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Abstract: Solar radiation in the ultraviolet (UV) bands plays an important role in marine
biogeochemical processes, and at the same time, measurements of a satellite sensor in the
UV help the data processing of ocean color satellites. However, historically, satellite ocean
color missions lack UV measurements; only in recent years have there been satellite sensors,
such as PACE OCI, to provide a direct measurement of radiance in the near-blue UV (nbUV)
domain. To address the limitation of earlier measurements, a deep-learning-based system (termed
UVISRdl) has been previously introduced to estimate remote-sensing reflectance (Rrs) of the
nbUV bands at 360, 380, and 400 nm from Rrs(visible). In this study, as PACE OCI offers
global-ocean hyperspectral Rrs products from UV to visible bands, we leveraged this opportunity
to comprehensively evaluate the performance of this UVISRdl system and compare the Rrs(nbUV)
among VIIRS, OCI, and SGLI. It is found that the Rrs(nbUV) values from VIIRS and OCI
exhibit high consistency, with mean absolute unbiased relative difference (MAURD) ranging
from ∼0.23–0.30 at 360 nm, ∼0.21–0.22 at 380 nm, and ∼0.17–0.20 at 400 nm, while the SGLI
shows lower consistency compared to the former two (MAURD=∼0.47 at 380 nm). More
importantly, the consistency assessment metrics in Rrs(nbUV) between VIIRS and OCI are
nearly the same, regardless of whether the OCI Rrs(nbUV) were derived from UVISRdl or
measured directly. These findings demonstrate UVISRdl’s potential for extending global-scale
UV reflectance back into periods lacking direct UV observations, enabling the generation of
long-term remote-sensing products, and deepening our understanding of the interactions between
UV radiation and biogeochemical processes in the global ocean.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Ultraviolet (UV) radiation plays a crucial role in the biological system on Earth. The UV
radiation reaching Earth’s surface covers approximately 280–400 nm, as wavelengths shorter
than ∼280 nm are almost entirely absorbed in the upper stratosphere [1,2]. In the ocean, UV
radiation not only affects the photosynthesis of phytoplankton [3] but also contributes to the
photolysis of dissolved organic matter (DOM) [4,5]. Many aquatic species employ adaptive
strategies to mitigate effects of UV radiation, including vertical migration and synthesis of
UV-absorbing substances [6,7]. Among these protective mechanisms, mycosporine-like amino
acids (MAAs) are widely synthesized or accumulated by diverse marine and freshwater organisms
for UV protection [8]. Moreover, the photolytic degradation of DOM by UV radiation produces
lower molecular weight compounds, altering their bioavailability for bacterioplankton uptake
[5]. Further, UV radiation affects carbon and nitrogen cycling in both terrestrial and aquatic
ecosystems [7,9]. Therefore, measuring UV radiation across broad spatial and temporal scales is
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essential for comprehensively understanding light-ocean interaction processes and their role in
biogeochemical cycling and climate change.

Ocean color remote sensing provides an effective and practical approach for acquiring large-
scale, long-term observations of UV radiation in marine environments. In practice, satellite
measurements in the UV are technically constrained, particularly below 350 nm, due to the reduced
sensitivity of optical instruments, low solar irradiance, and stronger atmospheric contribution due
to Rayleigh scattering [10]. As a result, the 350–400 nm range (near-blue UV, nbUV hereafter)
is the most feasible portion of the UV spectrum for ocean color remote sensing.

Despite this narrow spectral window, it remains important in many aspects. Knowing radiance
information in the nbUV has been shown to be helpful for satellite ocean color retrievals. For
instance, many analyses have confirmed that extending measurements into the nbUV enables
more accurate atmospheric correction under absorbing aerosol conditions [11–13], and also
improves the correction performance in turbid coastal waters [14]. Moreover, access to nbUV
in ocean color measurements would also improve the retrieval of the absorption coefficients of
colored dissolved organic matter (CDOM) (ag(λ); m−1) [12,15–17] and phytoplankton (aph(λ);
m−1) [18]. All these suggest the necessity of obtaining nbUV observations from satellites.

Over the past decades, ocean color satellite sensors such as the Sea-viewing Wide Field-of-view
Sensor (SeaWiFS), MODerate resolution Imaging Spectroradiometer (MODIS), Visible Infrared
Imaging Radiometer Suite (VIIRS) have focused on visible-NIR bands (typically> 410 nm for
ocean color measurements), leaving a gap in our ability to monitor UV radiation in the global
ocean. To date, only a few recent ocean color satellites have started to include measurements in
the nbUV domain. For example, the Ocean and Land Colour Instrument (OLCI) on Sentinel 3
(launched in 2016, has a 400 nm band) [19], the Second Generation Global Imager (SGLI) on the
Global Change Observation Mission (GCOM-C, launched in 2017, 380 nm) [20], the Ultraviolet
Imager (UVI) on HaiYang-1C (HY-1C, launched in 2018, 355 and 385 nm) [21], and the Ocean
Color Instrument (OCI) on the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE, 2024,
∼350 nm and longer) [22–24], provide new opportunities to advance our understanding of UV
penetration in the marine environment. However, the duration of these observations remains
relatively limited.

To address this data gap, Wang et al. [25] and Liu et al. [26] developed deep-learning-based
systems to estimate remote-sensing reflectance (Rrs) in the nbUV (termed as Rrs(nbUV)) from Rrs
data in the visible bands (termed as Rrs(visible)), laying the groundwork to generate decade-long
Rrs(nbUV). Wang et al. [25] introduced a straightforward end-to-end neural framework (termed
UVISRdl system) using the Rrs(visible) at 410, 440, 490, 550, and 670 nm as input, whereas Liu
et al. [26] proposed an algorithm-switching approach using more comprehensive input features.
The previous analysis regarding the UVISRdl system provided in Wang et al. [25] indicated
excellent performance, but that was limited to the data collected from field measurements; the
global applicability of the model remains unknown. The hyperspectral Rrs data provided by the
PACE satellite, extending from UV to near-infrared at 2.5 nm or 1.25 nm intervals, provide a
great opportunity to evaluate the deep-learning system using data from the global ocean and to
examine the system’s utility and limitations across diverse marine environments. In addition, it
is possible to compare the nbUV data from OCI with those from VIIRS and from SGLI (which
includes a UV band and has a band configuration similar to VIIRS), thus potentially extending
Rrs(nbUV) products to earlier days with confidence.

The structure of this paper is as follows: Section 2 provides an overview of the data and
processing methods used for the evaluation. Section 3 introduces the deep-learning scheme
UVISRdl and evaluates its performance using data from PACE OCI. Section 4 examines the
consistency of Rrs(nbUV) among Suomi National Polar-orbiting Partnership (SNPP) VIIRS
(SNPP VIIRS), PACE OCI, and GCOM-C SGLI, while Section 5 offers an in-depth discussion of
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the findings. Finally, Section 6 summarizes the main conclusions and outlines potential directions
for future research.

