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Atmospheric correction (AC) is a critical step in ocean color remote sensing, particularly for coastal
waters that still face challenges from high concentrations of suspended materials and absorbing aerosols.
To address these limitations, this study presents a novel AC algorithm, termed ACA-SIM (atmospheric
correction based on satellite—in situ matchup data), based on extensive matchups between satellite
measurements (p;) and in situ remote sensing reflectance (R,;) from Aerosol Robotic Network-Ocean
Color (AERONET-OC), with neural networks as the processing tool. Unlike the Ocean Color-Simultaneous
Marine and Aerosol Retrieval Tool (OC-SMART algorithm, which employs a similar strategy but relies on
simulated data, ACA-SIM uses real-world matchups between p, and insitu R,,, capturing sensor-specific
effects such as striping and encompassing a wide range of water and aerosol properties. Validations with
independent AERONET-OC measurements demonstrated that ACA-SIM outperformed both the NASA
Standard and OC-SMART, achieving higher accuracy of R, across all spectral bands. In particular, for the
blue bands, ACA-SIM reduced the mean absolute percentage difference (MAPD) of derived R, to ~15%,
compared to an MAPD of ~32% by OC-SMART, and maintained robust performance even under challenging
conditions. Moreover, when applied to Moderate-Resolution Imaging Spectroradiometer-Aqua images in
highly turbid and dust- or smoke-affected regions, such as the Bohai and Yellow Seas, the West Coast of
North Africa, and areas impacted by Australian bushfires, ACA-SIM demonstrated exceptional capability
in minimizing striping effects and generating reliable R, products. This study advances AC techniques
for coastal waters and reinforces the importance of the AERONET-OC network. Furthermore, it lays a
foundation for extending ACA-SIM to other satellite sensors, enabling the generation of consistent and
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accurate ocean color products across multiple satellite platforms.

Introduction

Coastal waters are vital ecosystems, playing a crucial role in
biogeochemical cycles and representing some of the most
dynamic and complex regions in the marine environment.
Approximately 70% of the world’s largest cities, with popula-
tions exceeding one million, are within 100 km of coastlines.
In recent decades, these waters have experienced increasing
occurrences of red tides and harmful algal blooms, making
them a key area of interest for ocean research [1,2]. Systematic
and sustained observations of the rapidly changing coastal eco-
system are thus an essential component of the Earth observing
system [3]. Compared to traditional in situ measurements,
large-scale and high-frequency satellite remote sensing has
become indispensable for such observations [4]. It is thus not
surprising to see that, since the launch of the Coastal Zone
Color Scanner (CZCS), especially the Moderate-Resolution
Imaging Spectroradiometer (MODIS), over 20 years of valuable
continuous data of the global ocean have been provided via
ocean-color satellites. However, accurately retrieving water prop-
erties in coastal waters from satellite measurements remains
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challenging [5]. High concentrations of dissolved and sus-
pended materials in water and complex aerosol properties in
such regions complicate achieving accurate retrievals of water
properties from ocean-color satellite data.

Atmospheric correction (AC) is a crucial step in processing
satellite ocean color measurements. Its goal is to remove the
effects of atmosphere and sea surface reflectance from the total
radiance signal (L,) measured by a satellite sensor at the top of
the atmosphere (TOA), intending to accurately extract the sig-
nal of water body, i.e., water-leaving radiance (L, ), or remote
sensing reflectance (R,,) that is converted from L,, [6]. This
process provides the foundation for subsequent estimations of
bio-optical parameters from R, [7,8]. AC algorithms focus on
estimating the aerosol contributions in atmospheric contribu-
tions, which introduces the dominant sources of uncertainties
in the final bio-optical products [5].

The classical approach for removing aerosol contributions
relies on the “black pixel” assumption in the near-infrared
(NIR) bands [6,9], which assumes that L,, in the NIR bands
is negligible due to the strong absorption by water. Such an
approach has shown great success for open ocean waters, which
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has been a standard for processing data from the earliest CZCS
to modern ocean-color satellites such as MODIS and the Visible
Infrared Imaging Radiometer Suite (VIIRS). However, for turbid
coastal waters, the water contribution is no longer negligible in
the NIR bands, leading to an overestimation of the aerosol con-
tribution and an underestimation of L,,, which can even result
in negative values for L,, in the blue bands [10-13]. In recent
decades, considerable effort has been invested in developing AC
algorithms for coastal waters, resulting in a wide range of algo-
rithms developed (see the “Brief Description of 2 Typical and
Contrasting AC Approaches for Coastal Waters” section for more
details). These include approaches modeling L, in the NIR bands
[14-17], or extending the black pixel assumption to the short-
wave infrared (SWIR) bands [18-20], or incorporating the blue
band in the process of AC [21], or using the darkest pixel within
an image [22,23], each showing various levels of success.

In parallel, since neural networks (NNs) or machine learn-
ing (ML) is showing superior nonlinear problem-solving capa-
bilities each day, schemes based on NN or ML have also been
developed for AC problems in oceanic and coastal waters
[24-30]. Such a scheme relies on high-quality and representa-
tive data to train the model [31], where synthetic datasets were
commonly used [26,31-33]. Such simulations, however, gener-
ally ignore the land-adjacent effects in coastal regions (e.g.,
[34]), and may not be able to account for all natural variations
in aerosols and water’s bio-optical properties in coastal and
open-ocean regions. More importantly, the various specifics of
sensors, including sensor noises such as striping effects, were
not incorporated. Consequently, the simulated TOA radiance
may not precisely match that measured by a satellite sensor for
the same suite of atmosphere and ocean properties.

Ideally, it would be best to use accurate and inclusive data
from both field measurements and satellite L, to train data-
driven (DD) algorithms, either NN or ML. Unfortunately, due
to the high cost of conducting ship surveys, the matchups
between field-measured high-quality R,, and satellite-measured
L, are very limited. Therefore, few studies have developed
DD-based AC algorithms using matchup in situ and satellite
datasets. On the other hand, the Aerosol Robotic Network-
Ocean Color (ANOC hereafter) maintains more than 40 sta-
tions globally, offering long-term observation data covering a
wide range of water types that include blue coastal waters to
CDOM (colored dissolved organic matter)-dominated green-
yellow waters and highly turbid brown waters, as well as various
atmospheric conditions [35].

Conventionally, the ANOC-R,, products have been used as
an important source to validate satellite R, products [36-39].
In this study, to further demonstrate the value and usefulness
of ANOC-R,,, we developed an AC algorithm, termed ACA-
SIM (atmospheric correction based on satellite—in situ matchup
data), based on satellite and ANOC matchups, explicitly target-
ing coastal waters and using NNs as the processing tool. The
key feature of ACA-SIM is a compiled matchup dataset between
ANOC-R,, from the various sites and satellite measurements.
This dataset provides extensive coverage of challenging condi-
tions, including large solar zenith angles (SOZA), sensor-
specific effects, stray light, absorbing aerosols, cloud shadows,
and adjacency effects from nearby land, factors that were
often overlooked in previous similar approaches. Using L, data
from MODIS-Aqua as an example, ACA-SIM was developed
for processing MODIS-Aqua measurements, and its performance
was independently validated using data from field measurements
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and evaluated using images of MODIS-Aqua. The results high-
light the effectiveness of ACA-SIM in processing coastal waters,
even under dust and smoke. This approach has strong potential
for further extending to other sensors and establishes a bench-
mark for generating consistent R, products in coastal waters
across different satellites.

This article is organized as follows: the “Brief Description
of 2 Typical and Contrasting AC Approaches for Coastal
Waters” section provides a brief overview of the theoretical
basis of AC and 2 typical and contrasting AC approaches
(NASA Standard and Ocean Color-Simultaneous Marine and
Aerosol Retrieval Tool [OC-SMART]) used for processing sat-
ellite ocean-color images. The “AC Based on Satellite-In Situ
Matchup Data” section introduces the development of ACA-
SIM. In the “In Situ Data for Validation” section, in situ mea-
surements used for validation are presented. The “Results and
Evaluations” section presents the performance of ACA-SIM
and compares it with the NASA Standard and OC-SMART,
along with demonstrations with MODIS-Aqua images. The
“Discussion” section further discusses reasons for the better
performance of ACA-SIM under challenging conditions, such
as absorbing aerosols and striping. Finally, the “Conclusion”
section provides a summary of this effort.

