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Atmospheric correction (AC) is a critical step in ocean color remote sensing, particularly for coastal 
waters that still face challenges from high concentrations of suspended materials and absorbing aerosols. 
To address these limitations, this study presents a novel AC algorithm, termed ACA-SIM (atmospheric 
correction based on satellite–in situ matchup data), based on extensive matchups between satellite 
measurements (ρt) and in  situ remote sensing reflectance (Rrs) from Aerosol Robotic Network-Ocean 
Color (AERONET-OC), with neural networks as the processing tool. Unlike the Ocean Color-Simultaneous 
Marine and Aerosol Retrieval Tool (OC-SMART algorithm, which employs a similar strategy but relies on 
simulated data, ACA-SIM uses real-world matchups between ρt and in situ Rrs, capturing sensor-specific 
effects such as striping and encompassing a wide range of water and aerosol properties. Validations with 
independent AERONET-OC measurements demonstrated that ACA-SIM outperformed both the NASA 
Standard and OC-SMART, achieving higher accuracy of Rrs across all spectral bands. In particular, for the 
blue bands, ACA-SIM reduced the mean absolute percentage difference (MAPD) of derived Rrs to ~15%, 
compared to an MAPD of ~32% by OC-SMART, and maintained robust performance even under challenging 
conditions. Moreover, when applied to Moderate-Resolution Imaging Spectroradiometer-Aqua images in 
highly turbid and dust- or smoke-affected regions, such as the Bohai and Yellow Seas, the West Coast of 
North Africa, and areas impacted by Australian bushfires, ACA-SIM demonstrated exceptional capability 
in minimizing striping effects and generating reliable Rrs products. This study advances AC techniques 
for coastal waters and reinforces the importance of the AERONET-OC network. Furthermore, it lays a 
foundation for extending ACA-SIM to other satellite sensors, enabling the generation of consistent and 
accurate ocean color products across multiple satellite platforms.

Introduction

   Coastal waters are vital ecosystems, playing a crucial role in 
biogeochemical cycles and representing some of the most 
dynamic and complex regions in the marine environment. 
Approximately 70% of the world’s largest cities, with popula-
tions exceeding one million, are within 100 km of coastlines. 
In recent decades, these waters have experienced increasing 
occurrences of red tides and harmful algal blooms, making 
them a key area of interest for ocean research [  1 ,  2 ]. Systematic 
and sustained observations of the rapidly changing coastal eco-
system are thus an essential component of the Earth observing 
system [  3 ]. Compared to traditional in situ measurements, 
large-scale and high-frequency satellite remote sensing has 
become indispensable for such observations [  4 ]. It is thus not 
surprising to see that, since the launch of the Coastal Zone 
Color Scanner (CZCS), especially the Moderate-Resolution 
Imaging Spectroradiometer (MODIS), over 20 years of valuable 
continuous data of the global ocean have been provided via 
ocean-color satellites. However, accurately retrieving water prop-
erties in coastal waters from satellite measurements remains 

challenging [  5 ]. High concentrations of dissolved and sus-
pended materials in water and complex aerosol properties in 
such regions complicate achieving accurate retrievals of water 
properties from ocean-color satellite data.

   Atmospheric correction (AC) is a crucial step in processing 
satellite ocean color measurements. Its goal is to remove the 
effects of atmosphere and sea surface reflectance from the total 
radiance signal (Lt﻿) measured by a satellite sensor at the top of 
the atmosphere (TOA), intending to accurately extract the sig-
nal of water body, i.e., water-leaving radiance (Lw﻿), or remote 
sensing reflectance (Rrs﻿) that is converted from Lw﻿ [  6 ]. This 
process provides the foundation for subsequent estimations of 
bio-optical parameters from Rrs﻿ [  7 ,  8 ]. AC algorithms focus on 
estimating the aerosol contributions in atmospheric contribu-
tions, which introduces the dominant sources of uncertainties 
in the final bio-optical products [ 5 ].

   The classical approach for removing aerosol contributions 
relies on the “black pixel” assumption in the near-infrared 
(NIR) bands [ 6 ,  9 ], which assumes that Lw﻿ in the NIR bands 
is negligible due to the strong absorption by water. Such an 
approach has shown great success for open ocean waters, which 
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has been a standard for processing data from the earliest CZCS 
to modern ocean-color satellites such as MODIS and the Visible 
Infrared Imaging Radiometer Suite (VIIRS). However, for turbid 
coastal waters, the water contribution is no longer negligible in 
the NIR bands, leading to an overestimation of the aerosol con-
tribution and an underestimation of Lw﻿, which can even result 
in negative values for Lw﻿ in the blue bands [  10 –  13 ]. In recent 
decades, considerable effort has been invested in developing AC 
algorithms for coastal waters, resulting in a wide range of algo-
rithms developed (see the “Brief Description of 2 Typical and 
Contrasting AC Approaches for Coastal Waters” section for more 
details). These include approaches modeling Lw﻿ in the NIR bands 
[  14 –  17 ], or extending the black pixel assumption to the short-
wave infrared (SWIR) bands [  18 –  20 ], or incorporating the blue 
band in the process of AC [  21 ], or using the darkest pixel within 
an image [  22 ,  23 ], each showing various levels of success.

   In parallel, since neural networks (NNs) or machine learn-
ing (ML) is showing superior nonlinear problem-solving capa-
bilities each day, schemes based on NN or ML have also been 
developed for AC problems in oceanic and coastal waters 
[  24 –  30 ]. Such a scheme relies on high-quality and representa-
tive data to train the model [  31 ], where synthetic datasets were 
commonly used [  26 , 31 –  33 ]. Such simulations, however, gener-
ally ignore the land-adjacent effects in coastal regions (e.g., 
[  34 ]), and may not be able to account for all natural variations 
in aerosols and water’s bio-optical properties in coastal and 
open-ocean regions. More importantly, the various specifics of 
sensors, including sensor noises such as striping effects, were 
not incorporated. Consequently, the simulated TOA radiance 
may not precisely match that measured by a satellite sensor for 
the same suite of atmosphere and ocean properties.

   Ideally, it would be best to use accurate and inclusive data 
from both field measurements and satellite Lt﻿ to train data-
driven (DD) algorithms, either NN or ML. Unfortunately, due 
to the high cost of conducting ship surveys, the matchups 
between field-measured high-quality Rrs﻿ and satellite-measured 
﻿Lt﻿ are very limited. Therefore, few studies have developed 
DD-based AC algorithms using matchup in situ and satellite 
datasets. On the other hand, the Aerosol Robotic Network-
Ocean Color (ANOC hereafter) maintains more than 40 sta-
tions globally, offering long-term observation data covering a 
wide range of water types that include blue coastal waters to 
CDOM (colored dissolved organic matter)-dominated green–
yellow waters and highly turbid brown waters, as well as various 
atmospheric conditions [  35 ].

   Conventionally, the ANOC-Rrs﻿ products have been used as 
an important source to validate satellite Rrs﻿ products [  36 –  39 ]. 
In this study, to further demonstrate the value and usefulness 
of ANOC-Rrs﻿, we developed an AC algorithm, termed ACA-
SIM (atmospheric correction based on satellite–in situ matchup 
data), based on satellite and ANOC matchups, explicitly target-
ing coastal waters and using NNs as the processing tool. The 
key feature of ACA-SIM is a compiled matchup dataset between 
ANOC-Rrs﻿ from the various sites and satellite measurements. 
This dataset provides extensive coverage of challenging condi-
tions, including large solar zenith angles (SOZA), sensor-
specific effects, stray light, absorbing aerosols, cloud shadows, 
and adjacency effects from nearby land, factors that were 
often overlooked in previous similar approaches. Using Lt﻿ data 
from MODIS-Aqua as an example, ACA-SIM was developed 
for processing MODIS-Aqua measurements, and its performance 
was independently validated using data from field measurements 

and evaluated using images of MODIS-Aqua. The results high-
light the effectiveness of ACA-SIM in processing coastal waters, 
even under dust and smoke. This approach has strong potential 
for further extending to other sensors and establishes a bench-
mark for generating consistent Rrs﻿ products in coastal waters 
across different satellites.

