-
tribution of the underwater PAR. Given that large 
instrument tilt angles (> 3°) result in deviations in Ed 
measurements from the true values, all Ed measure-
ments with tilt angles exceeding 3° were discarded. 
Rapid fluctuations in the surface PAR indicate short-
term environmental changes (e.g., cloud movement), 
which introduce temporal alignment uncertainties 
when interpolating the Ed-measured HA to the GoPro-
measured HA. This resulted from the differences in 
the sampling frequency when the timestamps‌ of the 
two devices were left unsynchronized‌. In addition, to 
ensure that all measurements were conducted under 
a relatively stable dynamic environment, the vertical 
profile of PAR, which typically followed an exponential 
decrease with depth, was also checked for each deploy-
ment. Thus, the hyperspectral Ed measurements were 
retained only for conditions in which the surface PAR 
was stable throughout the deployment period (5–8 
min), and the PAR profiles exhibited an exponentially 
decreasing trend.

2.4 � Calculation of the HA and regression analysis
The formula used by Lee et  al. (2022) was adopted to 
calculate the HA from hyperspectral Ed to quantify 
light quality variations in the upper water column. For 
the hyperspectral Ed data measured by Profiler II, the 
RGB tristimulus values were first computed by inte-
grating Ed(�) over the visible spectrum (400–700 nm), 
weighted by the CIE standard color-matching func-
tions r(�) , g(�) , and b(�) (Novoa et al. 2015; Wang et al. 
2015):

Next, the chromaticity coordinates (x, y) were derived 
from the following normalized RGB values:

The HA (in °) was then calculated following Lee et al. 
(2022):

As for the raw photos acquired by the GoPro camera, 
these were read using the Matlab function imread, result-
ing in a three-dimensional (3D) array of 3000 × 4000 
× 3 RGB values of the photo stored in each of the 3000 
× 4000 matrices (i.e., corresponding to the photo reso-
lution). Then, the RGB values were extracted from each 
matrix and averaged across the entire photo. As a prelim-
inary quality control measure, the outermost 200 pixels 
of each matrix were excluded from calculating the mean 
RGB value due to potential edge effects. The obtained 
mean RGB values of each photo were then used to calcu-
late the chromaticity coordinates (x, y) and HA following 
Eqs. (2) and (3), respectively. Due to the difference in the 
sampling frequency (Section 2.1), the GoPro-derived HA 
(i.e., HA-GoPro) values were temporally interpolated to 
match those from the hyperspectral Ed (i.e., HA-hyper) 
based on the timestamp. Finally, a quadratic expres-
sion was used to relate HA-GoPro to HA-hyper, and the 
model coefficients were obtained through least squares 
fitting.

2.5 � Statistical metrics
Here, four metrics were employed to evaluate the perfor-
mance of the calibrated model: the coefficient of deter-
mination ( R2 ), mean absolute percentage difference 
( MAPD ), root mean squared difference ( RMSD ), and 

(1)
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400
Ed(�)r(�)d�
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700

400
Ed(�)g(�)d�·
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(2)

{
x =

R
R+G+B

y = G
R+G+B

·

(3)HA = 90− atan2
(
y− 0.333, x − 0.333

)180
π

.

Fig. 3  Flowchart showing the processing and matching procedure 
for the two measuring systems
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mean absolute difference ( MAD ). Their corresponding 
mathematical formulations are expressed as follows:

where yi and ŷi denote the HA-hyper (i.e., the refer-
ence HA value) and the converted HA from HA-GoPro 
through the quadratic expression, respectively,  y  is the 
mean value of HA-hyper, and n represents the number of 
data points.

3 � Results and discussion
3.1 � Results for the oceanic waters
Through the data quality procedure, measurements at 
three stations (K12a, K13a, and M22-3, respectively; 
Table  1) in the western Pacific Ocean were retained for 
subsequent analysis. At each station, Profiler II was 
deployed three times, yielding nine vertical profiles of 
the hyperspectral Ed and GoPro photos. As an example, 
the third profile from station K12a (denoted K12a-3) 
was used here to illustrate the vertical distributions of Ed 

(4)R2
= 1−

∑n
i=1

(
ŷi − yi

)2
∑n

i=1

(
y− yi

)2 ,

(5)MAPD =

1

n

∑n

i=1

∣∣∣∣
ŷi − yi

yi

∣∣∣∣× 100%,

(6)RMSD =

√
1

n

∑n

i=1

(
ŷi − yi

)2
,

(7)MAD =

1

n

∑n

i=1

∣∣̂yi − yi
∣∣,

and the corresponding RGB photos at different depths 
(Fig.  4). Notably, the data from the surface layer (i.e., 
within 2 m) were removed due to large instrument tilt 
angles during the quality control procedure.