Materials and Methods

Brief description of 2 typical and contrasting AC
approaches for coastal waters

Overall relationship

The total radiance (L,) measured by a satellite sensor at the TOA
can be generally expressed as:

Li(A) = L,(4) + Ly(A) + L (A) + t(A)L,,(4). (1)

Here, L, represents contributions from Rayleigh scattering,
and L, denotes contributions from aerosols (including those of
Rayleigh-aerosol multiple scatterings). Note that the sum of L,
and L, makes up ~80%, or more (especially in the NIR-SWIR
domain), of L, [5]. L, here represents the noises arising from sun
glint and whitecaps or foams. ¢ is the diffuse transmittance of the
atmosphere. The desired property is the water-leaving radiance
(L,), as it contains information about water constituents. Here,
for brevity, the effect of gases in the atmosphere is omitted in Eq. 1.
Since radiance is also a function of solar irradiance, reflectance is

generally used, and the TOA reflectance (p,) is defined as:
Ly (1)

A)=——.

P& Focos(QS) @

F, is the extraterrestrial solar irradiance [40], and €, is the solar
zenith angle. Therefore, Eq. 1 can be written as

D) = p,(A) + () + py(A) + LHATR (D) (3)

Here, p,, , are the reflectance due to Rayleigh, aerosol, and
surface effects, respectively, and ¢, is the diffuse transmittance
of the solar radiation. R (1) is the remote-sensing reflectance
of a water body, which is defined as:

L,(4)

R (A) = ,
rs(A) B0 (4)
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with Eg+(/1) being the downwelling irradiance just above the
surface. The objective of an AC algorithm is to obtain, as accu-
rately as possible, R, (1) from p,(1). As described in detail in
IOCCG Report #10 [5], a wide range of AC algorithms have
been developed in the past decades. Given the limited space of
this article and the scope of this study, we highlight here 2
commonly used but contrasting AC algorithms: the NASA
Standard and OC-SMART. We further compare the perfor-
mance of ACA-SIM with that of the 2 algorithms.

NASA Standard approach

In Eq. 3, p, can be exactly calculated with information on sun-
sensor geometry and at sea level atmospheric pressure [41-43],
with p, estimated based on geometry and wind speed [44-46].
The overall challenge lies in calculating p,.. This is achieved with
the “black pixel” assumption that R, is 0 in the NIR or SWIR
bands; therefore, p, data in these bands after removing p, and
p, become p,, which is used to estimate aerosol characteristics
and then extrapolated to the blue-green bands, subsequently
to obtain R, of these bands [18,41,47,48]. For waters where R,
in the NIR is no longer negligible, algorithms were developed
to estimate R, (NIR) [14-17], or to extend the NIR bands to
SWIR [18,47], in order to overcome the limitations of this
assumption.

This classical AC approach is incorporated into the SeaWiFS
Data Analysis System (SeaDAS) endorsed by the National
Aeronautics and Space Administration (NASA) and is the most
widely used AC algorithm. In this study, the default setting
of SeaDASv8.4, which employs the iterative NIR scheme, is
referred to as the NASA Standard.

OC-SMART

As early as the 1990s, it was demonstrated that R, could be
estimated from L, or p, using NNs [26], a much simpler, more
efficient, but implicit approach compared to the NASA Standard
AC system. This NN-based system was later improved [27,28]
for better accuracy in coastal waters by integrating a coupled
radiance transfer system for forward modeling. More recently,
for AC of multiple sensors with the same NN architecture,
also with more accurate data representing L, of various oce-
anic and atmospheric conditions, Fan et al. [32,33] proposed
the OC-SMART AC algorithm, with data used for training the
AC algorithm by large simulations of the coupled atmosphere—
ocean system, where more complex aerosol conditions were
introduced [49]. Specially, the simulations considered multiple
scattering effects and interactions between atmospheric and
oceanic components, enabling more accurate simulations of L,
over a wide range of aerosol optical depth (AOD) and R, across
diverse water properties [8]. Finally, after training, the algo-
rithm uses Rayleigh-corrected radiance and sun-sensor geom-
etries as input to estimate R,; of various satellite sensors. It is
necessary to note that such simulations cannot account for
sensor-specific (e.g., striping) and land-adjacency effects. In
addition, the spectral range used for training is 412 to 869 nm,
which may encounter similar issues to the NASA Standard for
highly turbid waters, where L,, is no longer negligible in the
NIR domain. For this effort, we applied the latest available ver-
sion (Python_Linux_v2.1) of the OC-SMART code provided
by Fan etal. [33], which is available from the open-source
repository (the Light and Life website, http://www.rtatmocn.
com/oc-smart/).
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AC based on satellite—in situ matchup data

Both the NASA Standard and OC-SMART, as well as many
other AC algorithms, have demonstrated various successes in
processing satellite ocean-color measurements [5,50]; however,
challenges remain. These include observations made under
large solar zenith angles, strong sunglint, strong absorbing
aerosols, and cloud shadows, to name a few. In particular, these
approaches rely on perfect L, data, where the sensor’s noises or
striping effects were not included in the development of the AC
algorithms [32,33], which were then propagated to the final
bio-optical products [51,52]. A separate and dedicated step is
required to remove such sensor noises in these AC schemes
[53]. On the other hand, there are rich and high-quality R,, data
available since the installation of the first AERONET-OC site
in 2002; therefore, there is a potential to develop a DD AC
algorithm through matching up data between satellite p, and
ANOC-R,,, termed ACA-SIM, where sensor effects in p, could
be accounted for, although implicitly.

Overview of the strategy

The crucial factor to DD algorithms lies in the quality and rep-
resentativeness of the dataset. Thus, the overall strategy for the
development of ACA-SIM is as follows: (a) compile a large,
high-quality, and representative dataset that includes both satel-
lite p,and ANOC-R,,, and (b) train a robust NN system for the
estimation of R, from satellite p,. In essence, ACA-SIM follows
a similar strategy to OC-SMART, but its notable distinction is
the use of satellite measurements along with in situ R, data.
Compared to synthetic datasets based on RT simulations,
in situ measurements offer a more authentic representation of
R, spectra. Furthermore, the matchup between satellite data
and in situ R covers a wide range of atmospheric conditions,
observing geometries, and preserves the noise present in real
satellite measurements. Numerical simulations that follow
radiative transfer, however, are difficult to accurately model
challenging observation conditions, such as high SOZA, strong
sunglint, and sensor-specific effects, such as striping and
straylight. These factors often lead to a decrease in the accuracy
of AC algorithms, or even distortions, especially when applied
to images.

R, from AERONET-OC

AERONET-OC measurements

All AERONET-OC data used in this effort were downloaded
from the AERONET website (http://aeronet.gsfc.nasa.gov),
where multi-band normalized water-leaving radiance (L,,,) and
auxiliary information are included. There are 3 levels of ver-
sion-3 AERONET-OC data: Level 1.0 (minimized platform
disturbance), Level 1.5 (cloud and wave anomaly removal), and
Level 2.0 (fully quality-assured normalized water-leaving radi-
ance) [35,54]. In this study, Level 1.5 data, rather than Level
2.0, were utilized because Level 1.5 contains up to 210,000
spectra from January 2002 to March 2024, compared to approx-
imately 80,000 spectra under Level 2.0. As always, extensive
and inclusive data are a key factor for DD-based algorithms.
It should be noted that Level 1.5 data in version 3 may contain
potential spectral inconsistencies. However, the application
of the band-shifting procedure effectively minimizes such
effects and filters out unreasonable spectra (see the “Band-
shifting of AERONET-OC to match that of MODIS” section
and Appendix A).
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The L,,, data acquired from AERONET-OC sites were con-
verted to R, as follows:

L
R0 = _W;('D. (5)

0

AERONET-OC has utilized CE-318 and CE-318T auto-
mated sun photometers, installed on offshore platforms such
as lighthouses, oceanographic towers, and oil rigs worldwide,
to measure optical data of water and atmosphere (see Fig. 1)
[55]. Data from AERONET-OC have several advantages:
(a) measurements are taken using a unified system and proto-
col; (b) calibration is performed using the same reference
source and methods; and (c) data processing is conducted using
uniform code.