   This article is organized as follows: the “Brief Description 
of 2 Typical and Contrasting AC Approaches for Coastal 
Waters” section provides a brief overview of the theoretical 
basis of AC and 2 typical and contrasting AC approaches 
(NASA Standard and Ocean Color-Simultaneous Marine and 
Aerosol Retrieval Tool [OC-SMART]) used for processing sat-
ellite ocean-color images. The “AC Based on Satellite–In Situ 
Matchup Data” section introduces the development of ACA-
SIM. In the “In Situ Data for Validation” section, in situ mea-
surements used for validation are presented. The “Results and 
Evaluations” section presents the performance of ACA-SIM 
and compares it with the NASA Standard and OC-SMART, 
along with demonstrations with MODIS-Aqua images. The 
“Discussion” section further discusses reasons for the better 
performance of ACA-SIM under challenging conditions, such 
as absorbing aerosols and striping. Finally, the “Conclusion” 
section provides a summary of this effort.   

Materials and Methods

Brief description of 2 typical and contrasting AC 
approaches for coastal waters
Overall relationship
   The total radiance ( Lt   ) measured by a satellite sensor at the TOA 
can be generally expressed as:
﻿﻿   

   Here, Lr﻿ represents contributions from Rayleigh scattering, 
and La﻿ denotes contributions from aerosols (including those of 
Rayleigh-aerosol multiple scatterings). Note that the sum of Lr﻿ 
and La﻿ makes up ~80%, or more (especially in the NIR-SWIR 
domain), of Lt﻿ [ 5 ]. Lx﻿ here represents the noises arising from sun 
glint and whitecaps or foams. t is the diffuse transmittance of the 
atmosphere. The desired property is the water-leaving radiance 
(Lw﻿), as it contains information about water constituents. Here, 
for brevity, the effect of gases in the atmosphere is omitted in  Eq. 1 . 
Since radiance is also a function of solar irradiance, reflectance is 
generally used, and the TOA reflectance (ρt﻿) is defined as:

﻿﻿  

﻿F 0 is the extraterrestrial solar irradiance [  40 ], and θs﻿ is the solar 
zenith angle. Therefore,  Eq. 1  can be written as

﻿﻿   

   Here, ρr,a,x﻿ are the reflectance due to Rayleigh, aerosol, and 
surface effects, respectively, and ts﻿ is the diffuse transmittance 
of the solar radiation. Rrs﻿(λ) is the remote-sensing reflectance 
of a water body, which is defined as:

﻿﻿  

(1)Lt(�) = Lr(�) + La(�) + Lx(�) + t(�)Lw(�).

(2)�t(�) =
�Lt(�)

F0cos
(
�s
) .

(3)�t(�) = �r(�) + �a(�) + �x(�) + ts(�)t(�)�Rrs(�)

(4)Rrs(�) =
Lw(�)

E0+
d
(�)

,
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with  E0+
d
(�)    being the downwelling irradiance just above the 

surface. The objective of an AC algorithm is to obtain, as accu-
rately as possible, Rrs﻿(λ) from ρt﻿(λ). As described in detail in 
IOCCG Report #10 [ 5 ], a wide range of AC algorithms have 
been developed in the past decades. Given the limited space of 
this article and the scope of this study, we highlight here 2 
commonly used but contrasting AC algorithms: the NASA 
Standard and OC-SMART. We further compare the perfor-
mance of ACA-SIM with that of the 2 algorithms.   

NASA Standard approach
   In  Eq. 3 , ρr﻿ can be exactly calculated with information on sun-
sensor geometry and at sea level atmospheric pressure [  41 –  43 ], 
with ρx﻿ estimated based on geometry and wind speed [  44 –  46 ]. 
The overall challenge lies in calculating ρa﻿. This is achieved with 
the “black pixel” assumption that Rrs﻿ is 0 in the NIR or SWIR 
bands; therefore, ρt﻿ data in these bands after removing ρr﻿ and 
﻿ρx﻿ become ρa﻿, which is used to estimate aerosol characteristics 
and then extrapolated to the blue–green bands, subsequently 
to obtain Rrs﻿ of these bands [ 18 , 41 ,  47 ,  48 ]. For waters where Rrs﻿ 
in the NIR is no longer negligible, algorithms were developed 
to estimate Rrs﻿(NIR) [ 14 – 17 ], or to extend the NIR bands to 
SWIR [ 18 , 47 ], in order to overcome the limitations of this 
assumption.

   This classical AC approach is incorporated into the SeaWiFS 
Data Analysis System (SeaDAS) endorsed by the National 
Aeronautics and Space Administration (NASA) and is the most 
widely used AC algorithm. In this study, the default setting 
of SeaDASv8.4, which employs the iterative NIR scheme, is 
referred to as the NASA Standard.   

OC-SMART
   As early as the 1990s, it was demonstrated that Rrs﻿ could be 
estimated from Lt﻿ or ρt﻿ using NNs [ 26 ], a much simpler, more 
efficient, but implicit approach compared to the NASA Standard 
AC system. This NN-based system was later improved [  27 ,  28 ] 
for better accuracy in coastal waters by integrating a coupled 
radiance transfer system for forward modeling. More recently, 
for AC of multiple sensors with the same NN architecture, 
also with more accurate data representing Lt﻿ of various oce-
anic and atmospheric conditions, Fan et al. [  32 , 33 ] proposed 
the OC-SMART AC algorithm, with data used for training the 
AC algorithm by large simulations of the coupled atmosphere–
ocean system, where more complex aerosol conditions were 
introduced [  49 ]. Specially, the simulations considered multiple 
scattering effects and interactions between atmospheric and 
oceanic components, enabling more accurate simulations of Lt﻿ 
over a wide range of aerosol optical depth (AOD) and Rrs﻿ across 
diverse water properties [ 8 ]. Finally, after training, the algo-
rithm uses Rayleigh-corrected radiance and sun-sensor geom-
etries as input to estimate Rrs﻿ of various satellite sensors. It is 
necessary to note that such simulations cannot account for 
sensor-specific (e.g., striping) and land-adjacency effects. In 
addition, the spectral range used for training is 412 to 869 nm, 
which may encounter similar issues to the NASA Standard for 
highly turbid waters, where Lw﻿ is no longer negligible in the 
NIR domain. For this effort, we applied the latest available ver-
sion (Python_Linux_v2.1) of the OC-SMART code provided 
by Fan et al. [ 33 ], which is available from the open-source 
repository (the Light and Life website,  http://www.rtatmocn.
com/oc-smart/ ).    

AC based on satellite–in situ matchup data
   Both the NASA Standard and OC-SMART, as well as many 
other AC algorithms, have demonstrated various successes in 
processing satellite ocean-color measurements [ 5 ,  50 ]; however, 
challenges remain. These include observations made under 
large solar zenith angles, strong sunglint, strong absorbing 
aerosols, and cloud shadows, to name a few. In particular, these 
approaches rely on perfect Lt﻿ data, where the sensor’s noises or 
striping effects were not included in the development of the AC 
algorithms [ 32 , 33 ], which were then propagated to the final 
bio-optical products [  51 ,  52 ]. A separate and dedicated step is 
required to remove such sensor noises in these AC schemes 
[  53 ]. On the other hand, there are rich and high-quality Rrs﻿ data 
available since the installation of the first AERONET-OC site 
in 2002; therefore, there is a potential to develop a DD AC 
algorithm through matching up data between satellite ρt﻿ and 
ANOC-Rrs﻿, termed ACA-SIM, where sensor effects in ρt﻿ could 
be accounted for, although implicitly.  

Overview of the strategy
   The crucial factor to DD algorithms lies in the quality and rep-
resentativeness of the dataset. Thus, the overall strategy for the 
development of ACA-SIM is as follows: (a) compile a large, 
high-quality, and representative dataset that includes both satel-
lite ρt﻿ and ANOC-Rrs﻿, and (b) train a robust NN system for the 
estimation of Rrs﻿ from satellite ρt﻿. In essence, ACA-SIM follows 
a similar strategy to OC-SMART, but its notable distinction is 
the use of satellite measurements along with in situ Rrs﻿ data. 
Compared to synthetic datasets based on RT simulations, 
in situ measurements offer a more authentic representation of 
﻿Rrs﻿ spectra. Furthermore, the matchup between satellite data 
and in situ Rrs﻿ covers a wide range of atmospheric conditions, 
observing geometries, and preserves the noise present in real 
satellite measurements. Numerical simulations that follow 
radiative transfer, however, are difficult to accurately model 
challenging observation conditions, such as high SOZA, strong 
sunglint, and sensor-specific effects, such as striping and 
straylight. These factors often lead to a decrease in the accuracy 
of AC algorithms, or even distortions, especially when applied 
to images.   