2. Data and methods

2.1. Satellite data processing

Satellite data from the three ocean color sensors, SNPP VIIRS, PACE OCI, and GCOM-C
SGLI (hereinafter referred to as VIIRS, OCI, and SGLI, respectively), were utilized in this
study. Level-2 satellite data within ±3 hours of in situ measurements taken at MOBY (Marine
Optical BuoY) [27] and AERONET-OC (AErosol RObotic NETwork-Ocean Color) [28], from
May to December 2024, were obtained to evaluate the consistency between satellite-derived and
field-measured values. In addition, Level-3 monthly composite data from May to December
were analyzed to compare the consistency among different satellite products across the global
ocean, with that of September 2024 selected as a representative example. The use of Level-3
monthly composites helps reduce uncertainties associated with data processing and reduces data
gaps inherent in daily or instantaneous observations, thereby enhancing the comparability and
robustness of multi-satellite products. September was chosen as an illustrative example because
the quality of global Rrs data of this month is less affected by sea ice in the polar regions, avoiding
potential biases due to unmasked data points associated with sea ice, although results from other
months were generally similar.

For this study, the latest version of VIIRS and OCI (Version 3.0) data were acquired from
the Ocean Color Web supported by the Ocean Biology Processing Group (OBPG) at NASA’s
Goddard Space Flight Center (https://oceancolor.gsfc.nasa.gov/), and SGLI Level-2 and Level-3
monthly composite data were obtained from the Japan Aerospace Exploration Agency (JAXA)
G-Portal web site (Global Portal, https://gportal.jaxa.jp/gpr/) and JAXA Satellite Monitoring
for Environmental Studies (JASMES, https://www.eorc.jaxa.jp/JASMES/), respectively. It is
worth noting that the three satellite sensors differ in spectral configurations. VIIRS and SGLI are
multispectral sensors with relatively similar band settings in the visible and near-infrared range.
VIIRS features five moderate-resolution bands in the visible range, centered at 410, 443, 486,
551, and 671 nm, with bandwidths ranging between 15 and 39 nm [29,30]. SGLI offers eight
spectral bands for ocean color observation, centered at 380, 412, 443, 490, 530, 565, 670, and
865 nm, with bandwidths ranging between 10 and 20 nm [31]. In contrast, OCI is a hyperspectral
sensor that provides continuous 2.5 nm intervals from approximately 346 to 719 nm and an
enhanced 1.25 nm interval between 640 and 715 nm [32].

2.2. MOBY

MOBY has been operated off Lanai Island in Hawaii (around 20.82° N, 157.19° W in the
271st deployment) since July 1997 [27]. It is currently a National Oceanic and Atmo-
spheric Administration (NOAA) funded project to provide data for vicarious calibration of
ocean color satellites. The satellite band-weighted MOBY-Refresh data, which are consistent
with the satellite bands, have been available since May 1, 2024, from the NOAA Coast-
Watch homepage (https://coastwatch.noaa.gov/cwn/products/ocean-color-radiances-moby-field-
observations.html), and they were used in this study.

2.3. AERONET-OC

AERONET-OC provides above-water radiometric data gathered with sun photometers installed
on offshore platforms like lighthouses, oceanography, and oil towers. The uncertainty is at the
4–5% level for the water-leaving radiance data in the blue-green spectral regions obtained by
AERONET-OC [33]. The Level 1.5 data from the available AERONET-OC sites (AAOT, ARI-
AKE_TOWER_2, Bahia_Blanca, Casablanca_Platform, Chesapeake_Bay, Frying_Pan_Tower,
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Gustav_Dalen_Tower, Irbe_Lighthouse, Kemigawa_Offshore, Lake_Erie, LISCO, Lucinda,
MVCO, Palgrunden, PLOCAN_Tower, San_Marco_Platform, Section-7_Platform, Socheongcho,
USC_SEAPRISM, and WaveCIS_Site_CSI_6) operated from May to December 2024 were
obtained from the AERONET official website (https://aeronet.gsfc.nasa.gov/) to evaluate the
Rrs Level-2 products from satellites. The obtained AERONET-OC data generally consists
of 20 bands centered at 400, 412, 440, 443, 490, 500, 510, 532, 551, 555, 560, 620, 667,
675, 681, 709, 779, 865, 870, and 1020 nm; however, not all sites have consistent bands.
In this study, the band-conversion method of Mélin and Sclep [34] was applied to convert
AERONET-OC data to the band configurations of VIIRS and SGLI, while the method of
Talone et al. [35] was used to convert the AERONET-OC data to OCI bands, following the
band-conversion principles used in the ThoMaS match-up toolkit (endorsed by NASA tutorials:
https://oceancolor.gsfc.nasa.gov/resources/docs/tutorials/).

2.4. Data matching method

The matchup criteria and procedures outlined by Bailey and Werdell [36] were employed to obtain
matchups between satellite Level-2 and in situ data. A time window of ±3 hours was applied to
pair the in situ and satellite observations. A 3× 3 pixel window centered at the in situ location
was used to extract and aggregate satellite-derived Rrs, retaining only pixels exempt from the
following flags: land, cloud, ice, straylight, high/moderate glint, very low/negative water-leaving
radiance, or atmospheric correction failure [36]. The dataset used for these matchups spans from
May to December 2024 and follows the above-described matching method to ensure that the
satellite and in situ data are temporally aligned and valid for this study. For comparison among
satellite Level-3 products, the VIIRS and OCI Level-3 data, having identical spatial resolutions
of 4 km, were directly matched on a pixel-by-pixel basis. SGLI Level-3 data, originally at a
spatial resolution of 5 km, were resampled to 4 km before performing pixel-level matching with
VIIRS and OCI, ensuring spatial alignment and consistency across datasets.

2.5. Accuracy assessment metrics

To evaluate the consistency between any two datasets, we calculated several commonly used
statistical metrics, including the coefficient of determination (R2) in linear regression analysis,
root mean square difference (RMSD; unit: sr−1, Eq. (1)), bias (unit: sr−1, Eq. (2)), and the mean
absolute unbiased relative difference (MAURD, Eq. (3)). R2 evaluates the strength of the linear
relationship between two datasets; RMSD represents the overall magnitude of their differences;
bias quantifies the average deviations; and MAURD expresses relative differences, which is
particularly suitable for assessing the consistency between two datasets in cases where neither
can serve as “truth” [25]. The math expressions for RMSD, bias, and MAURD are as below,

RMSD =

⌜⃓⎷
1
N

N∑︂
i=1

(Data1,i − Data2,i)
2, (1)

bias =
1
N

N∑︂
i=1

(Data1,i − Data2,i), (2)

MAURD =
1
N

N∑︂
i=1

|︁|︁|︁|︁Data1,i − Data2,i

Data1,i + Data2,i

|︁|︁|︁|︁ × 2, (3)

where Data1,i and Data2,i represent data at the i-th pixel from two independent determinations,
corresponding to the X-axis and Y-axis data in a scatter plot, and N is the total number of samples.

https://aeronet.gsfc.nasa.gov/
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In addition, at a pixel, the unbiased relative difference (URD) between two measurements is
calculated as Eq. (4), which is used to examine the spatial distribution of consistency between
two datasets for the same property,

URDi =
Data1,i − Data2,i

Data1,i + Data2,i
× 2. (4)

3. Deep-learning system for Rrs(nbUV): UVISRdl

3.1. Brief description of the UVISRdl system

UVISRdl is a deep-learning model that estimates Rrs(nbUV) (specifically for 360, 380, and
400 nm) based on Rrs(visible), producing values that agree with field measurements within
approximately 10% [25]. The model was developed based on 200,000 synthetic hyperspectral Rrs
spectra, which were generated from 200,000 sets of inherent optical properties (IOPs) spanning a
wide range of water types, covering wavelengths from 350 to 800 nm at 5 nm spectral resolution.
The architecture includes 4 hidden layers with various neurons, designed to minimize prediction
loss and achieve reliable results across different spectral bands. This model takes Rrs(visible) at
410, 440, 490, 550, and 670 nm as inputs that can be applied to both field and satellite Rrs, for
which there are corresponding or analogous wavelength bands. Further details of UVISRdl can
be found in Wang et al. [25].