Although it is the same type of instrument, the settings
of the instrument (especially the spectral bands) at each
AERONET-OC site are not necessarily the same [35]. Therefore,
it is necessary to do a band shift to convert the multi-band
RA9(}) obtained at each site to R, of the MODIS bands. A brief
description of this band-shift approach is provided below, with
details included in Appendix A.

Band-shifting of AERONET-OC to match that of MODIS

To shift the spectral bands of AERONET-OC, which may vary
from site to site, to match that of MODIS-Aqua, we first con-
structed hyperspectral R, from multi-band R%9, and then
obtained R, at the MODIS bands through spectral convolution.
For expanding multi-band R, to hyperspectral R,, the hyper-
spectral optimization processing exemplar (HOPE) developed
by Lee et al. [56] was used. Finally, after quality control, 168,572
MODIS-wavelength R, spectra were obtained from these
AERONET-OC measurements after the construction of hyper-
spectral R,.. As examples, Fig. 2 shows hyperspectral and

MODIS-band R, spectra from 4 representative sites, indicat-
ing that these R,, covered waters from blue clear waters to
green water with high concentrations of colored, dissolved
organic matter and highly turbid brownish water. The other
AERONET-OC sites supplement the gaps among these 4 sites
with varying water constituents and concentrations.

MODIS-Aqua data for the development of ACA-SIM

In this study, data from MODIS-Aqua were chosen for the
development and demonstration of ACA-SIM. This is because,
from 2002 to 2024, MODIS-Aqua offers the longest coverage
and the largest dataset to match that with AERONET-OC mea-
surements. Level 1A data of MODIS-Aqua (L,) were obtained
from NASAs Ocean Color Website (https://oceancolor.gsfc.
nasa.gov/). It is necessary to first generate the MODIS-Aqua
L1B and geo files before exporting the required Level 2 prod-
ucts. Standard R, p,, 4 angles, and atmospheric parameters
were simultaneously obtained from the 12gen module in SeaDAS.
NASA Standard R,; were obtained using the default settings
(multi-scattering aerosol model and NIR correction with up to
10 iterations). Additionally, the established criteria L2-FLAGS
for MODIS-Aqua are used to ensure data quality. A variety of
measurement conditions were encountered for these coastal
sites, which include HILT (observed radiance very high or
saturated), LAND (pixel is over land), CLDICE (probable
cloud or ice contamination), STRAYLIGHT (probable stray
light contamination), and MODGLINT (moderate sun glint
contamination).

Matchup criteria

AERONET-OC sites encompass a wide variety of water types,
which ensures the applicability of ACA-SIM across diverse coastal
waters and atmospheric conditions. The following criteria were
taken to match ANOC-R,, with p, from MODIS-Aqua:

°o®

OOL dataset
® SeaBASS dataset
*  AERONET-OC sites

180° 120°W 60°W

0° 60°E

120°E 180°

Fig. 1. The spatial distribution of field-measured data used in this study. Red pentagrams, blue circles, and yellow squares represent data from the AERONET-OC sites, Optical
Oceanography Lab (OOL, Xiamen University, China), and SeaBASS, respectively. Note that field measurements with water depth > 1,000 m were excluded from this study.
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1. Satellite data where the water signal was completely the common +2 h [23,29,36,57] used for the study of
obscured by anomalies (e.g., land, clouds, and very high oceanic waters. If multiple ANOC-R,, spectra matched
or saturated radiance) were excluded, while pixels moder- the same MODIS-Aqua data, only the one with the
ately affected by contamination (e.g., stray light, moderate smallest time difference is retained.
sunglint, and cloud shadows) were retained; thus, the devel- 3. Since the focus is coastal waters where the spatial het-
oped ACA-SIM could handle such complex conditions. erogeneity of water properties is much higher than that

2. The time window is restricted to +1 h to take account of of oceanic waters, the nearest pixel of MODIS-Aqua
the more rapid variability of coastal waters, rather than matching an AERONET-OC site was used, rather than

the conventional average of 3x3 pixels [36,57] around
0.03 " . . , a site.
RAP-EsNM The above resulted in 8,818 matchups between MODIS-
0.025 1 Aqua p, and ANOC-R,, for the training of ACA-SIM. Table 1
AAOT / R
Casablanca platform and Fig. 3 present the range and distributions of key parameters
T 0.02 4 of this dataset, which largely determine the model’s applicabil-
= ity. For the sun-sensor angles, the SOZA ranges from 9° to
- 77.8°, which is wider than the common upper limit of 70°
i 0.015
@)
% 0.01
< = Table 1. Parameters and ranges of the ACA-SIM training dataset
0.005 [+ i
Parameter Minimum value Maximum value
0 - - ; SOZA(° 9.0 778
400 500 600 700 800 900 (o)
Wavelengths [nm] SOAA(°) -179.9 179.9
g SEZA (%) 003 654
Fig. 2. R, spectra of 4 representative sites with different water types (Casablanca_ SEAA (°) -1771 1784
Platform, n'= 5,968; AAOT, n =4,958; ARIAKE_TOWER_2,n = 2,82}; RdP-EsNM, n= Chla (mg/m3) 0.02 414
4,500). Solid line-square represents the average spectra of the original multi-band
ANOC-R,, and dashed curve-diamond denotes R, band-shifted to MODIS-Aqua AOD(412) 0.01 0.77
bands through HOPE. Gray curves with transparency indicate all HOPE-reconstructed
hyperspectral R spectra for the 4 sites.
A3 B 10 : : — C 5
—412 nm
sl —869 nm | ol
N N’ G L N 3r
g g g
£ = £
) Q L
s S 4f s 2t
S = =2
[ (5] [
Bt S Pt
=3 =l =,
0 0 0 : -
0 20 40 60 80 0 008 016 024 032 04 048 0 0.2 0.4 0.6 0.8
Angle (°) Y AOD(412)
D7 " " E 50 F 20
—412 nm ——748 nm
6r ——547 nm ——859 nm
40
51 ~ ~15
X X X
.4 ﬁ 80f <
9 Q9 Q9
£ £ £ 10
o 3H o )
= 520t =
= = =
£ 2f [ £,
= = ol =
1
0 0 0
0 0005 0.01 0015 0.02 0.025 0.03 0.035 0 0.5 1 15 0 10 20 30 40 50
Ry [sr7] Ry [st™] x10° Chla [mg/m?3]

Fig. 3. Histogram of the data in the training dataset. (A) Solar zenith angle (blue) and sensor zenith angle (red); (B) p,(412) (blue) and p,(869) (red); (C) AOD(412); (D) R,{(412)
(blue) and R,(547) (red); (E) R,«(748) (blue) and R,(859) (red); (F) Chla.
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[29,32], indicating that ACA-SIM may perform better in high-
latitude oceans and during morning or evening [25]. The sensor
zenith angle (SEZA) ranges from 0.03° to 65.4°. The solar azi-
muth angle (SOAA) and sensor azimuth angle (SEAA) range
from —179.9° to 179.9° and from —177.1° to 178.4°, respec-
tively, covering nearly the entire possible range of satellite
observation. For the water parameters, in addition to the wide
range of R, values (see Fig. 3D and E), the estimated chloro-
phyll-a concentration (Chla) based on ANOC-R,, ranges from
0.02 to 41.4 mg/m”, indicating highly dynamic water environ-
ments. Here, the Chla values were taken from the associated
AERONET-OC dataset, with the estimation algorithms detailed
in Zibordi et al. [35]. Regarding atmospheric conditions, aero-
sol optical density at 412 nm [AOD(412)] ranges from 0.01 to
0.77, indicating widely varying aerosol loadings.