Rrs from AERONET-OC
AERONET-OC measurements
   All AERONET-OC data used in this effort were downloaded 
from the AERONET website ( http://aeronet.gsfc.nasa.gov ), 
where multi-band normalized water-leaving radiance (Lwn﻿) and 
auxiliary information are included. There are 3 levels of ver-
sion-3 AERONET-OC data: Level 1.0 (minimized platform 
disturbance), Level 1.5 (cloud and wave anomaly removal), and 
Level 2.0 (fully quality-assured normalized water-leaving radi-
ance) [ 35 ,  54 ]. In this study, Level 1.5 data, rather than Level 
2.0, were utilized because Level 1.5 contains up to 210,000 
spectra from January 2002 to March 2024, compared to approx-
imately 80,000 spectra under Level 2.0. As always, extensive 
and inclusive data are a key factor for DD-based algorithms. 
It should be noted that Level 1.5 data in version 3 may contain 
potential spectral inconsistencies. However, the application 
of the band-shifting procedure effectively minimizes such 
effects and filters out unreasonable spectra (see the “Band-
shifting of AERONET-OC to match that of MODIS” section 
and Appendix A).
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   The Lwn﻿ data acquired from AERONET-OC sites were con-
verted to Rrs﻿ as follows:

﻿﻿   

   AERONET-OC has utilized CE-318 and CE-318T auto-
mated sun photometers, installed on offshore platforms such 
as lighthouses, oceanographic towers, and oil rigs worldwide, 
to measure optical data of water and atmosphere (see Fig.  1 ) 
[  55 ]. Data from AERONET-OC have several advantages: 
(a) measurements are taken using a unified system and proto-
col; (b) calibration is performed using the same reference 
source and methods; and (c) data processing is conducted using 
uniform code.        

   Although it is the same type of instrument, the settings 
of the instrument (especially the spectral bands) at each 
AERONET-OC site are not necessarily the same [ 35 ]. Therefore, 
it is necessary to do a band shift to convert the multi-band 
﻿RAO
rs (�)    obtained at each site to Rrs﻿ of the MODIS bands. A brief 

description of this band-shift approach is provided below, with 
details included in Appendix A.   

Band-shifting of AERONET-OC to match that of MODIS
   To shift the spectral bands of AERONET-OC, which may vary 
from site to site, to match that of MODIS-Aqua, we first con-
structed hyperspectral Rrs﻿ from multi-band  RAO

rs    , and then 
obtained Rrs﻿ at the MODIS bands through spectral convolution. 
For expanding multi-band Rrs﻿ to hyperspectral Rrs﻿, the hyper-
spectral optimization processing exemplar (HOPE) developed 
by Lee et al. [  56 ] was used. Finally, after quality control, 168,572 
MODIS-wavelength Rrs﻿ spectra were obtained from these 
AERONET-OC measurements after the construction of hyper-
spectral Rrs﻿. As examples, Fig.  2  shows hyperspectral and 

MODIS-band Rrs﻿ spectra from 4 representative sites, indicat-
ing that these Rrs﻿ covered waters from blue clear waters to 
green water with high concentrations of colored, dissolved 
organic matter and highly turbid brownish water. The other 
AERONET-OC sites supplement the gaps among these 4 sites 
with varying water constituents and concentrations.            

MODIS-Aqua data for the development of ACA-SIM
   In this study, data from MODIS-Aqua were chosen for the 
development and demonstration of ACA-SIM. This is because, 
from 2002 to 2024, MODIS-Aqua offers the longest coverage 
and the largest dataset to match that with AERONET-OC mea-
surements. Level 1A data of MODIS-Aqua (Lt﻿) were obtained 
from NASA’s Ocean Color Website ( https://oceancolor.gsfc.
nasa.gov/ ). It is necessary to first generate the MODIS-Aqua 
L1B and geo files before exporting the required Level 2 prod-
ucts. Standard Rrs﻿, ρt﻿, 4 angles, and atmospheric parameters 
were simultaneously obtained from the l2gen module in SeaDAS. 
NASA Standard Rrs﻿ were obtained using the default settings 
(multi-scattering aerosol model and NIR correction with up to 
10 iterations). Additionally, the established criteria L2-FLAGS 
for MODIS-Aqua are used to ensure data quality. A variety of 
measurement conditions were encountered for these coastal 
sites, which include HILT (observed radiance very high or 
saturated), LAND (pixel is over land), CLDICE (probable 
cloud or ice contamination), STRAYLIGHT (probable stray 
light contamination), and MODGLINT (moderate sun glint 
contamination).   

Matchup criteria
   AERONET-OC sites encompass a wide variety of water types, 
which ensures the applicability of ACA-SIM across diverse coastal 
waters and atmospheric conditions. The following criteria were 
taken to match ANOC-Rrs﻿ with ρt﻿ from MODIS-Aqua:

(5)RAO
rs (�) =

Lwn(�)

F0
.

Fig. 1. The spatial distribution of field-measured data used in this study. Red pentagrams, blue circles, and yellow squares represent data from the AERONET-OC sites, Optical 
Oceanography Lab (OOL, Xiamen University, China), and SeaBASS, respectively. Note that field measurements with water depth > 1,000 m were excluded from this study.
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1. � Satellite data where the water signal was completely 
obscured by anomalies (e.g., land, clouds, and very high 
or saturated radiance) were excluded, while pixels moder-
ately affected by contamination (e.g., stray light, moderate 
sunglint, and cloud shadows) were retained; thus, the devel-
oped ACA-SIM could handle such complex conditions.

2. � The time window is restricted to ±1 h to take account of 
the more rapid variability of coastal waters, rather than 

the common ±2 h [23,29,36,57] used for the study of 
oceanic waters. If multiple ANOC-Rrs spectra matched 
the same MODIS-Aqua data, only the one with the 
smallest time difference is retained.

3. � Since the focus is coastal waters where the spatial het-
erogeneity of water properties is much higher than that 
of oceanic waters, the nearest pixel of MODIS-Aqua 
matching an AERONET-OC site was used, rather than 
the conventional average of 3×3 pixels [36,57] around 
a site.

   The above resulted in 8,818 matchups between MODIS-
Aqua ρt﻿ and ANOC-Rrs﻿ for the training of ACA-SIM. Table  1  
and Fig.  3  present the range and distributions of key parameters 
of this dataset, which largely determine the model’s applicabil-
ity. For the sun-sensor angles, the SOZA ranges from 9° to 
77.8°, which is wider than the common upper limit of 70° 

Fig. 2. Rrs spectra of 4 representative sites with different water types (Casablanca_
Platform, n = 5,968; AAOT, n = 4,958; ARIAKE_TOWER_2, n = 2,821; RdP-EsNM, n = 
4,500). Solid line–square represents the average spectra of the original multi-band 
ANOC-Rrs, and dashed curve–diamond denotes Rrs band-shifted to MODIS-Aqua 
bands through HOPE. Gray curves with transparency indicate all HOPE-reconstructed 
hyperspectral Rrs spectra for the 4 sites.

Table 1. Parameters and ranges of the ACA-SIM training dataset

Parameter Minimum value Maximum value

 SOZA (°) 9.0 77.8

 SOAA (°) −179.9 179.9

 SEZA (°) 0.03 65.4

 SEAA (°) −177.1 178.4

 Chla (mg/m3) 0.02 41.4

 AOD(412) 0.01 0.77

Fig. 3. Histogram of the data in the training dataset. (A) Solar zenith angle (blue) and sensor zenith angle (red); (B) ρt(412) (blue) and ρt(869) (red); (C) AOD(412); (D) Rrs(412) 
(blue) and Rrs(547) (red); (E) Rrs(748) (blue) and Rrs(859) (red); (F) Chla.
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[ 29 , 32 ], indicating that ACA-SIM may perform better in high-
latitude oceans and during morning or evening [  25 ]. The sensor 
zenith angle (SEZA) ranges from 0.03° to 65.4°. The solar azi-
muth angle (SOAA) and sensor azimuth angle (SEAA) range 
from −179.9° to 179.9° and from −177.1° to 178.4°, respec-
tively, covering nearly the entire possible range of satellite 
observation. For the water parameters, in addition to the wide 
range of Rrs﻿ values (see Fig.  3 D and E), the estimated chloro-
phyll-a concentration (Chla) based on ANOC-Rrs﻿ ranges from 
0.02 to 41.4 mg/m3, indicating highly dynamic water environ-
ments. Here, the Chla values were taken from the associated 
AERONET-OC dataset, with the estimation algorithms detailed 
in Zibordi et al. [ 35 ]. Regarding atmospheric conditions, aero-
sol optical density at 412 nm [AOD(412)] ranges from 0.01 to 
0.77, indicating widely varying aerosol loadings.            