3.2. Evaluation of UVISRdl with OCI measurements

We evaluated UVISRdl using OCI’s global Rrs at visible bands and UV bands first. Specifically,
we applied UVISRdl to obtain Rrs in the nbUV from OCI-measured Rrs(visible) and compared
the results with OCI-measured Rrs(nbUV). Hereinafter, UVISRdl-derived Rrs is appended with
a subscript ‘dl’ (lowercase form of ‘DL’, representing deep learning) to the sensor name (e.g.,
OCIdl), while the notation without such a subscript represents products directly from satellite
measurements. It is worth noting that these data are completely independent of the data used to
train UVISRdl, providing a basis to assess the generalization capacity of UVISRdl.

As shown in Figs. 1(a)–1(c), there is a remarkable consistency between OCIdl Rrs(nbUV)
and OCI Rrs(nbUV) of global waters obtained from the monthly satellite composite OCI im-
age of September 2024, particularly for both 380 and 400 nm, where near-perfect agreement
is observed (R2 = 1.00, RMSD= 0.0004 sr−1, bias= -3.5× 10−4 sr−1, MAURD= 0.07). At
360 nm, although reasonably good agreement is still observed (R2 = 0.96, RMSD= 0.0012
sr−1, bias= 6.55× 10−4 sr−1, MAURD= 0.18), slightly larger deviations are noticed, likely
due to a weaker relationship between the 360 nm band and visible bands. Furthermore,
evaluation over the entire period from May to December 2024 confirms the stability of
UVISRdl performance, with metrics at 360 nm (R2 = 0.94± 0.01, RMSD= 0.00126± 0.00012
sr−1, bias= 4.5× 10−4 ± 0.9× 10−4 sr−1, MAURD= 0.14± 0.02), at 380 nm (R2 = 0.98± 0.002,
RMSD= 0.0007± 0.00005 sr−1, bias= -1.6× 10−4 ± 0.7× 10−4 sr−1, MAURD= 0.08± 0.01),
and at 400 nm (R2 ≈ 1.0, RMSD= 0.0004± 0.00002 sr−1, bias= -3.5× 10−4 ± 0.1× 10−4 sr−1,
MAURD= 0.07± 0.006).

Notably, as indicated by the red-circled points in Fig. 1(a), a group of data points exhibits a
noticeable deviation from the overall trend. The data points in the red circle are largely distributed
in high-latitude regions and were effectively separated by applying latitude thresholds at 50° N
and 50° S, with the corresponding correlation plots shown in Figs. 1(d)–1(f). If this deviated
group is excluded, the assessment metrics show a slight improvement, with R2 increasing to 0.97
and MAURD dropping to 0.16 for 360 nm. For 380 and 400 nm, R2 remains unchanged at 0.96
and 0.95, while MAURD decreases to 0.06 and 0.05, respectively. Figures 1(d)–1(f) show a
clear wavelength-associated trend for waters in high-latitude regions, where the regression slope
increases from 0.71 at 360 nm to 0.96 at 400 nm. This indicates a systematic bias at shorter
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Fig. 1. Correlation plots between modeled OCIdl Rrs(nbUV) and measured OCI Rrs(nbUV)
obtained from the monthly satellite composite OCI image of September 2024, shown for
(a–c) global waters, and (d–f) high-latitude waters (50°–90°S and 50°–90°N). In panel (a),
the red-circled cluster of data points shows a noticeable deviation from the overall trend. The
color scale “Pixels” indicates the point density, and the same applies to all similar figures.

wavelengths in high-latitude waters, likely caused by increased uncertainties in atmospheric
correction under large solar zenith angles, where the effects of Earth’s surface curvature become
significant, as well as likely by stronger Rayleigh scattering and residual effects from clouds and
surface reflection (e.g., whitecaps and sun glint) [37].

The above demonstrates that the Rrs(nbUV) could be well estimated from Rrs(visible) based on
the UVISRdl system, at least for waters within 50° N and 50° S. This lays a strong foundation for
generating global oceanic Rrs(nbUV) products for satellites having no UV capabilities but with
robust Rrs(visible).

4. Rrs(nbUV) from VIIRS, OCI, and SGLI satellites

4.1. Comparison of VIIRS and OCI Rrs in the visible bands

Before applying the model to obtain comparable Rrs(nbUV) across different satellites, it is
necessary to examine the consistency of the model inputs: the measured Rrs(visible) between
VIIRS and OCI. We thus compared Rrs for both original and converted VIIRS Rrs data. Original
VIIRS Rrs refers to the Rrs values of the actual bands at 410, 443, 486, 551, and 671 nm, whereas
converted VIIRS Rrs are those of the bands shifted to 410, 440, 490, 550, and 670 nm. Following
the approach of Wang et al. [25], this conversion is an empirical model based on deep learning
developed using the same synthetic hyperspectral Rrs data as for the development of UVISRdl,
which converts a wideband Rrs product to a narrowband Rrs. Since OCI is a hyperspectral sensor
(narrow band) and already provides the five bands required by the model, the original bands were
directly used without the need for band conversion.

Figure 2 shows relationships between VIIRS Rrs (after band conversion) and OCI Rrs at the
required bands for the UVISRdl model input (410, 440, 490, 550, and 670 nm), which were
obtained from global monthly composite images of September 2024. In general, a high level
of consistency is observed between VIIRS and OCI across most bands (Fig. 2). Specifically,
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the MAURD values were 0.19, 0.17, 0.11, 0.13, and 0.27 at 410, 440, 490, 550, and 670 nm,
respectively. In addition, all bands exhibited strong linear correlations between VIIRS and OCI,
with R2 values exceeding 0.8. Similar results were also found for VIIRS Rrs of the original
blue-green bands. There is a substantial improvement for the 671 nm band though after the
conversion, with a reduction of 22.7% in the MAURD value. This band is near the red peak of
chlorophyll-a absorption; therefore, although the central wavelengths of VIIRS Rrs(671) and OCI
Rrs(670) are nearly identical, differences in their spectral response functions (SRFs), particularly
in bandwidth, likely caused the large Rrs difference before the conversion. These results indicate
that band conversion can effectively minimize band-center and bandwidth-related discrepancies.
This process is important, as it ensures that the Rrs values required for UVISRdl from both sensors
are reasonably consistent and reliable for further applications and analyses.

Fig. 2. Correlation plots between VIIRS Rrs(visible) and OCI Rrs(visible) for global waters
obtained from monthly satellite composite images of September 2024. VIIRS data are
converted to 410, 440, 490, 550, and 670 nm bands from the original bands using an
empirical model, while OCI directly uses its original bands.