Multilayer perceptron
Multilayer perceptron (MLP) is an artificial neural network con-
sisting of an input layer, one or more hidden layers, and an output
layer. Each layer contains multiple neurons fully connected to
the neurons in adjacent layers. The MLP uses a feedforward
structure, where information flows from the input layer through
the hidden layers to the output layer. Each neuron applies an
activation function, which introduces nonlinearity and enables
the network to learn complex patterns in the data. MLPs are
trained through backpropagation, where the network iteratively
adjusts its weights to minimize the error between predicted
and actual outputs [58]. In this study, after many rounds of
tries, it was found that in an MLP architecture with 4 hidden
layers (512, 256, 128, and 64 neurons), using the rectified
linear unit activation function [59,60] between the hidden
layers worked well. Also, a sigmoid activation function at the
output layer was used to prevent negative values. The selection
of a perfect NN architecture remains elusive. We experi-
mented with different configurations to determine the optimal
number of hidden layers and neurons and found that deep
networks yielded better performance [61]. Training was
stopped based on early stopping criteria, monitoring valida-
tion loss to prevent overfitting [62].

The input to the NN consists of 14 bands of p, at wavelengths
412, 443, 469, 488, 531, 547, 555, 645, 667, 678, 748, 859, 869,

and 1,240 nm, along with sun-sensor angles, and atmospheric
parameters (water vapor, pressure, ozone, NO, components,
and relative humidity). All these parameters can be obtained
through SeaDAS. The inclusion of 1,240 nm is important for
processing measurements over highly turbid waters. However,
because some detectors at the 1,640-nm band are broken [63],
we excluded this band to ensure the quality of the dataset. We
also omitted the SWIR bands due to their low signal-to-noise
ratio. The output layer consists of 13 bands of R,, correspond-
ing to the visible and NIR wavelengths from 412 to 869 nm.
Figure 4 summarizes the input, output, and hidden layers of
this model.

In situ data for validation

In addition to using the AERONET-OC data, a large dataset
collected in various coastal environments was used to evaluate
ACA-SIM and the 2 aforementioned contrasting AC algo-
rithms. These in situ R, were obtained from the SeaWiFS Bio-
optical Archive and Storage System (SeaBASS) and the Optical
Oceanography Laboratory (OOL). Note that since this study
focuses on AC of coastal waters, the in situ data were limited
to water depths of less than 1,000 m. Data with a bottom depth
greater than 1,000 m were excluded.

The SeaBASS is a centralized repository maintained by
NASA’s Ocean Biology Processing Group (OBPG) for in situ
oceanographic and atmospheric data, supporting the validation
of satellite data products and algorithm development [64,65].
The dataset is accessible via the SeaBASS website (https://sea-
bass.gsfc.nasa.gov) and has undergone various quality control
procedures to ensure data reliability. It is necessary to note that
the R,, data deposited in SeaBASS, which are at the MODIS
bands, were provided by colleagues from the international com-
munity; thus, the measurement approaches and processing
methods may vary from group to group.

Spanning from June 2003 to December 2023, the OOL col-
lected a wide range of in situ R, spectra during cruises in the
coastal waters of China (see Fig. 1). The in situ dataset com-
prises measurements obtained using both the skylight-blocked
approach (SBA) [66,67] and the above-water approach (AWA)
[68,69]. Following the NASA protocol [68], the AWA employs
a handheld spectroradiometer to measure the upwelling total

Hidden layer 1 (512), 2 (256), 3 (128), 4 (64)

Input layer (24)
MODIS-Aqua ‘
p, (412-1,240) [14]

Sun-sensor
angles

Atmospheric
parameters

Fig. 4. The structure of ACA-SIM.
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radiance, downwelling sky radiance, and graycard-reflected
radiance, with R, finally calculated from these measurements
[70]. Based on the SBA concept, water-leaving radiance and
downwelling irradiance right above the surface were measured
simultaneously. Subsequently, R, spectra were obtained after
shading error correction [67,71]. The radiometers used for
these measurements have a spectral range of 320 to 950 nm
with a spectral resolution of ~3 nm, and the resulting hyper-
spectral R, were converted to MODIS bands via spectral con-
volution. More details about these field measurements can be
found in Dong et al. [72] and Shang et al. [73].

Following the same matchup procedure between MODIS-
Aqua and AERONET-OC, 159 pairs of spectra were obtained
between MODIS-Aqua and these field measurements.

Results

Methods of accuracy evaluation

The performance of AC algorithms was comprehensively evalu-
ated using the followmg statistical metrics, which are coefficient
of determination (R*), mean absolute percentage difference
(MAPD), mean absolute difference (MAD), and bias, defined
as follows”

Bias =

S |~
M=

2 (xi=), )

1

where x; and y; are AC algorithms derived and known (in situ)
values of R,, respectively.

54

Performance of ACA-SIM with the training data

The performance of ACA-SIM was first evaluated using the
training dataset, where 20% of the data were reserved as a vali-
dation set to assess the model’s effectiveness, while 80% of the
data were used for training ACA-SIM. Figure 5 compares R,
obtained from ACA-SIM with ANOC for spectral bands from
412 to 869 nm of the validation set. The evaluation results
of the training dataset are presented in Appendix B. For the
algorithm inter-comparison, the R, products obtained from
the NASA Standard and OC-SMART were also compared to
the same ANOC-R,, for spectral bands in this domain (see
Figs. 6 and 7).

Overall, ACA-SIM demonstrates excellent performance
across all bands among the 3 algorithms; in particular, there
are substantial improvements in the blue and red bands, where
the NASA Standard frequently produced negative values (see
Fig. 6). On statistical measures, for the blue- green bands, ACA-
SIM achieves a coefficient of determination (R?) consistently
above 0.89, with no negative values at the 412- and 443-nm

MAPD = Z 157 100% 6
P ; ’ © bands, and the MAPD reduced to ~15% for the 3 blue bands
(412, 443, and 488 nm). For R, in blue-green (412 to 555 nm),
the NASA Standard achieved R*ina range of 0.54 to 0.93, while
1 < MAPD is in a range of ~15% to 54% (see Fig. 6), with the green
MAD = " lei —¥il> (7)  bands (531, 547, and 555 nm) showing the best performance.
i=1 This is due to the fact that coastal waters have the strongest
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Fig. 5. Validation of R,, derived from ACA-SIM using the validation dataset (n =1,764).
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into high solar zenith angles (>70°), moderate sunglint, and stray light.
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Table 2. The AERNET-OC sites used in leave-one-site-out cross-validation

ID Site n ID Site n
S1 AAOT 953 S10 LISCO 422
S2 Casablanca_Platform 662 S11 Lucinda 339
S3 Chesapeake_Bay 101 S12 MVCO 639
S4 Galata_Platform 461 S13 Section-7_platform 287
S5 Gloria 455 Sl4 Socheongcho 119
S6 Gustav_Dalen_Tower 440 S15 Thornton_C-power 121
S7 Helsinki_Lighthouse 239 S16 USC_SEAPRISM 661
S8 Irbe_Lighthouse 153 S17 Venise 1,637
S9 Kemigawa_Offshore 105 S18 WaveCIS_Site_CSI_6 421
1 T T T T T T T T 160 T T T T T T T T
0.8 120 - 1
0.6

o 80 1
g % s
< —%— ACA-SIM 2 40 - e
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Fig. 9. Validation at AERONET-OC sites using leave-one-site-out validation.
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Fig. 10. Statistical results of ACA-SIM, OC-SMART, and NASA Standard of the insitu datasets.
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signal in the green bands (see Fig. 2), thus less affected by noises
due to measurements and AC. OC-SMART does not produce
negative R, either (see Fig. 7), and the R* values ranged from
0.56 to 0.94, and MAPD ranged from ~17% to 44% (~32% for
the 3 blue bands), with the green bands (531 and 547 nm) also
showing the best performance compared to other bands.