Multilayer perceptron
   Multilayer perceptron (MLP) is an artificial neural network con-
sisting of an input layer, one or more hidden layers, and an output 
layer. Each layer contains multiple neurons fully connected to 
the neurons in adjacent layers. The MLP uses a feedforward 
structure, where information flows from the input layer through 
the hidden layers to the output layer. Each neuron applies an 
activation function, which introduces nonlinearity and enables 
the network to learn complex patterns in the data. MLPs are 
trained through backpropagation, where the network iteratively 
adjusts its weights to minimize the error between predicted 
and actual outputs [  58 ]. In this study, after many rounds of 
tries, it was found that in an MLP architecture with 4 hidden 
layers (512, 256, 128, and 64 neurons), using the rectified 
linear unit activation function [  59 ,  60 ] between the hidden 
layers worked well. Also, a sigmoid activation function at the 
output layer was used to prevent negative values. The selection 
of a perfect NN architecture remains elusive. We experi-
mented with different configurations to determine the optimal 
number of hidden layers and neurons and found that deep 
networks yielded better performance [  61 ]. Training was 
stopped based on early stopping criteria, monitoring valida-
tion loss to prevent overfitting [  62 ].

   The input to the NN consists of 14 bands of ρt﻿ at wavelengths 
412, 443, 469, 488, 531, 547, 555, 645, 667, 678, 748, 859, 869, 

and 1,240 nm, along with sun-sensor angles, and atmospheric 
parameters (water vapor, pressure, ozone, NO2 components, 
and relative humidity). All these parameters can be obtained 
through SeaDAS. The inclusion of 1,240 nm is important for 
processing measurements over highly turbid waters. However, 
because some detectors at the 1,640-nm band are broken [  63 ], 
we excluded this band to ensure the quality of the dataset. We 
also omitted the SWIR bands due to their low signal-to-noise 
ratio. The output layer consists of 13 bands of Rrs﻿ correspond-
ing to the visible and NIR wavelengths from 412 to 869 nm. 
Figure  4  summarizes the input, output, and hidden layers of 
this model.            

In situ data for validation
   In addition to using the AERONET-OC data, a large dataset 
collected in various coastal environments was used to evaluate 
ACA-SIM and the 2 aforementioned contrasting AC algo-
rithms. These in situ Rrs﻿ were obtained from the SeaWiFS Bio-
optical Archive and Storage System (SeaBASS) and the Optical 
Oceanography Laboratory (OOL). Note that since this study 
focuses on AC of coastal waters, the in situ data were limited 
to water depths of less than 1,000 m. Data with a bottom depth 
greater than 1,000 m were excluded.

   The SeaBASS is a centralized repository maintained by 
NASA’s Ocean Biology Processing Group (OBPG) for in situ 
oceanographic and atmospheric data, supporting the validation 
of satellite data products and algorithm development [  64 ,  65 ]. 
The dataset is accessible via the SeaBASS website ( https://sea-
bass.gsfc.nasa.gov ) and has undergone various quality control 
procedures to ensure data reliability. It is necessary to note that 
the Rrs﻿ data deposited in SeaBASS, which are at the MODIS 
bands, were provided by colleagues from the international com-
munity; thus, the measurement approaches and processing 
methods may vary from group to group.

   Spanning from June 2003 to December 2023, the OOL col-
lected a wide range of in situ Rrs﻿ spectra during cruises in the 
coastal waters of China (see Fig.  1 ). The in situ dataset com-
prises measurements obtained using both the skylight-blocked 
approach (SBA) [  66 ,  67 ] and the above-water approach (AWA) 
[  68 ,  69 ]. Following the NASA protocol [ 68 ], the AWA employs 
a handheld spectroradiometer to measure the upwelling total 

Fig. 4. The structure of ACA-SIM.
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radiance, downwelling sky radiance, and graycard-reflected 
radiance, with Rrs﻿ finally calculated from these measurements 
[  70 ]. Based on the SBA concept, water-leaving radiance and 
downwelling irradiance right above the surface were measured 
simultaneously. Subsequently, Rrs﻿ spectra were obtained after 
shading error correction [ 67 ,  71 ]. The radiometers used for 
these measurements have a spectral range of 320 to 950 nm 
with a spectral resolution of ~3 nm, and the resulting hyper-
spectral Rrs﻿ were converted to MODIS bands via spectral con-
volution. More details about these field measurements can be 
found in Dong et al. [  72 ] and Shang et al. [  73 ].

   Following the same matchup procedure between MODIS-
Aqua and AERONET-OC, 159 pairs of spectra were obtained 
between MODIS-Aqua and these field measurements.    

Results

Methods of accuracy evaluation
   The performance of AC algorithms was comprehensively evalu-
ated using the following statistical metrics, which are coefficient 
of determination (R 2), mean absolute percentage difference 
(MAPD), mean absolute difference (MAD), and bias, defined 
as follows”
﻿﻿  

﻿﻿  

﻿﻿  

where  xi    and  yi    are AC algorithms derived and known (in situ) 
values of Rrs﻿, respectively.   

Performance of ACA-SIM with the training data
   The performance of ACA-SIM was first evaluated using the 
training dataset, where 20% of the data were reserved as a vali-
dation set to assess the model’s effectiveness, while 80% of the 
data were used for training ACA-SIM. Figure  5  compares Rrs﻿ 
obtained from ACA-SIM with ANOC for spectral bands from 
412 to 869 nm of the validation set. The evaluation results 
of the training dataset are presented in Appendix B. For the 
algorithm inter-comparison, the Rrs﻿ products obtained from 
the NASA Standard and OC-SMART were also compared to 
the same ANOC-Rrs﻿ for spectral bands in this domain (see 
Figs.  6  and  7 ).                        

   Overall, ACA-SIM demonstrates excellent performance 
across all bands among the 3 algorithms; in particular, there 
are substantial improvements in the blue and red bands, where 
the NASA Standard frequently produced negative values (see 
Fig.  6 ). On statistical measures, for the blue–green bands, ACA-
SIM achieves a coefficient of determination (R 2) consistently 
above 0.89, with no negative values at the 412- and 443-nm 
bands, and the MAPD reduced to ~15% for the 3 blue bands 
(412, 443, and 488 nm). For Rrs﻿ in blue–green (412 to 555 nm), 
the NASA Standard achieved R 2 in a range of 0.54 to 0.93, while 
MAPD is in a range of ~15% to 54% (see Fig.  6 ), with the green 
bands (531, 547, and 555 nm) showing the best performance. 
This is due to the fact that coastal waters have the strongest 

(6)MAPD =
1

n

n∑

i=1

∣
xi − yi
yi

∣ × 100% ,

(7)MAD =
1

n

n∑

i=1

||xi−yi
||,

(8)Bias =
1

n

n∑

i=1

(
xi−yi

)
,

Fig. 5. Validation of Rrs derived from ACA-SIM using the validation dataset (n = 1,764).
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Fig. 6. Validation of Rrs derived from the NASA Standard using the validation dataset (n = 1,764).

Fig. 7. Validation of Rrs derived from OC-SMART using the validation dataset (n = 1,764).
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Fig. 8. Statistical results of the NASA Standard-, OC-SMART-, and ACA-SIM-derived Rrs compared with ANOC-Rrs of the validation set. The validation set is further categorized 
into high solar zenith angles (>70°), moderate sunglint, and stray light.
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Table 2. The AERNET-OC sites used in leave-one-site-out cross-validation

ID Site n ID Site n

 S1  AAOT 953 S10  LISCO 422

 S2  Casablanca_Platform 662 S11  Lucinda 339

 S3  Chesapeake_Bay 101 S12  MVCO 639

 S4  Galata_Platform 461 S13  Section-7_platform 287

 S5  Gloria 455 S14  Socheongcho 119

 S6  Gustav_Dalen_Tower 440 S15  Thornton_C-power 121

 S7  Helsinki_Lighthouse 239 S16  USC_SEAPRISM 661

 S8  Irbe_Lighthouse 153 S17  Venise 1,637

 S9  Kemigawa_Offshore 105 S18  WaveCIS_Site_CSI_6 421

Fig. 9. Validation at AERONET-OC sites using leave-one-site-out validation.

Fig. 10. Statistical results of ACA-SIM, OC-SMART, and NASA Standard of the in situ datasets.
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signal in the green bands (see Fig.  2 ), thus less affected by noises 
due to measurements and AC. OC-SMART does not produce 
negative Rrs﻿ either (see Fig.  7 ), and the R 2 values ranged from 
0.56 to 0.94, and MAPD ranged from ~17% to 44% (~32% for 
the 3 blue bands), with the green bands (531 and 547 nm) also 
showing the best performance compared to other bands.