4.2. VIIRS’s Rrs(nbUV) vs OCI’s Rrs(nbUV)

Following the UVISRdl scheme developed by Wang et al. [25], Rrs at 360, 380, and 400 nm of
VIIRS and OCI, respectively, were generated from the corresponding Rrs in the visible domain.
Note that it is the same UVISRdl system applied to both VIIRS and OCI data for the generation of
Rrs(nbUV), any differences between the VIIRSdl and OCIdl Rrs(nbUV) are solely attributable to
the systematic differences in Rrs(visible) between the two sensors, while the comparison between
VIIRSdl and OCI Rrs(nbUV) further includes the discrepancies between the modeled and the
measured results.

Figures 3(a)–3(c) first compares VIIRSdl Rrs(nbUV) with OCI Rrs(nbUV), showing strong
correlations across 360–400 nm (R2 = 0.8–0.92; MAURD= 0.17–0.30), with differences compa-
rable to those in the visible bands (MAURD= 0.11–0.27, see Fig. 2). The correlations between
OCIdl and VIIRSdl Rrs(nbUV) across wavelengths from 360 to 400 nm are similar, with R2 values
ranging from 0.91–0.92 and MAURD ranging from 0.20 to 0.23 (Figs. 3(d)–3(f)). The MAURD
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values in Figs. 3(a)–3(c) and Figs. 3(d)–3(f) decrease with increasing wavelengths, suggesting
better agreement between VIIRSdl and OCI (or OCIdl) Rrs(nbUV) at longer UV wavelengths.
This result is consistent with the previous study, which compared VIIRS with MODIS [25],
showing that consistency improves with increasing wavelength.

Fig. 3. Correlation plots between modeled VIIRSdl Rrs(nbUV) and measured OCI Rrs(nbUV)
(upper panel: a–c) and between modeled VIIRSdl Rrs(nbUV) and modeled OCIdl Rrs(nbUV)
(lower panel: d–f) of global waters obtained from monthly satellite composite images of
September 2024.

Note that the three comparison pairs, OCIdl vs OCI, VIIRSdl vs OCIdl, and VIIRSdl vs OCI,
capture distinct error sources (systematic differences between model and observation, systematic
differences in Rrs(visible) between the two sensors, and their combined effect). The comparison
of MAURD for each pair reveals that visible-band differences between sensors introduce greater
inconsistencies than model-observation differences alone (OCIdl vs OCI). At 380 and 400 nm,
the systematic bias results in a relatively low MAURD of only 0.07–0.08 between OCIdl and
OCI. However, the MAURD for VIIRSdl vs OCI more than doubled at these wavelengths, and it
approaches ∼0.30 at 360 nm. This level is non-negligible, highlighting a degree of inconsistency
of the input Rrs between OCI and VIIRS, where differences propagate from the visible to the
nbUV range during the UVISRdl process. Moreover, while VIIRSdl Rrs(360) exhibits notable
discrepancies with OCI Rrs(360) (MAURD= 0.30), its agreement with OCIdl Rrs(360) is better
(MAURD= 0.23). The slightly higher discrepancies between VIIRSdl and OCI Rrs(360) indicate
that while VIIRSdl can provide a reasonable estimate of Rrs(360) of the global ocean, it still
has some residual bias compared to “true” Rrs(360), apart from the inter-satellite differences,
especially the 360 nm band is relatively quite distant from the visible bands.

Building upon the findings shown in Fig. 3, which indicate that the discrepancies between
VIIRSdl and OCI Rrs(nbUV) are slightly wavelength dependent, and particularly more pronounced
at 360 nm, further investigation was prompted into the potential spatial patterns of these
discrepancies. To this end, we compared the global distribution of URD between paired
Rrs(nbUV) values from OCI, OCIdl, and VIIRSdl for the monthly composite of September
2024. To avoid the redundant presentation of similar distribution patterns and to enable direct
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comparison with the 380 nm band of SGLI, the URD of the 380 nm band (hereinafter referred to
as URD(380)) was selected for illustration.

Figure 4 presents the global distribution of URD(380) for OCIdl vs OCI, VIIRSdl vs OCI, and
VIIRSdl vs OCIdl, respectively (Figs. 4(a)–4(c)), with corresponding histograms of URD(380)
depicted in Figs. 4(d)–4(f). Strong consistency is observed in Rrs(nbUV) between the OCIdl and
OCI, as indicated by the URD(380) values approaching zero (mean value= –0.01 and standard
deviation= 0.18), with the exception of certain coastal regions at mid to high latitudes. Similarly,
but with notable differences, the comparison between VIIRSdl and OCI (or OCIdl) reveals a
tendency for URD(380) to approach zero within equatorial to mid-latitude regions, yet exhibits
higher URD(380) values at high latitudes and in various coastal areas.

Fig. 4. Global distribution (left) and corresponding histogram (right) of URD(380) of global
waters obtained from monthly satellite composite images of September 2024, comparing (a)
modeled OCIdl vs measured OCI, (b) modeled VIIRSdl vs measured OCI, and (c) modeled
VIIRSdl vs modeled OCIdl. The histogram includes the mean value (denoted as “Mean”)
and the standard deviation (denoted as “Std.”).

To verify whether regions with large URD(380) values originate from the visible bands, we
take 410 nm as an example. The connection between URD in the visible and nbUV bands is
illustrated in Fig. 5. As shown in the spatial distribution of URD(410) derived from VIIRS and



Research Article Vol. 33, No. 19 / 22 Sep 2025 / Optics Express 40474

OCI (Fig. 5(a)), larger absolute URD values are found in coastal and mid- to high-latitude regions,
while values approach zero in low-latitude and open ocean areas, exhibiting a pattern similar
to that of URD(380) between VIIRSdl and OCI. These higher absolute values may result from
the significant spatial variation in water properties in coastal and mid- to high-latitude regions.
In addition, a relatively high R2 value (0.71) between URD(380) and URD(410) is observed,
although the scatter is somewhat dispersed (Fig. 5(b)), indicating a loose but evident linkage
between discrepancies in the Rrs(visible) and Rrs(nbUV). These results emphasize that greater
consistency in Rrs(visible) measurements contributes to more reliable Rrs(nbUV) values for the
UVISRdl system.

Fig. 5. (a) Global distribution of URD(410) between measured VIIRS and measured OCI
of global waters obtained from monthly satellite composite images of September 2024.
(b) Correlation plot showing the relationship between URD(380) (VIIRSdl vs OCI) and
URD(410) (VIIRS vs OCI) for global waters, based on data from the same month.

In addition, we conducted a detailed analysis of regions with varying levels of consistency.
Based on latitude (50° N/S) and depth (1000 m), the global ocean is categorized into four types:
open ocean (depth> 1000 m), coastal (depth ≤ 1000 m), low-latitude (latitudes between 50°N
and 50°S), and mid- to high-latitude (latitudes poleward of 50°N or 50°S). As shown in Table 1,
deviations between VIIRSdl and OCI were relatively small in open ocean (MAURD ∼0.14–0.27)
and low-latitude regions (∼0.13–0.25), but larger in coastal (∼0.34–0.54) and mid- to high-latitude
regions (∼0.32–0.52), with consistency decreasing with decreasing wavelength across all regions.
Clearly, the analysis demonstrates that regional differences, especially in coastal and mid- to
high-latitude regions, highly influence the consistency of Rrs(nbUV) across different satellite
sensors, highlighting the need to account for regional uncertainties when integrating multi-sensor
satellite data.