For the red-NIR bands (645- to 869-nm range), where R,
values are generally very low due to strong absorption by water
molecules and the ANOC-R,; might include unquantifiable
uncertainties, ACA-SIM also obtained considerably better R,
compared to the NASA Standard (see Figs. 5 to 7). For the
NASA Standard, the MAPD values range from ~54% to 280%,

-3 -3
R g5 X107 . . . , — B o 10" . . . . —
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while the MAPD of ACA-SIM is ~20 to 40%. OC-SMART did
not produce R,, for the 859- and 869-nm bands, and the
achieved results were comparable to ACA-SIM at 748 nm, with
MAPD and R* values of 39% and 0.84, respectively.

Figure 8 summarizes the statistical results from the 3 AC
algorithms presented above. Additionally, it highlights the
breakdown results for observations under high solar zenith
angle (>70°), moderate sun glint (L2_FLAGS_20 = 1), and
stray light conditions (L2_FLAGS_8 = 1), which were indicated
by the flags defined in SeaDAS. It was found that the R, in the
blue bands obtained from the NASA Standard and OC-SMART
were strongly affected by these observation conditions, although

-2 0 2 4 6 8 10 12

3
In situ R, [sr'] x10

Fig. 11. Scatterplots between insitu R, and that derived by the NASA Standard, OC-SMART, and ACA-SIM from MODSI-Aqua measurements (n = 147 and 106 for 412 and 667

nm, respectively): (A) 412 nm; (B) 667 nm.
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Fig. 12. Results of R,((412) by the NASA Standard, OC-SMART, and ACA-SIM over the Bohai and Yellow Seas collected by MODIS-Aqua on 2016 August 27. (A) RGB true color
image. R,4(412) obtained from the NASA Standard (B), OC-SMART (C), and ACA-SIM (D).
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reasonable results were obtained for the green bands. However,
ACA-SIM produced substantially improved R, at the 412- and
443-nm bands, as well as more consistent R,, with ANOC-R,
for bands from green to NIR for the challenging observation
conditions. Overall, the above comparisons indicate a strong
performance (higher R?, lower MAD and MAPD, and much
smaller bias) of ACA-SIM for these coastal waters.

Evaluation of ACA-SIM with independent data
Validation via leave-one-site-out

Since DD-based algorithms are data-dependent, a big concern
is whether such algorithms can be applied to data not included
in the training. To evaluate the concept and applicability of
ACA-SIM, aleave-one-site-out validation method was employed
for an independent test and validation. Specifically, among
the n AERONET-OC sites, data from the ith site S, is excluded
from the dataset for algorithm development and simply
used for validation, while data from the remaining sites S,
(j=1, ...,nj#1i) are used for model training. Since data
from §, is entirely out of the training process, this constitutes
an independent validation. By iterating this process across all
n sites (resulting in n ACA-SIM,), a series of independent vali-
dations were obtained. For this evaluation, it is important to

A . . ; . 0.025
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e 0
L 124°E <0

T8°E 120°E 122°E 126°E

use statistically significant sample sizes (we here kept a mini-
mum of 100 data points); therefore, in total, 18 sites (see Table 2)
were selected for this leave-one-site-out validation.

Figure 9 shows the performance of ACA-SIM across the 18
sites, along with that of the NASA Standard and OC-SMART.
Since it is an iterative process over the 18 sites, there are 18
numbers of R?, MAPD, MAD, and bias. Note that these values
represent the averages of the spectral bands of produced R,
with wavelengths matching those of OC-SMART (see Fig. 7
for wavelengths). As examples, results of representative blue-
green-red bands of 412, 547, and 667 nm are included in
Appendix C. Overall, it is found that no matter which site is
left out for the development evaluation, the R values of ACA-
SIM at all sites (0.71 + 0.14) are better than those of the NASA
Standard (0.53 + 0.21) and OC-SMART (0.58 + 0.21), while
the MAPD and MAD values are lower than those of the NASA
Standard and OC-SMART, with a small bias. The consistently
better performance across all sites indicates that even when one
site is excluded, the remaining sites still encompass a diverse
set of water and atmosphere properties, allowing the model to
effectively learn and generalize across different conditions. This
further highlights that the present AERONET-OC data used
for developing ACA-SIM possess a sufficiently broad dynamic
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Fig. 13. Results of R((547) and R (667) by the NASA Standard, OC-SMART, and ACA-SIM for the same scene and date as Fig. 12. (A, C, and E) R ,(547) obtained from the NASA
Standard, OC-SMART, and ACA-SIM, respectively; (B, D, and F) R,,(667) obtained from the NASA Standard, OC-SMART, and ACA-SIM, respectively.
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range and representativeness, although further adding sites
would certainly be helpful. Thus, it is confident to apply ACA-
SIM after it is trained with all available data.

Evaluation using ship-based measurements

As a common practice [15,22,32], we further evaluated the
performance of ACA-SIM using the compiled ship-based
in situ data, with Fig. 10 showing the performance measures.
Statistically, there is no clear ranking in the performance of the
3 algorithms, as the NASA Standard shows slightly better R*
values for blue to red bands, while ACA-SIM and OC-SMART
obtain better measures in MAPD for these bands, and the MAD
values are similar for the 3 algorithms. It is necessary to keep
in mind that it is very difficult to maintain the same quality of
R, from different groups when it was measured in situ, as it
involves diverse cruise-specific measurement conditions,
the use of different sensors, different measurement geometries,
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differences in operator’s handling and experience, and different
processing procedures [64,66,70]. Thus, a large portion of the
difference between MODIS-Aqua R, (no matter which AC
algorithm) and in situ R,, is very likely due to different qualities
of the measured R, as well as the mismatches in space and time
between satellite and field data. AERONET-OC data, however,
through standardization in sensors, measurement geometry,
and data processing, can remove many of the inconsistencies
in obtaining field R,.

To get more insights into this comparison, Fig. 11 shows
scatterplots of R, at the blue and red bands; again, no clear
advantages among the 3 AC algorithms, except that both
OC-SMART and ACA-SIM avoided the negative values occa-
sionally produced by the NASA Standard. For R, (412), the
MAPD of OC-SMART and ACA-SIM is reduced by ~60%
compared to that of the NASA Standard (see Fig. 10). On the
higher end of R,, values, it appears that all 3 ACs exhibited an
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Fig. 14. Application to the MODIS-Aqua images in the West Coast of North Africa. (A to D) RGB composite image and R, values at 412 nm derived from the NASA Standard,
OC-SMART, and ACA-SIM on 2019 December 27, respectively; (E to H) Same as (A) to (D), but for 2019 December 26. (I to K) Histograms of the R (412) values of the 2 days.
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“underestimation” This may further highlight the challenges
in obtaining consistent, high-quality R,, from diverse groups
in field measurements.

Application to MODIS-Aqua images

The ultimate goal and value of an algorithm are in its applicabil-
ity to process satellite ocean color images; we thus further evalu-
ated the performance of ACA-SIM through its application to
satellite images of various coastal environments, especially chal-
lenging scenarios, such as highly turbid waters or highly absorb-
ing aerosols. It is important to note that these scenarios often
occur simultaneously and are coupled. In addition, we also
present the results of the NASA Standard and OC-SMART for
comparison.