   For the red–NIR bands (645- to 869-nm range), where Rrs﻿ 
values are generally very low due to strong absorption by water 
molecules and the ANOC-Rrs﻿ might include unquantifiable 
uncertainties, ACA-SIM also obtained considerably better Rrs﻿ 
compared to the NASA Standard (see Figs.  5  to  7 ). For the 
NASA Standard, the MAPD values range from ~54% to 280%, 

while the MAPD of ACA-SIM is ~20 to 40%. OC-SMART did 
not produce Rrs﻿ for the 859- and 869-nm bands, and the 
achieved results were comparable to ACA-SIM at 748 nm, with 
MAPD and R 2 values of 39% and 0.84, respectively.

   Figure  8  summarizes the statistical results from the 3 AC 
algorithms presented above. Additionally, it highlights the 
breakdown results for observations under high solar zenith 
angle (>70°), moderate sun glint (L2_FLAGS_20 = 1), and 
stray light conditions (L2_FLAGS_8 = 1), which were indicated 
by the flags defined in SeaDAS. It was found that the Rrs﻿ in the 
blue bands obtained from the NASA Standard and OC-SMART 
were strongly affected by these observation conditions, although 

Fig. 11. Scatterplots between in situ Rrs and that derived by the NASA Standard, OC-SMART, and ACA-SIM from MODSI-Aqua measurements (n = 147 and 106 for 412 and 667 
nm, respectively): (A) 412 nm; (B) 667 nm.

Fig. 12. Results of Rrs(412) by the NASA Standard, OC-SMART, and ACA-SIM over the Bohai and Yellow Seas collected by MODIS-Aqua on 2016 August 27. (A) RGB true color 
image. Rrs(412) obtained from the NASA Standard (B), OC-SMART (C), and ACA-SIM (D).
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reasonable results were obtained for the green bands. However, 
ACA-SIM produced substantially improved Rrs﻿ at the 412- and 
443-nm bands, as well as more consistent Rrs﻿ with ANOC-Rrs﻿ 
for bands from green to NIR for the challenging observation 
conditions. Overall, the above comparisons indicate a strong 
performance (higher R 2, lower MAD and MAPD, and much 
smaller bias) of ACA-SIM for these coastal waters.           

Evaluation of ACA-SIM with independent data
Validation via leave-one-site-out
   Since DD-based algorithms are data-dependent, a big concern 
is whether such algorithms can be applied to data not included 
in the training. To evaluate the concept and applicability of 
ACA-SIM, a leave-one-site-out validation method was employed 
for an independent test and validation. Specifically, among 
the n AERONET-OC sites, data from the ith site Si﻿ is excluded 
from the dataset for algorithm development and simply 
used for validation, while data from the remaining sites Sj﻿ 
( j = 1, … , n; j ≠ i   ) are used for model training. Since data 
from Si﻿ is entirely out of the training process, this constitutes 
an independent validation. By iterating this process across all 
﻿n sites (resulting in n ACA-SIM i ), a series of independent vali-
dations were obtained. For this evaluation, it is important to 

use statistically significant sample sizes (we here kept a mini-
mum of 100 data points); therefore, in total, 18 sites (see Table  2 ) 
were selected for this leave-one-site-out validation. 

   Figure  9  shows the performance of ACA-SIM across the 18 
sites, along with that of the NASA Standard and OC-SMART. 
Since it is an iterative process over the 18 sites, there are 18 
numbers of R 2, MAPD, MAD, and bias. Note that these values 
represent the averages of the spectral bands of produced Rrs﻿, 
with wavelengths matching those of OC-SMART (see Fig.  7  
for wavelengths). As examples, results of representative blue–
green-red bands of 412, 547, and 667 nm are included in 
Appendix C. Overall, it is found that no matter which site is 
left out for the development evaluation, the R 2 values of ACA-
SIM at all sites (0.71 ± 0.14) are better than those of the NASA 
Standard (0.53 ± 0.21) and OC-SMART (0.58 ± 0.21), while 
the MAPD and MAD values are lower than those of the NASA 
Standard and OC-SMART, with a small bias. The consistently 
better performance across all sites indicates that even when one 
site is excluded, the remaining sites still encompass a diverse 
set of water and atmosphere properties, allowing the model to 
effectively learn and generalize across different conditions. This 
further highlights that the present AERONET-OC data used 
for developing ACA-SIM possess a sufficiently broad dynamic 

Fig. 13. Results of Rrs(547) and Rrs(667) by the NASA Standard, OC-SMART, and ACA-SIM for the same scene and date as Fig. 12. (A, C, and E) Rrs(547) obtained from the NASA 
Standard, OC-SMART, and ACA-SIM, respectively; (B, D, and F) Rrs(667) obtained from the NASA Standard, OC-SMART, and ACA-SIM, respectively.
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range and representativeness, although further adding sites 
would certainly be helpful. Thus, it is confident to apply ACA-
SIM after it is trained with all available data.           

Evaluation using ship-based measurements
   As a common practice [  15 , 22 , 32 ], we further evaluated the 
performance of ACA-SIM using the compiled ship-based 
in situ data, with Fig.  10  showing the performance measures. 
Statistically, there is no clear ranking in the performance of the 
3 algorithms, as the NASA Standard shows slightly better R 2 
values for blue to red bands, while ACA-SIM and OC-SMART 
obtain better measures in MAPD for these bands, and the MAD 
values are similar for the 3 algorithms. It is necessary to keep 
in mind that it is very difficult to maintain the same quality of 
﻿Rrs﻿ from different groups when it was measured in situ, as it 
involves diverse cruise-specific measurement conditions, 
the use of different sensors, different measurement geometries, 

differences in operator’s handling and experience, and different 
processing procedures [ 64 , 66 , 70 ]. Thus, a large portion of the 
difference between MODIS-Aqua Rrs﻿ (no matter which AC 
algorithm) and in situ Rrs﻿ is very likely due to different qualities 
of the measured Rrs﻿ as well as the mismatches in space and time 
between satellite and field data. AERONET-OC data, however, 
through standardization in sensors, measurement geometry, 
and data processing, can remove many of the inconsistencies 
in obtaining field Rrs﻿.        

   To get more insights into this comparison, Fig.  11  shows 
scatterplots of Rrs﻿ at the blue and red bands; again, no clear 
advantages among the 3 AC algorithms, except that both 
OC-SMART and ACA-SIM avoided the negative values occa-
sionally produced by the NASA Standard. For Rrs﻿(412), the 
MAPD of OC-SMART and ACA-SIM is reduced by ~60% 
compared to that of the NASA Standard (see Fig.  10 ). On the 
higher end of Rrs﻿ values, it appears that all 3 ACs exhibited an 

Fig. 14. Application to the MODIS-Aqua images in the West Coast of North Africa. (A to D) RGB composite image and Rrs values at 412 nm derived from the NASA Standard, 
OC-SMART, and ACA-SIM on 2019 December 27, respectively; (E to H) Same as (A) to (D), but for 2019 December 26. (I to K) Histograms of the Rrs(412) values of the 2 days.
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“underestimation”. This may further highlight the challenges 
in obtaining consistent, high-quality Rrs﻿ from diverse groups 
in field measurements.            

Application to MODIS-Aqua images
   The ultimate goal and value of an algorithm are in its applicabil-
ity to process satellite ocean color images; we thus further evalu-
ated the performance of ACA-SIM through its application to 
satellite images of various coastal environments, especially chal-
lenging scenarios, such as highly turbid waters or highly absorb-
ing aerosols. It is important to note that these scenarios often 
occur simultaneously and are coupled. In addition, we also 
present the results of the NASA Standard and OC-SMART for 
comparison.  