The above analysis further confirms that the deviations between Rrs(nbUV) (especially for
380 and 400 nm) from VIIRSdl and OCI are more likely attributed to inter-sensor differences
of Rrs(visible) rather than bias caused by the UVISRdl model; however, the latter’s influence
at 360 nm cannot be ignored. These conclusions are supported by the following three key
findings: (1) Internal OCI vs OCIdl comparisons show near-perfect agreement for Rrs(380) and
Rrs(400), suggesting that minimal bias is introduced by the UVISRdl model itself especially
for 380 and 400 nm wavelengths; (2) Visible-domain biases propagate into the nbUV range,
as Rrs(nbUV) consistency patterns mirror those of Rrs(visible) with URD showing a strong
correlation (R2 = 0.71), and this bias cannot be ignored; (3) Larger Rrs(nbUV) inconsistencies
between VIIRSdl and OCI or (OCIdl) occur mainly in coastal and high-latitude regions, while
internal OCI vs OCIdl inconsistencies remain minor, indicating that strong spatial variabilities of
water properties drive these deviations rather than the UVISRdl model.
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Table 1. Accuracy assessment metrics for Rrs(nbUV) of VIIRSdl vs OCI across different oceanic
regions and wavelengths. “open ocean” refers to areas with bottom depth> 1000 m, “coastal” to
areas with bottom depth ≤ 1000 m, “low-latitude” to regions between 50°N and 50°S, and “mid- to

high-latitude” to regions poleward of 50°N or 50°S.

Dataset Location Band
(nm)

R2 RMSD
(sr−1)

bias (sr−1) MAURD

VIIRSdl vs OCI
open ocean

360 0.84 0.0023 1.1× 10−3 0.27

380 0.88 0.0017 2.6× 10−4 0.17

400 0.91 0.0015 -8.4× 10−5 0.14

low-latitude
360 0.86 0.0021 1.0× 10−3 0.25

380 0.90 0.0016 1.9× 10−4 0.16

400 0.92 0.0014 -2.2× 10−4 0.13

coastal
360 0.72 0.0021 8.3× 10−4 0.54

380 0.81 0.0016 5.1× 10−4 0.47

400 0.84 0.0014 3.5× 10−4 0.34

mid- to high-latitude
360 0.51 0.0027 9.9× 10−4 0.52

380 0.63 0.0021 6.8× 10−4 0.41

400 0.68 0.0018 7.2× 10−4 0.32

4.3. Rrs(380) among VIIRS, OCI, and SGLI

Since SGLI provides Rrs(380), it was further included to evaluate the consistency of Rrs(380)
among VIIRS, OCI, and SGLI. Figure 6 shows the relationships between the Rrs(380) measured by
SGLI and OCI, while Fig. 7 presents the corresponding relationships at visible bands. Similar to
the procedure applied to VIIRS, the SGLI data from the monthly composite images of September
2024 were converted to 410, 440, 490, 550, and 670 nm using an empirical model.

Fig. 6. Correlation plots between measured SGLI Rrs(380) and measured OCI Rrs(380) of
global waters obtained from monthly satellite composite images of September 2024.

The comparisons revealed wavelength-associated patterns in agreement. Specifically, at 380
nm, a systematic positive bias in SGLI Rrs was observed, with a mean bias of approximately
0.0042 sr−1. This is supported by the linear regression (R2 = 0.83), whose fitted line lies above
the 1:1 line (Fig. 6), with a slope of 1.12 and an intercept of 0.0031 sr−1. Similar patterns can be
observed when comparing SGLI Rrs(380) with that of OCIdl and VIIRSdl, where the bias values
are ∼0.004 sr−1. The consistent patterns from different comparisons provide strong evidence
that the discrepancies stem primarily from the SGLI Rrs(380) product, rather than from potential
inaccuracies in the Rrs(nbUV) produced by the UVISRdl. Meanwhile, as illustrated in Fig. 7, Rrs
in the visible wavelengths (410–670 nm) show better inter-sensor consistency than Rrs(nbUV), as
measured by MAURD. The R2 values range from 0.75–0.87 and are comparable to those in the



Research Article Vol. 33, No. 19 / 22 Sep 2025 / Optics Express 40476

Fig. 7. Correlation plots between the SGLI Rrs(visible) and OCI Rrs(visible) for global
waters obtained from monthly satellite composite images of September 2024.

Fig. 8. Global distribution of (a) OCI-measured and (b) SGLI-measured Rrs(380) of global
waters for September 2024.

nbUV bands, while the MAURD values remain below 0.26 across these bands, except at 670
nm, where low signal intensity amplifies relative differences (MAURD= 0.40). Notably, while a
high degree of alignment was found between VIIRS and OCI (Fig. 2), SGLI demonstrates lower
consistency with OCI, possibly due to higher uncertainties in the Rrs products of SGLI, which
may stem from the relatively lower signal-to-noise ratio (SNR) at 380 nm [38,39], challenges in
atmospheric correction [39], and unresolved issues in radiometric calibration [40].

The greater deviation in SGLI Rrs(380) is further evidenced by both the spatial distribution
map (Fig. 8) and the comparative URD(380) analyses with OCI and VIIRSdl (Fig. 9). As shown
in Fig. 8, the spatial distribution of SGLI Rrs(380) exhibits generally higher values than OCI,
with extensive areas exceeding 0.025 sr−1, which is significantly higher than typically observed
in global oligotrophic waters. In addition, the URD(380) between SGLI and OCI (Figs. 9(a)
and 9(c)) exhibits a spatial distribution pattern comparable to that between VIIRSdl and OCI
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Fig. 9. Spatial distribution (left) and corresponding histogram (right) of URD(380) of global
waters for September 2024, with (a) measured SGLI vs measured OCI and (b) measured
SGLI vs modeled VIIRSdl.

(Figs. 4(b) and 4(e)), with both showing lower values in open ocean waters and higher values in
coastal and high-latitude regions. However, the URD(380) between SGLI and OCI has a higher
overall mean (0.45) and a larger standard deviation (0.38). A comparable spatial pattern is also
observed in the URD(380) between SGLI and VIIRSdl (Figs. 9(b) and 9(d)), with slightly lower
values: a mean of 0.38 and a standard deviation of 0.33. Notably, URD(380) values in the open
ocean generally lie between –0.22 and 1.04 (corresponding to two standard deviations around the
mean), whereas in coastal regions they span a much broader interval from 0.51 to 2.00, with
Rrs(380) values often below 0.005 sr−1, and over 8% of the URD(380) values for SGLI vs OCI
exceed 100% versus 3% for VIIRSdl vs OCI.

Given the observed deviations, it can be inferred that SGLI Rrs(380) may be subject to
certain accuracy limitations, pointing to the necessity of further sensor calibration or algorithm
refinements to achieve more reliable Rrs data.

4.4. Comparison with in-situ measurements

While it is found that the consistency between SGLI and OCI was weaker than that between
VIIRS and OCI for Rrs(nbUV), it is necessary to compare Rrs from all three satellites with in situ
observations to determine which sensor provides more accurate measurements and to verify the
speculation in Section 4.3 that SGLI shows lower accuracy compared to OCI. For this purpose,
satellite Level-2 products from VIIRS, OCI, and SGLI were compared with in situ measurements
obtained from MOBY and AERONET-OC. MOBY Rrs data at the satellite wavelengths were
used, while Rrs from AERONET-OC were converted to satellite bands (see Section 2 for details).
The MOBY dataset, representative of clear open ocean waters, and the AERONET-OC dataset,
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consisting of quality-assured Rrs data from coastal and optically complex waters, were used for
this comparison.