Bohai and Yellow Seas

The Bohai and Yellow Seas are semi-enclosed by industrial cities
of China and the Korean peninsula, experiencing frequent and
strong air pollution. Additionally, the Yellow River estuary in
the Bohai Sea carries a substantial sediment load into the ocean,
resulting in highly turbid waters. Figure 12A shows an RGB
composite image of 2016 August 27, collected by MODIS-Aqua,
where the distinct sediment-laden waters of the Bohai Sea con-
trast with the relatively clear waters of the Yellow Sea. For this
MODIS-Aqua measurement, the NASA Standard obtained
negative R (412) along the eastern coast of the Yellow Sea (see
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Fig. 12B), a region characterized by the coupling of turbid waters
and absorbing aerosols [74,75]. There are also discrete negative
R, (412) along the northwestern coast of the Bohai Sea. Both
ACA-SIM and OC-SMART, on the other hand, did not produce
negative R,(412) and obtained overall higher R, (412) values
than the NASA Standard, effectively capturing the spatial varia-
tions of the water masses in the Bohai and Yellow Seas. In
extremely turbid coastal waters, OC-SMART R, (412) values
are lower than those derived by ACA-SIM, consistent with the
underestimation observed by Song et al. [29] in the Bohai and
Yellow Seas. In particular, in the southeastern corner of the
image, where sparse southwest-oriented cloud streaks are pres-
ent, R, (412) from OC-SMART exhibits extremely high anoma-
lies, likely due to the influence of cloud edges and/or shadows.
This phenomenon is also commonly observed in the results from
the NASA Standard; therefore, the products are usually masked
out. However, thanks to the use of real data for training, ACA-
SIM demonstrates exceptional resistance to such interference,
producing results highly consistent with the surrounding water
masses. These results suggest that ACA-SIM is more effective in
handling noise in real image data, enhancing the overall accu-
racy and consistency of the retrieved ocean color products.
For the 547- and 667-nm bands, the 3 AC methods exhibit
similar R, values and spatial distributions in the Bohai and
Yellow Seas (see Fig. 13). This further confirms that, compared
to the 412-nm band, the influence of turbid waters and absorbing
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Fig. 15. Similar to Fig. 14, but showing the results at 547 and 667 nm (A to F) using a logarithmic scale.
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aerosols on the AC is less pronounced at these wavelengths.
On the other hand, the high consistency in R, among the 3
independently developed AC approaches provides mutual vali-
dation of their effectiveness and accuracy. However, ACA-SIM
demonstrates a notable advantage in minimizing the striping
effects (more details in the “Striping artifacts” section), which
remain visible in the results from both the NASA Standard and
OC-SMART (see Fig. 12).

West Coast of North Africa
Driven by the Northeast trade winds, vast amounts of dust from
the Sahara Desert are transported over the waters of the West
Coast of North Africa, extending as far as the Cape Verde
Islands in the North Atlantic and forming one of the largest
airborne dust events over the ocean (see Fig. 14A). As a repre-
sentative type of strongly absorbing aerosols, dust aerosols
frequently cause failures in AC algorithms [76-78]. In the
MODIS-Aqua RGB image 0f 2019 December 27, a thick yellow
dust aerosol layer blankets the coastal waters, with the highest
concentration observed in the northern region. On the other
hand, deep green turbid waters are visible in the northern bays
and the southernmost river delta. For these MODIS-Aqua mea-
surements, the NASA Standard shows a band of negative
R, (412) parallel to the coastline (see Fig. 14B), along with wide-
spread negative values in the northern region where dust aero-
sol loads were high. Beyond the negative R (412) values, the
low R,,(412) regions (dark blue) in the NASA Standard results
align with the distribution of the dust aerosol layer, suggesting
potential underestimation in these areas.

OC-SMART successfully avoided negative R, (412) values.
However, the resulting R, (412) is as low as ~0.0018 sr™" for
far-offshore Atlantic waters, indicating dust effects in the R,

0.015

0.005

0
<0

140°E 142°E 144°E 146°E 148°E

results. ACA-SIM, however, avoided negative R, (412), and the
resulting R,(412) is around 0.008 sr~' for offshore waters, a
value more consistent with oceanic waters. To further check
the validity of the R, (412) values, MODIS-Aqua measurements
from 1 day earlier (2019 December 26) were also processed and
presented (Fig. 14E to H), a day with different sky conditions
(Fig. 14A vs. Fig. 14E). Note that due to satellite orbital varia-
tions, the same region is located at the edge of the image on
2019 December 26, extending only up to approximately 20°N.
It is found that the R, (412) values on 2019 December 26
are markedly (~53% on average) higher than those of 2019
December 27, when processed by OC-SMART. However, the
difference of R,((412) between the 2 days on average is just ~7%
when obtained from ACA-SIM. Figure 14I to K further high-
light the distribution of R,(412) of the 2 consecutive days
obtained from the 3 ACAs, where there are large changes in
R,(412) from the NASA Standard and OC-SMART, but it
remains nearly the same for ACA-SIM. As water’s properties
do not change drastically day by day, these results indicate that
the R, (412) results from ACA-SIM are more reasonable, even
under such strong dust effects.

Figure 15 compares the R, results at 547 and 667 nm from
the 3 algorithms. The consistency among the 3 algorithms is
higher in the green and red bands than in the blue bands,
although R, (547) from the NASA Standard is notably lower
than that from OC-SMART and ACA-SIM. The 2 NN-based
AC algorithms demonstrate the highest agreement (R* = 0.98
and 0.94 for 547 and 667 nm, respectively), indicating a highly
consistent spatial distribution, particularly in turbid coastal
waters. In addition, the eddy patterns in the lower left appear
much clearer in ACA-SIM R,(667) than those showing in
R, (667) from the NASA Standard and OC-SMART, and these
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Fig. 16. Results of R.((412) by the NASA Standard, OC-SMART, and ACA-SIM over the southern coast of Australia collected by MODIS-Aqua on 2020 January 3. (A) RGB true
color image. R ,(412) obtained from the NASA Standard (B), OC-SMART (C), and ACA-SIM (D).
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eddy patterns are also showing in the R (547) images. In addi-
tion, both the NASA Standard and OC-SMART were affected
by striping artifacts to varying degrees, whereas ACA-SIM
showed the potential to reduce the impact of striping artifacts.
It is important to note that the striping artifacts are unrelated
to the AC algorithms themselves, but rather stem from the
quality of the input data. ACA-SIM benefits from the stable
true values in its training dataset, which provides it with poten-
tial correction capability when dealing with input data affected
by striping artifacts.

Bushfires in Australia

The smoke aerosol generated by combustion is one of the most
strongly absorbing types of aerosol. From September 2019 to
March 2020, a severe bushfire lasted for 6 months in northern
and eastern Australia [79], which produced widespread smoke
across most of the eastern coastal waters and was transported
southeastward by prevailing winds, crossing the Pacific Ocean
and reaching South America and the Southern Ocean. Figure
16A shows an RGB composite image from MODIS-Aqua on
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2020 January 3 of the Bass Strait between southeastern Australia
and Tasmania. The Bass Strait lies to the west of the fire center,
where the high concentration of yellow-brown smoke aerosol
and its plume are moving eastward, forming a visible thin layer
over the strait. Figure 16B to D show the R, (412) produced by
the NASA Standard, OC-SMART, and ACA-SIM, respectively.
Again, the NASA Standard obtained much lower R, (412) (dark
blue) for many areas, along with many regions where the values
are negative (black), even in the center of the Strait. This further
highlights the limitation of the NASA Standard AC algorithm
for observations under strong absorbing aerosols.
OC-SMART did not produce negative R, (412), and the spa-
tial distribution of the resulting R,(412) appears reasonable,
but, again, there are noticeable striping artifacts (see Fig. 16C).
This is mainly because the collected data are on the edge of the
image, which further amplifies the striping artifact [80,81].
While OC-SMART effectively avoided negative R ((412) values,
itis interesting to see a strong contrast of much higher R, (412)
in the eastern side of the Strait [R,(412) ~ 0.01 sr '] than that
in the western side of the Strait [R,,(412) ~ 0.002 sr™'], while
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Fig. 17. Results of R ((547) and R ,(667) by the NASA Standard, OC-SMART, and ACA-SIM for the same scene and date as Fig. 16. (A, C, and E) R,((547) obtained from the NASA
Standard, OC-SMART, and ACA-SIM, respectively; (B, D, and F) R (667) obtained from the NASA Standard, OC-SMART, and ACA-SIM, respectively.
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possible, but might not be consistent with the dynamic system
of such a Strait, especially since there is no such east-west
water-mass contrast in the images of R,((547) and R, (667) (see
Fig. 17C to F), obtained by both OC-SMART and ACA-SIM.
In contrast to the results of the NASA Standard and OC-SMART,
the R,(412) from ACA-SIM not only avoided negative values,
but there were no visible striping effects, and the spatial distri-
bution is more smooth and uniform, suggesting more reason-
able products from ACA-SIM.