Bohai and Yellow Seas
   The Bohai and Yellow Seas are semi-enclosed by industrial cities 
of China and the Korean peninsula, experiencing frequent and 
strong air pollution. Additionally, the Yellow River estuary in 
the Bohai Sea carries a substantial sediment load into the ocean, 
resulting in highly turbid waters. Figure  12 A shows an RGB 
composite image of 2016 August 27, collected by MODIS-Aqua, 
where the distinct sediment-laden waters of the Bohai Sea con-
trast with the relatively clear waters of the Yellow Sea. For this 
MODIS-Aqua measurement, the NASA Standard obtained 
negative Rrs﻿(412) along the eastern coast of the Yellow Sea (see 

Fig.  12 B), a region characterized by the coupling of turbid waters 
and absorbing aerosols [  74 ,  75 ]. There are also discrete negative 
﻿Rrs﻿(412) along the northwestern coast of the Bohai Sea. Both 
ACA-SIM and OC-SMART, on the other hand, did not produce 
negative Rrs﻿(412) and obtained overall higher Rrs﻿(412) values 
than the NASA Standard, effectively capturing the spatial varia-
tions of the water masses in the Bohai and Yellow Seas. In 
extremely turbid coastal waters, OC-SMART Rrs﻿(412) values 
are lower than those derived by ACA-SIM, consistent with the 
underestimation observed by Song et al. [ 29 ] in the Bohai and 
Yellow Seas. In particular, in the southeastern corner of the 
image, where sparse southwest-oriented cloud streaks are pres-
ent, Rrs﻿(412) from OC-SMART exhibits extremely high anoma-
lies, likely due to the influence of cloud edges and/or shadows. 
This phenomenon is also commonly observed in the results from 
the NASA Standard; therefore, the products are usually masked 
out. However, thanks to the use of real data for training, ACA-
SIM demonstrates exceptional resistance to such interference, 
producing results highly consistent with the surrounding water 
masses. These results suggest that ACA-SIM is more effective in 
handling noise in real image data, enhancing the overall accu-
racy and consistency of the retrieved ocean color products.        

   For the 547- and 667-nm bands, the 3 AC methods exhibit 
similar Rrs﻿ values and spatial distributions in the Bohai and 
Yellow Seas (see Fig.  13 ). This further confirms that, compared 
to the 412-nm band, the influence of turbid waters and absorbing 

Fig. 15. Similar to Fig. 14, but showing the results at 547 and 667 nm (A to F) using a logarithmic scale.
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aerosols on the AC is less pronounced at these wavelengths. 
On the other hand, the high consistency in Rrs﻿ among the 3 
independently developed AC approaches provides mutual vali-
dation of their effectiveness and accuracy. However, ACA-SIM 
demonstrates a notable advantage in minimizing the striping 
effects (more details in the “Striping artifacts” section), which 
remain visible in the results from both the NASA Standard and 
OC-SMART (see Fig.  12 ).           

West Coast of North Africa
   Driven by the Northeast trade winds, vast amounts of dust from 
the Sahara Desert are transported over the waters of the West 
Coast of North Africa, extending as far as the Cape Verde 
Islands in the North Atlantic and forming one of the largest 
airborne dust events over the ocean (see Fig.  14 A). As a repre-
sentative type of strongly absorbing aerosols, dust aerosols 
frequently cause failures in AC algorithms [  76 –  78 ]. In the 
MODIS-Aqua RGB image of 2019 December 27, a thick yellow 
dust aerosol layer blankets the coastal waters, with the highest 
concentration observed in the northern region. On the other 
hand, deep green turbid waters are visible in the northern bays 
and the southernmost river delta. For these MODIS-Aqua mea-
surements, the NASA Standard shows a band of negative 
﻿Rrs﻿(412) parallel to the coastline (see Fig.  14 B), along with wide-
spread negative values in the northern region where dust aero-
sol loads were high. Beyond the negative Rrs﻿(412) values, the 
low Rrs﻿(412) regions (dark blue) in the NASA Standard results 
align with the distribution of the dust aerosol layer, suggesting 
potential underestimation in these areas.        

   OC-SMART successfully avoided negative Rrs﻿(412) values. 
However, the resulting Rrs﻿(412) is as low as ~0.0018 sr−1 for 
far-offshore Atlantic waters, indicating dust effects in the Rrs﻿ 

results. ACA-SIM, however, avoided negative Rrs﻿(412), and the 
resulting Rrs﻿(412) is around 0.008 sr−1 for offshore waters, a 
value more consistent with oceanic waters. To further check 
the validity of the Rrs﻿(412) values, MODIS-Aqua measurements 
from 1 day earlier (2019 December 26) were also processed and 
presented (Fig.  14 E to H), a day with different sky conditions 
(Fig.  14 A vs. Fig.  14 E). Note that due to satellite orbital varia-
tions, the same region is located at the edge of the image on 
2019 December 26, extending only up to approximately 20°N. 
It is found that the Rrs﻿(412) values on 2019 December 26 
are markedly (~53% on average) higher than those of 2019 
December 27, when processed by OC-SMART. However, the 
difference of Rrs﻿(412) between the 2 days on average is just ~7% 
when obtained from ACA-SIM. Figure  14 I to K further high-
light the distribution of Rrs﻿(412) of the 2 consecutive days 
obtained from the 3 ACAs, where there are large changes in 
﻿Rrs﻿(412) from the NASA Standard and OC-SMART, but it 
remains nearly the same for ACA-SIM. As water’s properties 
do not change drastically day by day, these results indicate that 
the Rrs﻿(412) results from ACA-SIM are more reasonable, even 
under such strong dust effects.

   Figure  15  compares the Rrs﻿ results at 547 and 667 nm from 
the 3 algorithms. The consistency among the 3 algorithms is 
higher in the green and red bands than in the blue bands, 
although Rrs﻿(547) from the NASA Standard is notably lower 
than that from OC-SMART and ACA-SIM. The 2 NN-based 
AC algorithms demonstrate the highest agreement (R 2 = 0.98 
and 0.94 for 547 and 667 nm, respectively), indicating a highly 
consistent spatial distribution, particularly in turbid coastal 
waters. In addition, the eddy patterns in the lower left appear 
much clearer in ACA-SIM Rrs﻿(667) than those showing in 
﻿Rrs﻿(667) from the NASA Standard and OC-SMART, and these 

Fig. 16. Results of Rrs(412) by the NASA Standard, OC-SMART, and ACA-SIM over the southern coast of Australia collected by MODIS-Aqua on 2020 January 3. (A) RGB true 
color image. Rrs(412) obtained from the NASA Standard (B), OC-SMART (C), and ACA-SIM (D).
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eddy patterns are also showing in the Rrs﻿(547) images. In addi-
tion, both the NASA Standard and OC-SMART were affected 
by striping artifacts to varying degrees, whereas ACA-SIM 
showed the potential to reduce the impact of striping artifacts. 
It is important to note that the striping artifacts are unrelated 
to the AC algorithms themselves, but rather stem from the 
quality of the input data. ACA-SIM benefits from the stable 
true values in its training dataset, which provides it with poten-
tial correction capability when dealing with input data affected 
by striping artifacts.           

Bushfires in Australia
   The smoke aerosol generated by combustion is one of the most 
strongly absorbing types of aerosol. From September 2019 to 
March 2020, a severe bushfire lasted for 6 months in northern 
and eastern Australia [  79 ], which produced widespread smoke 
across most of the eastern coastal waters and was transported 
southeastward by prevailing winds, crossing the Pacific Ocean 
and reaching South America and the Southern Ocean. Figure 
 16 A shows an RGB composite image from MODIS-Aqua on 

2020 January 3 of the Bass Strait between southeastern Australia 
and Tasmania. The Bass Strait lies to the west of the fire center, 
where the high concentration of yellow–brown smoke aerosol 
and its plume are moving eastward, forming a visible thin layer 
over the strait. Figure  16 B to D show the Rrs﻿(412) produced by 
the NASA Standard, OC-SMART, and ACA-SIM, respectively. 
Again, the NASA Standard obtained much lower Rrs﻿(412) (dark 
blue) for many areas, along with many regions where the values 
are negative (black), even in the center of the Strait. This further 
highlights the limitation of the NASA Standard AC algorithm 
for observations under strong absorbing aerosols.        

   OC-SMART did not produce negative Rrs﻿(412), and the spa-
tial distribution of the resulting Rrs﻿(412) appears reasonable, 
but, again, there are noticeable striping artifacts (see Fig.  16 C). 
This is mainly because the collected data are on the edge of the 
image, which further amplifies the striping artifact [  80 ,  81 ]. 
While OC-SMART effectively avoided negative Rrs﻿(412) values, 
it is interesting to see a strong contrast of much higher Rrs﻿(412) 
in the eastern side of the Strait [Rrs﻿(412) ~ 0.01 sr−1] than that 
in the western side of the Strait [Rrs﻿(412) ~ 0.002 sr−1], while 

Fig. 17. Results of Rrs(547) and Rrs(667) by the NASA Standard, OC-SMART, and ACA-SIM for the same scene and date as Fig. 16. (A, C, and E) Rrs(547) obtained from the NASA 
Standard, OC-SMART, and ACA-SIM, respectively; (B, D, and F) Rrs(667) obtained from the NASA Standard, OC-SMART, and ACA-SIM, respectively.
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possible, but might not be consistent with the dynamic system 
of such a Strait, especially since there is no such east–west 
water-mass contrast in the images of Rrs﻿(547) and Rrs﻿(667) (see 
Fig.  17 C to F), obtained by both OC-SMART and ACA-SIM. 
In contrast to the results of the NASA Standard and OC-SMART, 
the Rrs﻿(412) from ACA-SIM not only avoided negative values, 
but there were no visible striping effects, and the spatial distri-
bution is more smooth and uniform, suggesting more reason-
able products from ACA-SIM.        