We conducted comparisons of Rrs(nbUV) between satellite sensors (OCI and SGLI) and in
situ measurements. This analysis was limited to MOBY data, as AERONET-OC provides only
a single UV band at 400 nm and has insufficient matchup data for evaluation. As depicted in
Fig. 10, in the nbUV bands, consistency between OCI and MOBY improves with increasing
wavelength, reflected by decreasing MAURD values (0.21, 0.13, and 0.10, respectively). In the
380 nm band, OCI exhibits higher consistency with MOBY data compared to SGLI, whereas
SGLI shows notably wider oscillations in Rrs(380), with a MAURD of 0.30 and a bias of 0.0018
sr−1. A further analysis of the temporal trends between the three sensors from May to December
2024 revealed that the variability was uniformly distributed throughout the observation period.

Fig. 10. Comparison between satellite-measured (OCI and SGLI) and in situ Rrs(nbUV)
values for the period from May to December 2024.

Further, visible bands from AERONET-OC and MOBY (approximately at 410, 440, 490, 550,
and 670 nm) were used to evaluate the accuracy of Rrs(visible) from OCI, VIIRS, and SGLI,
thereby examining its differences to uncertainties of Rrs(nbUV) and the potential impact on
UVISRdl-derived Rrs(nbUV). Despite differences in the number of matched points, the OCI,
VIIRS, and SGLI exhibit fair consistency with in situ data, with MAURD values ranging from
0.14 to 0.35 for the bands around 440, 490, and 550 nm. However, the MAURD values of
SGLI Rrs are much higher for the wavelength of 412 nm, reaching up to 0.60, compared to
approximately 0.34–0.35 for both OCI and VIIRS (Fig. 11). For the red band, SGLI shows
better performance than OCI, with MAURD values of 0.37 and 0.53, respectively. This indicates
that SGLI performs comparably to other satellites in the visible bands, with noticeably poorer
performance only in the shorter wavelengths (nbUV and 412 nm bands). This further confirms
the need for enhanced reliability of SGLI measurement at shorter wavelengths, as noted by Salem
et al. [39]. Moreover, the relatively larger deviation of SGLI Rrs at 412 nm may propagate into
the UVISRdl-derived Rrs(nbUV), thereby impacting its consistency with results from OCI and
VIIRS.
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Fig. 11. Comparison between satellite-measured (VIIRS, OCI, and SGLI) and in situ
Rrs(visible) values for the period from May to December 2024.
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5. Discussion

The results presented in this study demonstrate that UVISRdl has the potential to bridge the
temporal gap in satellite-derived Rrs(nbUV) data, as it enables the reconstruction of historical
records of Rrs(nbUV) over the past few decades. By leveraging direct measurements from SGLI
and OCI in the 360–400 nm range, we confirmed that the proposed deep-learning model provides
Rrs(nbUV) estimations with high inter-sensor consistency and low uncertainty for global oceanic
waters. These outcomes align with the performance reported in UVISRdl’s initial validation
using VIIRS, MODIS, and SeaWiFS data [25], reinforcing its generalizability across sensors and
regions. The following sections explore the main influences on Rrs(nbUV) consistency across
satellites, its correlation with visible bands, and the potential applications of UVISRdl in ocean
color remote sensing.

5.1. Factors affecting the consistency of Rrs(nbUV) across satellite sensors

Based on the results of this study, we observed that the consistency of Rrs in the nbUV
generally decreases at shorter wavelengths. This reduction in consistency can be attributed to
satellite-specific uncertainties and inter-sensor differences.

Prior studies have highlighted a few dominant contributors to Rrs uncertainty (uc; unit: sr−1),
including random sensor noise, systematic calibration errors, and forward model assumptions
[41]. These intrinsic factors are especially pronounced in the UV range and tend to amplify in
regions of greater optical complexity. Figure 12 illustrates this by comparing the mean Rrs values
along with their corresponding mean uc and relative uncertainty δ (uc/Rrs × 100; unit: %) for two
distinctly different sites: MOBY, located in the open ocean near Hawaii, and MVCO (one of the
AERONET-OC sites), situated in coastal waters off the eastern coast of the United States. The
Rrs and associated uc values at MOBY and MVCO were extracted from the PACE OCI Level-2
data, in which both are provided by default as part of the standard Level-2 OC product suite
(additional references can be found in Zhang et al. [41,42]). For both MOBY and MVCO, uc is
found to increase exponentially with decreasing wavelength, from values near zero at 719 nm
to over 0.0013 sr−1 at around 350 nm. Slightly higher uc values are recorded at the coastal site
MVCO compared to the open ocean site MOBY. Due to the extremely low Rrs values in the
nbUV at MVCO, the relative uncertainty is significantly amplified, resulting in values that are
approximately an order of magnitude higher than those observed at MOBY (Fig. 12(c)).

Fig. 12. Spectral mean OCI Rrs (a) along with its associated absolute uncertainty uc (b)
and relative uncertainty δ (uc/Rrs × 100) (c) at MOBY and AERONET site MVCO during
the period from May to December 2024.

The precision of atmospheric correction directly affects Rrs measurements. Aerosols and
Rayleigh scattering represent two major uncertainty sources in atmospheric correction processes.
Current aerosol correction methods for NASA ocean color satellite sensors [43,44] or GCOM-C
SGLI [45,46] are built upon the framework established by Gordon and Wang [47], which employs
near-infrared (NIR) or shortwave infrared (SWIR) bands to estimate aerosol contributions
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and extrapolate them to UV-blue wavelengths. However, as the IOCCG Report No. 10 [48]
demonstrated, extrapolating aerosol properties to shorter wavelengths becomes increasingly
error-prone.

Further, retrieving accurate Rrs at shorter wavelengths is inherently challenging due to the
relatively weaker water-leaving signals compared to the dominant atmospheric contributions. In
the nbUV, the sharp decline in solar irradiance coupled with enhanced atmospheric Rayleigh
scattering, whose intensity is proportional to λ−4, amplifies this imbalance; for instance, Rayleigh
radiance at 350 nm is approximately 16 times that at 700 nm [10]. Moreover, as reported by
Wang [49], radiative transfer simulations across 340–2130 nm for several black ocean cases
show that Rayleigh scattering dominates the nbUV top-of-atmosphere reflectance (>90% at 340
nm). Consequently, even minor inaccuracies in Rayleigh radiance removal can substantially
inflate relative errors of Rrs in the nbUV [12]. Wang [50] also showed that variations in surface
atmospheric pressure, directly influencing Rayleigh optical thickness, could induce measurable
radiance biases: a± 3% pressure variation yields about 0.2% error in Rayleigh radiance at 412
nm, causing 2–5% uncertainty in Rrs; this effect is expected to be even more pronounced in the
nbUV, where Rayleigh contributions are higher. Such pressure-induced biases are particularly
relevant in regions where atmospheric pressure significantly deviates from the standard pressure
(1013.25 hPa), such as polar areas and high-altitude inland waters; thus, ignoring dynamic
atmospheric pressure variations can systematically bias Rrs(nbUV) measurements.