As shown in Fig.  4a, Ed in the red domain attenuated 
rapidly with depth, decreasing to near zero at 30 m. In 
contrast, blue light exhibited slower attenuation, with 
residual spectral detected at depths of 70 m. The corre-
sponding RGB photos revealed a gradual shift in water-
color from green and light blue at the surface ocean to 
dark blue at greater depths (Fig.  4b), as only blue light 
was retained at these depths. After matching the HA-
GoPro to the HA-hyper based on the timestamp, we 
obtained 186 pairs of HA measurements from the two 
devices for all nine deployments. Next, we employed a 
quadratic polynomial expression to calibrate the non-
linear relationship between HA-GoPro and HA-hyper 
(Fig. 5a). The calibrated model is expressed as follows:

where x and y represent HA-GoPro and HA-hyper, 
respectively.

As shown in Fig. 5a, a strong agreement was observed 
between the two HA measurements over a large range 
of HA, where the HAs measured from the GoPro and 
Hyperspectral Ed cameras ranged within 170°–200° and 
215°–240°, respectively. Despite the difference in the 
measured HA range between the two devices, almost all 
the matched HA-GoPro and HA-hyper data fell within 
the 95% confidence intervals (CI) of the calibrated model, 
suggesting high confidence in the developed model. The 
robustness of the calibrated model was further illustrated 

(8)y = −0.0287x2 + 11.18x − 853.37,

Fig. 4  (a) Depth profiles of the downwelling irradiance at station K12a-3 and (b) zenith-view photos captured by the GoPro camera with a diffuser 
at increasing depths
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by the statistical results in Fig.  5b, in which the con-
verted HA from HA-GoPro aligned very well with HA-
hyper, as most data points were distributed closely to the 
1:1 line. Furthermore, the high R2 values of 0.90 and the 
low errors in the converted HA (MAPD = 0.7%, RMSD = 
1.1°, MAD = 0.9°) suggested good agreement between the 
converted HA and the reference HA-hyper. Therefore, 
these metrics confirm the model’s robustness in oceanic 
waters, suggesting the possibility of obtaining highly 
accurate HA measurements from a GoPro camera with 
a diffuser.

3.2 � Results for the coastal waters
For the coastal cruise, measurements at six stations (H3, 
H11, H16, H17, H25, and H26, respectively; see Table 1) 
in the northern South China Sea, with 10 vertical profiles, 
were retained after the quality control procedure. For 

example, the hyperspectral Ed measurements and corre-
sponding GoPro photos collected from the second profile 
at station H3 (denoted H3-2) are presented here. The var-
iations in the spectral Ed and RGB photos with increasing 
depth are shown in Figs. 6a and 6b, respectively.

As shown in Fig. 6, the decrease in Ed was more pro-
nounced in the coastal stations than in the oceanic sta-
tions, which can be attributed to the greater optical 
complexity and higher concentrations of water constitu-
ents in the coastal waters. For example, the chlorophyll-
a concentration at H3-2 was 3.3 mg/m3 compared to 
0.04 mg/m3 at the oceanic station K12a-3 (Fig. 4). More 
importantly, in comparison to the overall blue color in 
the oceanic waters, the color of the coastal waters at H3-2 
changed from light green to deep green with increasing 
depths. Consequently, HA for all the measurements in 
coastal waters spanned from 130° to 170° and from 160° 

Fig. 5  The relationship between HAs measured from hyperspectral Ed and GoPro Camera for oceanic water samples. a The calibrated relationship 
between HA-GoPro and HA-hyper, with the red line representing the fitting curve and the gray shading indicating the 95% confidence intervals (CI). 
The green points are marked as outliers exceeding the 95% CI. b Validation of the converted HA from HA-GoPro against the reference HA-hyper

Fig. 6  Same as in Fig. 4 but for the coastal station H3-2
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to 220° for HA-GoPro and HA-hyper, respectively. Simi-
lar to the approach applied to the oceanic water measure-
ments, we used a quadratic regression model to relate 
HA-GoPro to HA-hyper for coastal waters (Fig. 7a). The 
fitted quadratic equation is expressed as follows:

where x and y represent HA-GoPro and HA-hyper, 
respectively.