   Also, as examples for the green and red bands, Fig.  17  shows 
the Rrs﻿ values at 547 and 667 nm from the 3 ACs. Similar to that 
of West Africa (Fig.  14 ), the NASA Standard produced the low-
est Rrs﻿(547) among the 3 AC algorithms and negative Rrs﻿(667) 
for nearshore regions (see Fig.  17 B). OC-SMART and ACA-
SIM, however, produced quite consistent Rrs﻿ values at these 2 
bands, indicating an effectiveness of the data-based AC algo-
rithms. However, ACA-SIM, which used actual MODIS-Aqua 
measurements to train an NN, clearly showed an advantage in 
handling sensor-related issues, such as the striping effects.     

Discussion

Absorbing aerosol and turbid water
   The above compares the performance of the NASA Standard, 
OC-SMART, and ACA-SIM for measurements under various 
aerosol loading conditions, including dust, wildfire, and urban/
industrial aerosol types (see Figs.  12  to  17 ). Results indicate 
that ACA-SIM outperforms the NASA Standard and provides 
additional improvements over OC-SMART across different 
scenarios. These results highlight the difficulties of the NASA 
Standard and OC-SMART in handling these challenging condi-
tions commonly occurring in the coastal environment, whereas 
a lack of consideration of the vertical distribution of aerosols 
[  82 ,  83 ] and adjacency effects [ 34 ] could cause uncertainties in 
the AC process. ACA-SIM, on the other hand, as it used actual 

real-world data in the training process, handles these situations 
implicitly through the NN’s internal learning processes and 
achieves better results.

   The dynamic range and representativeness of the training 
dataset always play a crucial role in any DD algorithm. Therefore, 
we analyzed the aerosol characteristics encountered by the train-
ing data used in this study. The aerosol classification algo-
rithm [  84 ] developed based on AERONET measurements 
was employed for this analysis. This algorithm classifies aerosols 
into biomass burning (or smoke), dust, mixed absorbing aero-
sols, marine, continental, and mixed nonabsorbing aerosols 
based on the Angstrom exponent (AE) and single scattering 
albedo (SSA). Simply put, AE and SSA, respectively, characterize 
the particle size distribution and radiative absorption properties 
of aerosols [  85 ]. When combined, they can effectively differenti-
ate between distinct aerosol types [ 85 –  87 ]. The AE and SSA data 
were sourced from the AERONET Version 3 Inversion Products 
[  88 ,  89 ], with Fig.  18 A showing the distribution of aerosol types 
within the ACA-SIM training set. Among them, the nonabsorb-
ing aerosols—marine, continental, and mixed aerosols—account 
for 3.5%, 14.1%, and 19.1%, respectively. In contrast, the absorb-
ing aerosols, including smoke, dust, and mixed absorbing aero-
sols, make up 16.4%, 7.8%, and 39.1%, respectively. Overall, 
~63% of the data were obtained under absorbing aerosol condi-
tions, which provides a strong reason for the excellent perfor-
mance of ACA-SIM for measurements under such conditions.        

   Additionally, there is a strong presence of dust aerosols 
[  90 ] in our training dataset, with SSA values reaching as low 
as 0.34, indicating extremely strong absorbing characteristics. 
Furthermore, in coastal areas, mixtures of multiple aerosol 
types are very common than the scenario of a single aerosol 
type [  91 ]. In the ACA-SIM training dataset, nearly 40% of the 
data were classified as mixed absorbing aerosols, indicating that 
ACA-SIM is suitable for regions with complex atmospheric 
conditions where aerosols of multiple types often coexist.

Fig. 18. Dynamic ranges of atmosphere and water properties of the ACA-SIM training set. (A) Aerosol classification and frequency distribution. (B) Heatmap of coupled water 
types and aerosol types.
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   In addition, a common scenario in coastal regions is the 
coexistence of turbid waters and absorbing aerosols. By apply-
ing a quality assurance (QA) system [  92 ] to classify water types 
into oceanic (QA cluster = 1 to 4), turbid (QA cluster = 5 to 
18), and extremely turbid waters (QA cluster = 19 to 23), a 
coupling matrix of water and aerosol types was generated (see 
Fig.  18 B). It is found that the ACA-SIM training set includes 
~30% of turbid water mixed with absorbing aerosols, a preva-
lent condition in coastal environments. On the other hand, 
more than 5% and 17% of the data were collected under clear 
oceanic and extremely turbid water conditions, respectively. 

These distributions indicate a broad dynamic range and the 
representativeness of the training data, supporting the appli-
cability of ACA-SIM in complex coastal environments.

   To further explore the potential of ACA-SIM in highly tur-
bid waters, we applied the 3 AC algorithms to a MODIS-Aqua 
image from 2019 November 11 (see Fig.  19 ). This image covers 
the Subei Bank in the southwestern Yellow Sea and part of the 
Yangtze River Delta. Due to the strong sediment discharge from 
the Yangtze River estuary and strong resuspension of the shal-
low Subei Bank, these regions are characterized by extremely 
turbid waters (see Fig.  19 A).        

Fig. 19. Results of Rrs(412) by NASA Standard-SWIR (B), OC-SMART (C), and ACA-SIM (D) over the Subei Bank collected by MODIS-Aqua on 2019 November 11. (A) RGB true 
color image. Rrs(412) obtained from NASA Standard-SWIR (B), OC-SMART (C), and ACA-SIM (D), using a logarithmic scale.
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   To process this MODIS-Aqua measurement, the NASA 
Standard utilized the SWIR scheme [ 18 ], termed NASA Standard-
SWIR here, which enables more valid retrievals under such 
conditions compared to the iterative NIR scheme. For this excep-
tional water body, all 3 AC algorithms showed a similar spatial 
distribution of Rrs﻿(412) (see Fig.  19 B to D), but NASA Standard-
SWIR produced some negative Rrs﻿(412) in the central ocean 
region. For the extremely turbid Subei Bank, Rrs﻿(412) values by 
NASA Standard-SWIR and ACA-SIM appear quite close, but the 
results from OC-SMART are somewhat lower. These results sug-
gest that ACA-SIM is applicable to such extremely turbid waters, 
although the longest wavelength involved is 1,240 nm, rather the 
SWIR bands required by NASA Standard-SWIR. It is necessary 
to point out that, unlike the comparisons presented in the 
“Results and Evaluations” section, we here limited the mask of 
cloud only for results from ACA-SIM, in order to explore the 
upper limit of ACA-SIM in highly turbid waters.   

Striping artifacts
   The primary source of striping artifacts lies in calibration 
inconsistencies among multiple detectors within different bands 
of the sensor, the reflectance differences of the scan mirror’s 
double-sided surfaces, and the slightly geometric angle varia-
tions between the different detectors during imaging [ 53 ]. This 
phenomenon is particularly common in sensors with “Whisk-
broom scanner” imaging methods, such as MODIS and VIIRS. 
Moreover, striping effects may become more pronounced at 
larger scanning angles [ 80 ], corresponding to the image edges. 
In the ocean color bands of MODIS-Aqua, striping artifacts 
caused by the scan mirror are the most common, while those 
resulting from geometric angle variations between the dif-
ferent detectors are also relatively common under extreme 
conditions.

   Striping strongly impacts the accuracy of AC algorithms and 
can propagate errors into downstream ocean color products [ 81 ]. 
In our study, both the NASA Standard and OC-SMART exhib-
ited varying degrees of striping in image products. It is impor-
tant to note that this is not a flaw in the NASA Standard or 
OC-SMART algorithms themselves but rather a consequence 
of the input data quality.