Furthermore, sensor performance limitations exacerbate uncertainties in Rrs(nbUV). Ocean
color sensors generally exhibit lower SNR at UV wavelengths due to decreased solar irradiance
and reduced detector sensitivity [10]. For instance, the GCOM-C SGLI sensor exhibits notably
lower SNR in its 380 nm channel (∼650) compared to visible wavelengths, which exceed 1000 at
565 nm [38]. Calibration difficulties in the UV are further compounded by limited stable and
accurate radiometric reference sources. The AERONET-OC network, predominantly supporting
visible wavelengths, offers limited capability in UV calibration. Additionally, inter-sensor
variability arises due to differences in instrument designs and calibration approaches among
satellite platforms (e.g., OCI, SGLI, VIIRS), further contributing to inconsistencies in nbUV
data as highlighted in Section 4.

In summary, satellite-specific factors, including atmospheric correction inaccuracies and
inherent sensor noise, combined with inter-sensor differences (e.g., temporal-spatial coverage
variations, resolution differences, and instrument characteristics), primarily drive the lower
consistency observed in Rrs(nbUV). Addressing these uncertainties through enhanced atmospheric
correction techniques and improved sensor calibration processes will be crucial for ensuring
greater compatibility among satellite-derived ocean color datasets.

5.2. Relative relationship of Rrs between UV bands and VIS bands

In the past, several studies have explored the complex and nonlinear relationship between
Rrs(nbUV) and Rrs(visible), employing simulated data [25,26], in situ measurements [25,26,51],
as well as satellite observations [21]. These studies highlight the complexity of optical interactions
in coastal and open ocean waters. A common finding is the emergence of a two-cluster pattern in
the relationship between Rrs(nbUV) and Rrs(visible), reflecting relative differences in ag(λ) and
aph(λ), with ag(λ) dominating in the UV bands and aph(λ) dominating the blue wavelengths.

Building on this foundation, the present study further investigated the relationship between
nbUV and visible bands by analyzing Rrs(380)/Rrs(442) ratios, following the approaches of
Wang et al. [21], Wang et al. [25], and Liu et al. [26]. This analysis included correlation plots
between Rrs(380) and Rrs(442) (or Rrs(443)) (Fig. 13) as well as the spatial distribution of the
Rrs(380)/Rrs(442) ratio (Fig. 14).

As shown in Figs. 13(a)–13(c), a persistent two-cluster pattern is observed across data sources
(OCI and VIIRS) and retrieval methods (observation-based or UVISRdl-derived), characterized
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Fig. 13. Correlation plots between Rrs(380) and Rrs(442) (or Rrs(443)) derived from
UVISRdl outputs and satellite observations, based on monthly composite images of September
2024. Panels (a–c) show OCI Rrs(380) vs OCI Rrs(442), OCIdl Rrs(380) vs OCI Rrs(442),
and VIIRSdl Rrs(380) vs VIIRS Rrs(443) for global waters (“all data”); colored points denote
data with bottom depth >1000 m (“color data”), while grey points denote data with bottom
depth ≤ 1000 m. Panels (d–f) show the same comparisons as (a–c), but restricted to the grey
subset (bottom depth ≤ 1000 m).

Fig. 14. (a) Spatial distribution of the Rrs(380)/Rrs(442) ratio of global waters obtained from
monthly satellite composite images of September 2024, and (b) corresponding histograms
for pixels in open ocean and coastal areas, respectively.

by the separation of data points into two groups when comparing Rrs(380) and Rrs(442). In
particular, for the same Rrs(442), higher Rrs(380)/Rrs(442) ratios are primarily found in open
ocean regions, while lower values occur in coastal areas, with the 1000 m isobath serving as a
general boundary following Wang et al. [25]. This consistent pattern demonstrates that UVISRdl
effectively captures this nonlinear relationship. Moreover, this pattern aligns with the earlier
studies [21,25], demonstrating its universality.

However, although we roughly delineated the two patterns using the isobath, they cannot be
clearly separated based solely on this boundary. In regions where the depth> 1000 m, the waters
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are predominantly open ocean and are typically considered as “Case-1” [13,52], although this
concept was not defined based on location or values of chlorophyll concentration [53,54]. The
optical properties in “Case-1” waters are primarily governed by phytoplankton, with relatively
low influence from CDOM and suspended particles. Compared to global waters, these waters
exhibit a relatively stronger linear correlation between Rrs(380) and Rrs(442). As shown in
Fig. 13(a), excluding coastal data points improves the R2 value from 0.91 to 0.93 and reduces
the MAURD between the OCI Rrs(380) and the linear regression line (fitted using Rrs(380) and
Rrs(442)) from 0.31 to 0.29. The OCI Rrs(380)/Rrs(442) ratio in these waters has a mean of 1.28
and a standard deviation of 0.27 (Fig. 14(b)). This relatively strong relationship suggests that
phytoplankton influences both nbUV and blue wavelengths.

In contrast, as illustrated in Figs. 13(d)–13(f), a two-cluster pattern is also present in coastal
regions where the depth ≤ 1000 m. Moreover, the remarkably consistent pattern observed across
all three panels in Figs. 13(d)–13(f) indicates that the two-cluster feature in coastal regions is
consistently captured between OCI and VIIRS. In such regions with bottom depth ≤ 1000 m,
the OCI Rrs(380)/Rrs(442) ratio has a lower mean of 0.85 and a larger standard deviation of
0.52 (Fig. 14(b)), and the spatial distribution of this ratio, exemplified by OCI data (Fig. 14(a)),
appears highly scattered and lacks a clear geographic boundary, making it difficult to separate the
clusters based solely on location. This further implies that the relationships between Rrs(nbUV)
and Rrs(visible) are rather complex, especially in optically complex coastal environments.

This raises the question: Can Rrs(nbUV) be reliably estimated simply based on the published
global empirical relationships? This proves extremely complex due to two main reasons: first,
the “Case-1” bio-optical relationships break down in the nbUV domain, primarily because of
the weak correlation between CDOM and pigment content, as well as the influence of specific
UV-absorbing substances such as MAAs [8,55]. In nearshore turbid waters, multiple constituents
interact nonlinearly, further decoupling the responses of nbUV and the visible band [56]. Second,
water-type classifications are ambiguous. Such as the “Case-1” and “Case-2” classifications [57]
cannot be determined solely by chlorophyll concentration or geography, and remote sensing alone
cannot reliably distinguish them well [53]. These limitations highlight the need for alternative
advanced methods, which have been demonstrated to more effectively capture complex nonlinear
relationships across various aquatic environments [25,26,58].