Also, as examples for the green and red bands, Fig. 17 shows
the R, values at 547 and 667 nm from the 3 ACs. Similar to that
of West Africa (Fig. 14), the NASA Standard produced the low-
est R,(547) among the 3 AC algorithms and negative R, (667)
for nearshore regions (see Fig. 17B). OC-SMART and ACA-
SIM, however, produced quite consistent R, values at these 2
bands, indicating an effectiveness of the data-based AC algo-
rithms. However, ACA-SIM, which used actual MODIS-Aqua
measurements to train an NN, clearly showed an advantage in
handling sensor-related issues, such as the striping effects.

Discussion

Absorbing aerosol and turbid water

The above compares the performance of the NASA Standard,
OC-SMART, and ACA-SIM for measurements under various
aerosol loading conditions, including dust, wildfire, and urban/
industrial aerosol types (see Figs. 12 to 17). Results indicate
that ACA-SIM outperforms the NASA Standard and provides
additional improvements over OC-SMART across different
scenarios. These results highlight the difficulties of the NASA
Standard and OC-SMART in handling these challenging condi-
tions commonly occurring in the coastal environment, whereas
a lack of consideration of the vertical distribution of aerosols
[82,83] and adjacency effects [34] could cause uncertainties in
the AC process. ACA-SIM, on the other hand, as it used actual

real-world data in the training process, handles these situations
implicitly through the NN’s internal learning processes and
achieves better results.

The dynamic range and representativeness of the training
dataset always play a crucial role in any DD algorithm. Therefore,
we analyzed the aerosol characteristics encountered by the train-
ing data used in this study. The aerosol classification algo-
rithm [84] developed based on AERONET measurements
was employed for this analysis. This algorithm classifies aerosols
into biomass burning (or smoke), dust, mixed absorbing aero-
sols, marine, continental, and mixed nonabsorbing aerosols
based on the Angstrom exponent (AE) and single scattering
albedo (SSA). Simply put, AE and SSA, respectively, characterize
the particle size distribution and radiative absorption properties
of aerosols [85]. When combined, they can effectively differenti-
ate between distinct aerosol types [85-87]. The AE and SSA data
were sourced from the AERONET Version 3 Inversion Products
[88,89], with Fig. 18A showing the distribution of aerosol types
within the ACA-SIM training set. Among them, the nonabsorb-
ing aerosols—marine, continental, and mixed aerosols—account
for 3.5%, 14.1%, and 19.1%, respectively. In contrast, the absorb-
ing aerosols, including smoke, dust, and mixed absorbing aero-
sols, make up 16.4%, 7.8%, and 39.1%, respectively. Overall,
~63% of the data were obtained under absorbing aerosol condi-
tions, which provides a strong reason for the excellent perfor-
mance of ACA-SIM for measurements under such conditions.

Additionally, there is a strong presence of dust aerosols
[90] in our training dataset, with SSA values reaching as low
as 0.34, indicating extremely strong absorbing characteristics.
Furthermore, in coastal areas, mixtures of multiple aerosol
types are very common than the scenario of a single aerosol
type [91]. In the ACA-SIM training dataset, nearly 40% of the
data were classified as mixed absorbing aerosols, indicating that
ACA-SIM is suitable for regions with complex atmospheric
conditions where aerosols of multiple types often coexist.
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Fig. 18. Dynamic ranges of atmosphere and water properties of the ACA-SIM training set. (A) Aerosol classification and frequency distribution. (B) Heatmap of coupled water

types and aerosol types.
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In addition, a common scenario in coastal regions is the
coexistence of turbid waters and absorbing aerosols. By apply-
ing a quality assurance (QA) system [92] to classify water types
into oceanic (QA cluster = 1 to 4), turbid (QA cluster = 5 to
18), and extremely turbid waters (QA cluster = 19 to 23), a
coupling matrix of water and aerosol types was generated (see
Fig. 18B). It is found that the ACA-SIM training set includes
~30% of turbid water mixed with absorbing aerosols, a preva-
lent condition in coastal environments. On the other hand,
more than 5% and 17% of the data were collected under clear
oceanic and extremely turbid water conditions, respectively.
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These distributions indicate a broad dynamic range and the
representativeness of the training data, supporting the appli-
cability of ACA-SIM in complex coastal environments.

To further explore the potential of ACA-SIM in highly tur-
bid waters, we applied the 3 AC algorithms to a MODIS-Aqua
image from 2019 November 11 (see Fig. 19). This image covers
the Subei Bank in the southwestern Yellow Sea and part of the
Yangtze River Delta. Due to the strong sediment discharge from
the Yangtze River estuary and strong resuspension of the shal-
low Subei Bank, these regions are characterized by extremely
turbid waters (see Fig. 19A).
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Fig. 19. Results of R,,(412) by NASA Standard-SWIR (B), OC-SMART (C), and ACA-SIM (D) over the Subei Bank collected by MODIS-Aqua on 2019 November 11. (A) RGB true
color image. R ,(412) obtained from NASA Standard-SWIR (B), OC-SMART (C), and ACA-SIM (D), using a logarithmic scale.

Li et al. 2025 | https://doi.org/10.34133/remotesensing.0886

18

G202 ‘€Z SqWBAON U A1sieAlun swerx e B1o'sousios [ds//:sany wouy papeojumod


https://doi.org/10.34133/remotesensing.0886

Journal of Remote Sensing

To process this MODIS-Aqua measurement, the NASA
Standard utilized the SWIR scheme [18], termed NASA Standard-
SWIR here, which enables more valid retrievals under such
conditions compared to the iterative NIR scheme. For this excep-
tional water body, all 3 AC algorithms showed a similar spatial
distribution of R (412) (see Fig. 19B to D), but NASA Standard-
SWIR produced some negative R, (412) in the central ocean
region. For the extremely turbid Subei Bank, R,(412) values by
NASA Standard-SWIR and ACA-SIM appear quite close, but the
results from OC-SMART are somewhat lower. These results sug-
gest that ACA-SIM is applicable to such extremely turbid waters,
although the longest wavelength involved is 1,240 nm, rather the
SWIR bands required by NASA Standard-SWIR. It is necessary
to point out that, unlike the comparisons presented in the
“Results and Evaluations” section, we here limited the mask of
cloud only for results from ACA-SIM, in order to explore the
upper limit of ACA-SIM in highly turbid waters.

Striping artifacts

The primary source of striping artifacts lies in calibration
inconsistencies among multiple detectors within different bands
of the sensor, the reflectance differences of the scan mirror’s
double-sided surfaces, and the slightly geometric angle varia-
tions between the different detectors during imaging [53]. This
phenomenon is particularly common in sensors with “Whisk-
broom scanner” imaging methods, such as MODIS and VIIRS.
Moreover, striping effects may become more pronounced at
larger scanning angles [80], corresponding to the image edges.
In the ocean color bands of MODIS-Aqua, striping artifacts
caused by the scan mirror are the most common, while those
resulting from geometric angle variations between the dif-
ferent detectors are also relatively common under extreme
conditions.

Striping strongly impacts the accuracy of AC algorithms and
can propagate errors into downstream ocean color products [81].
In our study, both the NASA Standard and OC-SMART exhib-
ited varying degrees of striping in image products. It is impor-
tant to note that this is not a flaw in the NASA Standard or
OC-SMART algorithms themselves but rather a consequence
of the input data quality.