As shown in Fig.  7a, the relationship between HA-
GoPro and HA-hyper appeared less robust than that in 
oceanic waters. Although most data points fell within 
the 95% CI, the data points were much more scattered 
than those of the oceanic measurements (Fig.  5). The 
validation results in Fig.  7b also confirmed the rela-
tively degraded performance of the calibrated model in 
coastal oceans, with lower R2 values (= 0.75) and higher 
errors of the converted HA from HA-GoPro (MAPD = 
3.0%, RMSD = 7.2°, MAD = 5.8°) compared to that in 
oceanic waters. The relatively larger uncertainties for 
the calibrated model could be attributed to the effects 
of the complex water constituents in the coastal waters, 
such as colored dissolved organic matter and suspended 
sediments. The GoPro camera, which is equivalent to a 
three-channel broadband radiometer, may not be able 
to accurately capture the nonlinear influence of com-
plex water constituents on the hyperspectral Ed and 
the subsequent HA in the dynamic coastal oceans. As 
such, extensive measurements may be required to fur-
ther evaluate the capability of our proposed approach in 
measuring HA in coastal waters. Nevertheless, generally 
speaking, a MAPD value of 3.0% for the converted HA 
from HA-GoPro is acceptable for providing reasonable 
HA measurements using the proposed device. Future 
enhancements or refinements of the calibrated model for 

(9)y = 0.0346x2 − 8.946x + 749.97,

coastal oceans will require additional simultaneous field 
measurements using hyperspectral Ed and GoPro photos 
across diverse water types.

3.3 � Relationship between HA‑GoPro and HA‑hyper for all 
data collected in oceanic and coastal waters

Using all the data collected in this study, we recalibrated 
the model to convert HA-GoPro to HA-hyper, ena-
bling us to obtain the relationship between HA-GoPro 
and HA-hyper across all water types. The calibration 
and validation of the converted model for HA-GoPro 
using data collected from oceanic and coastal waters are 
shown in Fig.  8. In this aspect, HA-GoPro exhibited a 
broader range, spanning from 130° to 190°, whereas HA-
hyper ranged from 160° to 240° (Fig. 8a). The calibrated 
model is also fitted through a quadratic function and is 
expressed as follows:

where x and y represent HA-GoPro and HA-hyper, 
respectively.

As shown in Fig.  8 an overall satisfying relationship 
can be observed between the converted HA from HA-
GoPro and HA-hyper for the combined dataset, with 
approximately 89% of the data points falling within the 
95% CI. The error metrics also demonstrated the overall 
good agreement (R2 = 0.94, MAPD = 1.6%, RMSD = 4.9°, 
MAD = 3.3°) between the converted HA from GoPro and 
HA-hyper. Unsurprisingly, the data points deviating from 
the fitting curve, particularly the outliers (green points in 
Fig. 8a), originated from measurements in coastal waters. 
Nevertheless, these error statistics, with an MAPD of 
1.6%, confirmed the robustness of the proposed simple 
approach in obtaining relatively high-accuracy measure-
ments of HA across oceanic and coastal waters.

(10)y = −0.0062x2 + 3.291x − 164.939,

Fig. 7  Same as in Fig. 5, but for data collected from coastal waters
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3.4 � Limitations and perspectives
Despite the overall satisfactory conversion from HA-
GoPro to HA-hyper, there is still room for further 
improvement in the HA measurements using GoPro. 
For example, the relatively large deviations observed for 
measurements from coastal waters may require further 
optimization. On the one hand, more concurrent meas-
urements across different types of coastal waters and 
varying light conditions are necessary to expand the cali-
bration dataset, thus enhancing data representativeness 
and the model’s applicability. Ensuring data representa-
tiveness in the calibration dataset could be an ideal pre-
requisite for obtaining high-accuracy HA measurements 
by GoPro across different water types. On the other hand, 
because the Profiler II and GoPro were not precisely syn-
chronized, interpolating between hyperspectral Ed and 
GoPro photos based on timestamps may have resulted 
in uncertainties, especially for scenarios in which HA 
changed rapidly within 5 s (i.e., the sampling frequency of 
GoPro). Thus, future experiments must ensure the exact 
synchronization between Profiler II and GoPro prior to 
deployment.