5.3. Application prospects of UVISRdl in ocean color remote sensing

In this study, the feasibility of the UVISRdl system is successfully demonstrated using the data
from OCI (Section 3.2), highlighting its strong generalization capability. This approach shows
promise for achieving Rrs(nbUV) with high consistency for multiple satellites. To further illustrate
the advantages of this system, this study further tests the UVISRdl system using SGLI data. As
shown in Section 4.3, the consistency between SGLI and OCI (or VIIRS) is relatively poor,
particularly at 380 nm, where Rrs values from SGLI are systematically higher, with the MAURD
between SGLI and OCI reaching up to 0.47 (Fig. 6(a)). In contrast, the visible bands show
considerably better agreement, with MAURD values between SGLI and OCI remaining below
0.26 across the 410–550 nm range (Figs. 7(a)–(d)). Therefore, deriving Rrs(380) by UVISRdl
may help reduce the deviation associated with the SGLI 380 band. As expected, the results
show that the consistency between SGLIdl and OCI Rrs(380) (Fig. 15(b)) is much better than that
between SGLI and OCI Rrs(380) (Fig. 6(a)). This is supported by a lower RMSD (0.0026 sr−1

vs 0.005 sr−1), lower bias (0.00074 sr−1 vs 0.0042 sr−1), and lower MAURD (0.29 vs 0.47). In
addition, the Rrs(360) and Rrs(400) produced by UVISRdl also show reasonable agreement with
the corresponding bands of OCI (Figs. 15(a) and 15(c)). For Rrs(360), the R2 value is 0.77 and
the MAURD is 0.35. Rrs(400) exhibits better agreement, with the highest R2 of 0.87 and the
lowest MAURD of 0.25 among the three bands. In addition to satellite intercomparison, in situ
validation has been tested further. Based on the matchups with MOBY Rrs(380), SGLIdl Rrs(380)
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also has a smaller bias compared to SGLI Rrs(380), with the RMSD reduced from 0.0054 to
0.0042 sr−1 and the bias reduced from 0.0018 to -0.0004 sr−1.

Fig. 15. Correlation plots between modeled SGLIdl Rrs(nbUV) vs measured OCI Rrs(nbUV)
of global waters obtained from monthly satellite composite images of September 2024.

Furthermore, a comparison of the global distributions of URD(380) of SGLI vs OCI (Fig. 9(a))
and SGLIdl vs OCI (Fig. 16(a)) reveals that areas where SGLI previously exhibited a clear positive
bias relative to OCI have become more consistent after applying UVISRdl. The mean URD(380)
decreased markedly from 0.45 to 0.04, although the standard deviation increased slightly by
5%, indicating a significant overall improvement in the consistency between SGLI and OCI for
Rrs(380).

Fig. 16. Spatial distribution of URD(380) between modeled SGLIdl and measured OCI (a)
and corresponding histogram (b) of global waters obtained from monthly satellite composite
images of September 2024.

Consistent with the regional accuracy analysis in Table 1, the improvements are particularly
evident in the open ocean and low-latitude regions, as shown in Table 2. Specifically, the MAURD
in the open ocean slightly decreased from 0.43 to 0.26, and in the low-latitude region, it dropped
from 0.43 to 0.23. In addition, the SGLIdl-derived Rrs(360) and Rrs(400) bands also exhibit
comparable accuracy in these regions, with MAURD values of 0.32 and 0.22 in the open ocean,
and 0.29 and 0.20 in the low-latitude region, respectively. These results support the effectiveness
of the UVISRdl approach in improving consistency with OCI’s Rrs(nbUV).

Together, based on the performance of UVISRdl on SGLI data, we conclude that an application
of UVISRdl is not only effective in improving inter-sensor consistency for Rrs(nbUV) but also
flexible enough to be extended to other nbUV wavelengths. Importantly, although the model
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Table 2. Accuracy assessment metrics for Rrs(nbUV) of (a) SGLI vs OCI, and (b) SGLIdl vs OCI
across different oceanic regions and wavelengths. “Open ocean” refers to areas with bottom

depth> 1000 m, “coastal” to areas with bottom depth ≤ 1000 m, “low-latitude” to regions between
50°N and 50°S, and “mid- to high-latitude” to regions poleward of 50°N or 50°S.

Dataset Location Band
(nm)

R2 RMSD
(sr−1)

bias (sr−1) MAURD

(a): SGLI vs OCI open ocean 380 0.81 0.0051 4.3× 10−3 0.43

low-latitude 380 0.83 0.0052 4.5× 10−3 0.43

coastal 380 0.65 0.0039 3.0× 10−3 0.83

mid- to high-latitude 380 0.39 0.0039 2.6× 10−3 0.67

(b): SGLIdl vs OCI
open ocean

360 0.76 0.0029 1.2× 10−3 0.32

380 0.82 0.0027 8.4× 10−4 0.26

400 0.86 0.0024 8.6× 10−4 0.22

low-latitude
360 0.81 0.0028 1.5× 10−3 0.29

380 0.85 0.0026 1.1× 10−3 0.23

400 0.87 0.0023 1.1× 10−3 0.20

coastal
360 0.57 0.0025 7.3× 10−5 0.61

380 0.67 0.0022 -1.7× 10−5 0.54

400 0.69 0.0020 -6.8× 10−5 0.47

mid- to high-latitude
360 0.22 0.0035 -1.0× 10−3 0.64

380 0.32 0.0030 -9.5× 10−4 0.57

400 0.39 0.0024 -6.3× 10−4 0.47

was originally developed only for deriving 360, 380, and 400 nm bands, it is also capable of
generating Rrs data at other wavelengths within the nbUV range. This is because the training
dataset is based on hyperspectral spectra, which provides greater spectral flexibility. Thus, it
can help to resolve the issue of band mismatches commonly encountered in multi-satellite data
fusion, and therefore demonstrates high adaptability across different satellite sensors, such as
SeaWiFS and MODIS [25].

6. Summary and conclusion

This study conducted a series of evaluations regarding the UVISRdl system to 1) verify its global
performance with Rrs(nbUV) from measurements by PACE OCI’s UV bands; 2) evaluate the
consistency of Rrs(nbUV) among VIIRS, OCI, and SGLI for inter-sensor validation, and 3)
confirm whether the UVISRdl developed for a general 5-bands configuration (410, 440, 490, 550,
and 670 nm) can be applied to other sensors such as OCI and SGLI.

The key findings include: (1) The modelled OCI Rrs(nbUV) from OCI Rrs(visible) exhibits
very good consistency with its measured values, demonstrating a strong performance of the
UVISRdl system. This result indicates that the UVISRdl system effectively captures the complex
nonlinear relationships between UV Rrs and visible Rrs; (2) The Rrs(nbUV) from VIIRS and
OCI exhibit generally good consistency, especially at 380 and 400 nm. Thus, it is reliable to
extend satellite nbUV measurements back to the MODIS and VIIRS era; (3) Larger inter-satellite
differences in Rrs(visible) bands will be propagated into Rrs(nbUV) during the UVISRdl process,
suggesting that achieving high consistency in Rrs(nbUV) requires a correspondingly high level
of consistency in Rrs(visible). This is especially true for polar region waters (north of 50 oN or
south of 50 oS); (4) SGLI showed lower consistency than others, demonstrating a need for further
calibration of SGLI in the UV band.
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Looking forward, future efforts should focus on further improving the robustness of UVISRdl
in high-latitude and coastal waters by incorporating high-quality Rrs data and ancillary UV-
related parameters into the training process, expanding validation with more in situ data such as
AERONET-OC, quantitatively attributing visible-to-UV error propagation through sensitivity
analyses, and leveraging its spectral flexibility to apply across multiple sensors, including
SeaWiFS and MODIS. In addition, retraining with real high-quality UV measurements will be
ideal to optimize performance at the nbUV domain.

In summary, although the essential role of direct satellite UV measurements must be emphasized
[21], this study demonstrates the feasibility and applicability of the UVISRdl system in estimating
Rrs(nbUV) from Rrs(visible). It is anticipated that, with the generation of Rrs(nbUV) from sensors
such as MODIS and VIIRS, more and improved ocean color products could be provided, which
will not only contribute to advancing ocean color remote sensing but also help our understanding
of long-term interactions between UV radiation and biogeochemical processes in the global
ocean.
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