Unlike these 2 approaches, as ACA-SIM used striping-
affected MODIS-Aqua data in the training process, it inher-
ently possesses the capabilities to minimize the striping effects
through learning. Specifically, because of the use of 2 mirrors
(both sides) of the rotating scan mirror to obtain images, all
MODIS-Aqua data inherently contain real scan mirror-caused
striping artifacts. The only difference lies in the severity of the

40 T T T

striping. To investigate the distribution of more severe scan
mirror-caused striping artifacts in the ACA-SIM training set,
a striping detection algorithm [93] was employed. Severe strip-
ing was identified using a threshold where the relative deviation
of brightness exceeded +0.008. Details of this algorithm are
described in Xiang and Liu [93]. Figure 20 shows the propor-
tion of scan mirror-caused striping at each station within the
training set. It is found that 21.5% of the data were acquired
under the influence of severe scan mirror-caused striping. This
explains why ACA-SIM can effectively minimize the striping
artifacts. Also, note that similar striping effects are observed at
all stations, indicating that ACA-SIM has learned a wide range
of water properties under striping effects, thereby enhancing
ACA-SIM’s capability to process measurements from various
coastal waters. While we have demonstrated the potential of
ACA-SIM to mitigate striping artifacts, it is worth noting that
it does not yet completely eliminate them. In the ACA-SIM
results presented in this study, slight traces of striping are still
visible. Therefore, integrating more data samples and incor-
porating effective spatial information into the model remain
necessary.

Conclusion

In satellite ocean color remote sensing, the overwhelming con-
tribution from the atmosphere has made it a challenge to
remove atmospheric effects, thus obtaining accurate water-
leaving signals, especially for coastal waters due to complex
combinations of water and aerosol properties. In this study,
aided by greatly advanced NNs, we demonstrated that using
the matchup data between satellite TOA measurements and
“ground truth” R, can substantially improve the quality of
R, of various coastal environments. Compared to the NASA
Standard, the developed AC algorithm in this effort, ACA-SIM,
avoided the generation of negative R, values, improved accu-
racy across the blue to red bands, and handled complex coastal
water conditions much better. Its ability to remove striping
artifacts further enhances the reliability of the derived R,
products.

This advancement and effectiveness in AC stem from the
fact that satellite data represent what happens in the real world,
which not only covers various water and aerosol properties, as
well as measurement geometries and land adjacent effects, but
also includes the characteristics of the satellite sensor making
the measurements. These combinations make it extremely dif-
ficult to accurately simulate the radiance measured by a satellite
sensor via coupled atmosphere-ocean models. While we observe
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Fig. 20. Proportion of severe striping at each station in the training set.
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the excellent performance of the present version of ACA-SIM,
as is always the case with algorithm development, we expect
ACA-SIM to improve further after more AERONET-OCs are
installed in regions beyond the existing water-atmosphere com-
binations, thereby expanding the training data boundary. In the
meantime, it is necessary to extend ACA-SIM to other satellite
sensors and, therefore, to enhance the coverage and consistency
of coastal aquatic environments by multiple satellites. However,
it is necessary to point out that this study focused on optically
deep waters in coastal regions. For the AC of optically shallow
waters, ACA-SIM remains conceptually applicable, but it will
require an extremely large and representative training set due to
the wide range of bottom substrates and depths.
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Appendix A: Shift AERONET-OC bands
to MODIS bands

As AERONET-OC sites have different band settings compared to that
of MODIS, the spectral bands of ANOC-R, have to be shifted to match
that of MODIS in order to develop an NN-based algorithm to process
MODIS data. There could be many ways for this band shift [94-96]; in
this study, similar to Ref. [94], we used bio-optical modeling to meet
the goal. Specifically, we first constructed a hyperspectral R, from
the multi-band ANOC-R,,, then through spectral convolution to get
the R, of MODIS bands. For the construction of hyperspectral R,,, it
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Fig. Al. Comparison between R, derived from ACA-SIM and ANOC-R, when the training is completed (n = 7,054).
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Fig. A5. Statistical results of the leave-one-site-out validation at 547nm. (A) Range of R? (B) Range of MAPD, (C) Range of Bias, (D) Range of MAD.

was achieved from bio-optical models developed and widely utilized
in the past decades. Generally, for optically deep waters, R, can be
summarized as [97,98]

R,(A) = f (a(2), by(4)). (A1)

Here, a and b, are the total absorption and backscattering coefficients
of a water body, which can be further expressed as for turbid coastal
waters [99],

a(A) = a,,(A) + apy(4) + ag(A) + agq(A), (A2)

by(A) = by, () + bbp(/l), (A3)

where a,, and b,,, are the absorption and backscattering coef-
ficients of seawater and pure seawater. a,, d,, g, and by,

Li et al. 2025 | https://doi.org/10.34133/remotesensing.0886

represent the absorption coefficient of phytoplankton, gelbstoff,
suspended sediments, and the backscattering coefficient of
particles, respectively. While a,, and b,,, are considered con-
stants [100,101], the other components are modeled as

apy(A) = a,,(440)a, (A), (A4)

a,(A) = ag(440)e” 001U~ 40), (A5)

Aged(4) = Ageq a;d(l) + Beeas (A6)
Y

by (3) = byy@40)( 52 ) (A7)
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Fig. A7. Scatterplot of retrieved R, by ACA-SIM (green), the NASA Standard (brown), and OC-SMART (red) algorithms compared with insitu measurements.
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A p,412 nm

-y

Fig. A8. Unreprojected single-band raw image of p; at 412 nm. (A) to (C) show subregions of the images corresponding to the sections: (A) 5.4.1 Bohai and Yellow Sea; (B)

5.4.2 West Coast of North Africa; and (C) 5.4.3 Bushfires in Australia.

where a;h(ﬂ) and a:re (A are the spectral shape of phytoplankton
and sediment absorption coefficient, respectively, with a;'h(ﬂ)
provided in IOCCG Report #5 [8] and a:re (A provided in Ref.
[99]). Separatelwy, as in Lee et al. [102], a term (A) to account
for the residual error in the ANOC-R,, was included. Thus,
there are 7 unknowns [a,,,(440), a,(440), A4, B, b},,(440), Y,
and A] for an R, spectrum, which can be estimated through
spectral optimization [56,103].

After the 7 variables are estimated, apply the values of the 7 variables
back to Egs. Al to Eqs. A7, and hyperspectral R, spectrum (the R,
in Eq. 8 with a wave sign on head) can then be generated. Finally,
the reconstructed hyperspectral is convolved to the MODIS-Aqua
bands (or the bands of any specified satellite sensor) using the sen-
sor’s spectral response function (SRF),

A
R, (A1) = [ R,(A) SRF(A)dA (A8)
4

As examples, Fig. 2 shows re-constructed hyperspectral R,, from the
multi-band R, and then the R, at the MODIS bands. Analysis using
hyperspectral data indicates that the average error in the band-shifted
R, is ~6%, a quality sufficient to train ACA-SIM.

Appendix B: Performance of the 3 AC algorithms
with the training dataset

Scatterplots (Figs. Al to A3) between the AC-algorithm-derived R, and
ANOC-R,, of the training data are presented here, which include ACA-
SIM, the NASA Standard, and OC-SMART. Since this dataset was used
to train ACA-SIM, it is not an independent evaluation of this algorithm,
just a reference. For both the NASA Standard and OC-SMART, itis an
evaluation based on independent data from coastal waters.

Appendix C: Results of representative
blue-green-red bands (412, 547, and 667 nm)
in leave-one-site-out validation

To supplement the leave-one-site-out evaluation, here (Figs. A4 to A6)
the breakdown results of the 3 algorithms at the blue (412 nm), green
(547 nm), and red (667 nm) are presented. It is found that, regardless

Li et al. 2025 | https://doi.org/10.34133/remotesensing.0886

of which site was left out for validation, ACA-SIM shows better overall
statistical measures, especially for the blue band.

Appendix D: Performance on the
ship-based measurements

To supplement the comparisons shown in Fig. 11, scatterplots (Fig. A7)
between algorithm-derived R, and in situ measurements of coastal
waters for the other bands in the blue-red domain are presented here.

Appendix E: Single-band raw image
of p; at 412 nm

To supplement the comparison shown in Figs. 12 to 16, the unpro-
jected single-band raw images of p, at 412 nm are presented here (Fig.
A8). It can be seen that all 3 raw images are affected by horizontal
striping artifacts to varying degrees.
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