Finally, the use of different GoPro cameras (i.e., GoPro 
Hero 6 in the South China Sea cruise and GoPro Hero 
8 in the western Pacific cruise) may have led to some 
systematic bias when developing a model based on data 
collected from the two cruises (Fig.  8). Fundamentally, 
the color captured by each camera could be influenced 
by various factors, such as the focus and depth of field, 
camera hardware configurations (camera and lens prop-
erties), image processing algorithm (adjusting contrast, 
saturation, and sharpness), setting in white balance and 
exposure, and spectral response of the RGB channel. 
However, these factors could differ largely from cam-
era to camera, especially for cameras manufactured 

by different companies. Thus, using calibration coeffi-
cients for each camera would be necessary. To minimize 
the potential impact of camera settings on the color of 
underwater photos, we recommend calibrating the pho-
tos taken in the auto mode for the HA measurement. 
Such an approach facilitates the direct application of the 
calibrated coefficients by other researchers. Our subse-
quent efforts will focus on providing detailed calibration 
coefficients and establishing a standard calibration proto-
col for various commercial underwater cameras, includ-
ing different models of GoPro and DJI Osmo Action.

With high confidence in the HA measured by our pro-
posed device, further efforts will focus on expanding the 
measurements of HA profiles across the global ocean. 
To conveniently collect HA measurements, this sim-
ple device equipped with calibrated coefficients to con-
vert to HA can be easily mounted on other underwater 
instruments, such as a conductivity-temperature-depth 
sampler. In addition to providing insights into the dis-
tributions of underwater light quality, the extensive HA 
measurements across the global ocean can also be used to 
investigate their impacts on phytoplankton biomass and 
productivity. Doing so could provide valuable insights 
into the regulatory mechanisms of light quality on the 
physiological and ecological functions of phytoplankton.

Furthermore, similar to the many successful appli-
cations of water quality monitoring using RGB images 
captured by digital cameras (Gao et  al. 2020, 2022), 
future efforts could focus on correlating the measured 
HA with the bio-optical properties found in the water 
column. For example, the color of the GoPro-captured 
photos exhibited a monotonic shift from light blue to 
dark blue with increasing depth in oceanic waters (see 
Fig.  4b), while shifts from cyan to green occurred in 
coastal waters as depth increased. These distinct and 

Fig. 8  Same as in Fig. 5, but for all data collected in this study, including oceanic and coastal water measurements
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region-dependent color changes, along with vertical 
variations, can be fundamentally attributed to differ-
ences in the optical properties of the waterbody in these 
two regions, such as the inherent optical properties and 
the diffuse attenuation coefficient (Kd, in m−1). There-
fore, it may be possible to estimate these optical prop-
erties from the GoPro-measured HA when extensive 
matched measurements are available. Such estimations 
can be conducted using regression or machine-learning 
approaches.

4 � Conclusions
In this study, we proposed a simple approach/device to 
measure the light quality of the upper ocean, quantified 
by the HA of the downwelling irradiance, using a GoPro 
camera and a diffuser. The HA measured using this sim-
ple device aligned very well with that of an expensive 
hyperspectral radiometer for measurements collected in 
oceanic and coastal waters. Despite the relatively larger 
uncertainties in the coastal waters, the overall uncertainty 
in the measured HA by GoPro was only 1.6% in terms 
of MAPD across all the data collected in this study. Such 
high accuracy provides confidence in using this simple 
device for taking HA measurements in the upper ocean.

Furthermore, the simplicity and portability of the pro-
posed device make it ideal for convenient HA profil-
ing measurements across various bodies of water. With 
additional HA measurements, it would be possible to 
explore the impacts of light quality on the physiological 
and ecological functions of phytoplankton. We anticipate 
that the HA, along with light density, temperature, and 
nutrients, will become a key factor used by the scientific 
community to investigate the regulatory mechanisms of 
phytoplankton growth.
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