   Unlike these 2 approaches, as ACA-SIM used striping-
affected MODIS-Aqua data in the training process, it inher-
ently possesses the capabilities to minimize the striping effects 
through learning. Specifically, because of the use of 2 mirrors 
(both sides) of the rotating scan mirror to obtain images, all 
MODIS-Aqua data inherently contain real scan mirror-caused 
striping artifacts. The only difference lies in the severity of the 

striping. To investigate the distribution of more severe scan 
mirror-caused striping artifacts in the ACA-SIM training set, 
a striping detection algorithm [  93 ] was employed. Severe strip-
ing was identified using a threshold where the relative deviation 
of brightness exceeded ±0.008. Details of this algorithm are 
described in Xiang and Liu [ 93 ]. Figure  20  shows the propor-
tion of scan mirror-caused striping at each station within the 
training set. It is found that 21.5% of the data were acquired 
under the influence of severe scan mirror-caused striping. This 
explains why ACA-SIM can effectively minimize the striping 
artifacts. Also, note that similar striping effects are observed at 
all stations, indicating that ACA-SIM has learned a wide range 
of water properties under striping effects, thereby enhancing 
ACA-SIM’s capability to process measurements from various 
coastal waters. While we have demonstrated the potential of 
ACA-SIM to mitigate striping artifacts, it is worth noting that 
it does not yet completely eliminate them. In the ACA-SIM 
results presented in this study, slight traces of striping are still 
visible. Therefore, integrating more data samples and incor-
porating effective spatial information into the model remain 
necessary.            

Conclusion
   In satellite ocean color remote sensing, the overwhelming con-
tribution from the atmosphere has made it a challenge to 
remove atmospheric effects, thus obtaining accurate water-
leaving signals, especially for coastal waters due to complex 
combinations of water and aerosol properties. In this study, 
aided by greatly advanced NNs, we demonstrated that using 
the matchup data between satellite TOA measurements and 
“ground truth” Rrs﻿ can substantially improve the quality of 
﻿Rrs﻿ of various coastal environments. Compared to the NASA 
Standard, the developed AC algorithm in this effort, ACA-SIM, 
avoided the generation of negative Rrs﻿ values, improved accu-
racy across the blue to red bands, and handled complex coastal 
water conditions much better. Its ability to remove striping 
artifacts further enhances the reliability of the derived Rrs﻿ 
products.

   This advancement and effectiveness in AC stem from the 
fact that satellite data represent what happens in the real world, 
which not only covers various water and aerosol properties, as 
well as measurement geometries and land adjacent effects, but 
also includes the characteristics of the satellite sensor making 
the measurements. These combinations make it extremely dif-
ficult to accurately simulate the radiance measured by a satellite 
sensor via coupled atmosphere–ocean models. While we observe 

Fig. 20. Proportion of severe striping at each station in the training set.
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the excellent performance of the present version of ACA-SIM, 
as is always the case with algorithm development, we expect 
ACA-SIM to improve further after more AERONET-OCs are 
installed in regions beyond the existing water–atmosphere com-
binations, thereby expanding the training data boundary. In the 
meantime, it is necessary to extend ACA-SIM to other satellite 
sensors and, therefore, to enhance the coverage and consistency 
of coastal aquatic environments by multiple satellites. However, 
it is necessary to point out that this study focused on optically 
deep waters in coastal regions. For the AC of optically shallow 
waters, ACA-SIM remains conceptually applicable, but it will 
require an extremely large and representative training set due to 
the wide range of bottom substrates and depths.   
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Appendix A: Shift AERONET-OC bands  
to MODIS bands

As AERONET-OC sites have different band settings compared to that 
of MODIS, the spectral bands of ANOC-Rrs have to be shifted to match 
that of MODIS in order to develop an NN-based algorithm to process 
MODIS data. There could be many ways for this band shift [94–96]; in 
this study, similar to Ref. [94], we used bio-optical modeling to meet 
the goal. Specifically, we first constructed a hyperspectral Rrs from 
the multi-band ANOC-Rrs, then through spectral convolution to get 
the Rrs of MODIS bands. For the construction of hyperspectral Rrs, it 

Fig. A1. Comparison between Rrs derived from ACA-SIM and ANOC-Rrs when the training is completed (n = 7,054).
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Fig. A2. Comparison between Rrs derived from the NASA Standard and ANOC-Rrs of the training data (n = 7,054).

Fig. A3. Comparison between Rrs derived from OC-SMART and ANOC-Rrs of the training data (n = 7,054).
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was achieved from bio-optical models developed and widely utilized 
in the past decades. Generally, for optically deep waters, Rrs can be 
summarized as [97,98]

Here, a and bb are the total absorption and backscattering coefficients 
of a water body, which can be further expressed as for turbid coastal 
waters [99],

where aw﻿ and bbw﻿ are the absorption and backscattering coef-
ficients of seawater and pure seawater. aph﻿, ag﻿, ased﻿, and bbp﻿ 

represent the absorption coefficient of phytoplankton, gelbstoff, 
suspended sediments, and the backscattering coefficient of 
particles, respectively. While aw﻿ and bbw﻿ are considered con-
stants [  100 ,  101 ], the other components are modeled as
﻿﻿  

﻿﻿  

﻿﻿  

﻿﻿  

(A1)Rrs(�) = f
(
a(�),bb(�)

)
.

(A2)a(�) = aw(�) + aph(�) + ag (�) + ased(�),

(A3)bb(�) = bbw(�) + bbp(�),

(A4)aph(�) = aph(440)a
+
ph
(�),

(A5)ag (�) = ag (440)e
−0.014(�−440),

(A6)ased(�) = Ased a
+
sed
(�) + Bsed,

(A7)bbp(�) = bbp(440)
(
440

�

)Y

.

Fig. A4. Statistical results of the leave-one-site-out validation at 412 nm. (A) Range of R2, (B) Range of MAPD, (C) Range of Bias, (D) Range of MAD.

Fig. A5. Statistical results of the leave-one-site-out validation at 547nm. (A) Range of R2, (B) Range of MAPD, (C) Range of Bias, (D) Range of MAD.
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Fig. A6. Statistical results of the leave-one-site-out validation at 667 nm. (A) Range of R2, (B) Range of MAPD, (C) Range of Bias, (D) Range of MAD.

Fig. A7. Scatterplot of retrieved Rrs by ACA-SIM (green), the NASA Standard (brown), and OC-SMART (red) algorithms compared with in situ measurements.
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where  a+
ph
(�)    and  a+

sed
(�)    are the spectral shape of phytoplankton 

and sediment absorption coefficient, respectively, with  a+
ph
(�)    

provided in IOCCG Report #5 [ 8 ] and  a+
sed
(�)    provided in Ref. 

[ 99 ]). Separatelwy, as in Lee et al. [  102 ], a term (Δ) to account 
for the residual error in the ANOC-Rrs﻿ was included. Thus, 
there are 7 unknowns [aph﻿(440), ag﻿(440), Ased﻿, Bsed﻿, bbp﻿(440), Y, 
and Δ] for an Rrs﻿ spectrum, which can be estimated through 
spectral optimization [ 56 ,  103 ].
After the 7 variables are estimated, apply the values of the 7 variables 
back to Eqs. A1 to Eqs. A7, and hyperspectral Rrs spectrum (the Rrs 
in Eq. 8 with a wave sign on head) can then be generated. Finally, 
the reconstructed hyperspectral is convolved to the MODIS-Aqua 
bands (or the bands of any specified satellite sensor) using the sen-
sor’s spectral response function (SRF),

As examples, Fig. 2 shows re-constructed hyperspectral Rrs from the 
multi-band Rrs, and then the Rrs at the MODIS bands. Analysis using 
hyperspectral data indicates that the average error in the band-shifted 
Rrs is ~6%, a quality sufficient to train ACA-SIM.

Appendix B: Performance of the 3 AC algorithms 
with the training dataset

Scatterplots (Figs. A1 to A3) between the AC-algorithm-derived Rrs and 
ANOC-Rrs of the training data are presented here, which include ACA-
SIM, the NASA Standard, and OC-SMART. Since this dataset was used 
to train ACA-SIM, it is not an independent evaluation of this algorithm, 
just a reference. For both the NASA Standard and OC-SMART, it is an 
evaluation based on independent data from coastal waters.

Appendix C: Results of representative  
blue–green–red bands (412, 547, and 667 nm)  
in leave-one-site-out validation

To supplement the leave-one-site-out evaluation, here (Figs. A4 to A6) 
the breakdown results of the 3 algorithms at the blue (412 nm), green 
(547 nm), and red (667 nm) are presented. It is found that, regardless 

of which site was left out for validation, ACA-SIM shows better overall 
statistical measures, especially for the blue band.

Appendix D: Performance on the  
ship-based measurements

To supplement the comparisons shown in Fig. 11, scatterplots (Fig. A7) 
between algorithm-derived Rrs and in situ measurements of coastal 
waters for the other bands in the blue–red domain are presented here.

Appendix E: Single-band raw image  
of ρt at 412 nm

To supplement the comparison shown in Figs. 12 to 16, the unpro-
jected single-band raw images of ρt at 412 nm are presented here (Fig. 
A8). It can be seen that all 3 raw images are affected by horizontal 
striping artifacts to varying degrees.
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