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Abstract: Remotely sensed inherent optical properties (IOPs) are key proxies for synoptic
mapping of primary production and carbon export in the global ocean. However, the IOPs
inversion algorithms are scarcely evaluated in the Southern Ocean (SO) because of limited field
observations. In this study, the performance of two widely used semi-analytical algorithms
(SAAs), i.e., the quasi-analytical algorithm (QAA) and the generalized IOP model (GIOP),
were evaluated using a compiled in situ bio-optical dataset in SO, as well as measurements
from the Visible Infrared Imaging Radiometer Suite (VIIRS). Evaluations with in situ data
show that QAA and GIOP have comparable performance in retrieving the total absorption
coefficient (a(λ)), absorption coefficients of phytoplankton (aph(λ)), and that of detritus and
colored dissolved organic matter (adg(λ)). Overall, it was found that remotely sensed a(λ) and
aph(λ) by both SAAs agreed well with field measurements, with the mean absolute percentage
difference (MAPD) of derived a(λ) and aph(λ) in the blue-green bands being ∼20% and ∼40%,
respectively. However, derived adg(λ) by both SAAs were higher than the measured values at
the lower end (adg(443)<∼0.01 m−1), but lower at the higher end (adg(443)>∼0.02 m−1), with
MAPD of ∼60%. Results of this effort suggest confident products of a(λ) and aph(λ) from VIIRS
in SO, but more dedicated efforts on the measurements and evaluation of adg(λ) in SO would be
desired.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The Southern Ocean (SO, south of 50°S), occupying ∼10% of the world’s ocean surface area,
is a typical high-nutrient low-chlorophyll (HNLC) region [1], yet an important carbon sink,
accounting for ∼25% of the global ocean carbon dioxide uptake [2–4]. Currently, SO is
undergoing unprecedented physical and chemical changes owing to global warming [5, 6]. Thus,
there is a high demand for accurate assessments of primary production (PP) and carbon export in
the region, as well as their long-term trends, so that a better understanding of the global carbon
cycle and the response of SO to climate change can be possibly achieved. In this respect, satellite
remote sensing is the only feasible means of evaluating PP and carbon export in the SO at large
spatio-temporal scales.

Inherent optical properties (IOPs), including the spectral absorption and backscattering
coefficients of different water components, determine light propagation within the water column
and are closely related to the biogeochemical properties of the ocean. For instance, the absorption
coefficient of phytoplankton (aph(λ), in m−1) is particularly important for accurate estimation
of PP [7–9], while the particulate backscattering coefficient (bbp(λ), in m−1) is a useful proxy
for the concentration of particulate organic carbon (POC) in global oceans [10,11]. Colored
dissolved organic matter (CDOM) contributes significantly to the dissolved organic carbon (DOC)
pool, and absorption by CDOM (ag(λ), in m−1) is conventionally employed to remotely estimate
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DOC concentration, especially in estuarine and coastal waters [12,13]. Previous studies have
investigated the spatial-temporal variabilities of PP and POC using remotely sensed IOPs in the
SO [9,10]; however, the robustness of satellite IOPs products has not been well investigated. There
have been extensive efforts towards a better understanding of the remotely sensed chlorophyll-a
concentration (Chla) in SO [14–17], while evaluations of the inversion algorithms for IOPs in
SO have scarcely been reported.

Over the last several decades, several semi-analytical algorithms (SAAs) have been developed
to derive IOPs from remote sensing reflectance (Rrs(λ), in sr−1) measured in situ or by satellite
[18–21]. These SAAs can be categorized into two types according to their bottom-up and top-
down strategies [22]. Top-down algorithms, such as the widely-used quasi-analytical algorithm
(QAA) [23], first estimate the total absorption coefficient a(λ) and backscattering coefficient
bb(λ), and then partition a(λ) and bb(λ) into IOPs by different water components. Bottom-up
algorithms, on the other hand, derive component IOPs simultaneously with assumed IOPs
spectral shapes via spectral optimization [19,21,24,25], where the Generalized IOP model (GIOP)
is mostly employed by the international community [19]. However, these SAAs were mainly
developed based on measurements collected from mid-low-latitude oceans, and their applicability
in polar oceans has not been systematically evaluated.

In this study, we compiled a relatively large bio-optical dataset for SO from both field campaigns
and published data for the evaluations of SAAs in SO. The main objectives of this effort include
(a) evaluating the performance of QAA and GIOP using both field- and satellite-measured Rrs,
and (b) quantifying and discussing the uncertainties associated with the IOPs inversions in the
SO, particularly for the inversion of absorption coefficients by different water constituents.

2. Data and methods

2.1. in situ bio-optical dataset

We compiled a dataset with a wide dynamic range of optical properties in SO from two sources.
The first one includes field measurements in the coastal waters of the Antarctic continent obtained
during the 38th Chinese National Antarctic Research Expedition aboard the R/V XUELONG
icebreaker, which is hereafter termed SO-38. The sampling locations of SO-38 are illustrated in
Fig. 1 with red circles. The second one was screened from version 3 of the global bio-optical
dataset (GBD-v3) by Valente et al. [26] for measurements collected in the Southern Ocean
(south of 60°S). For simplicity, the subset of GBD-v3 in the Southern Ocean is termed SO-GBD
hereafter, while the rest measurements in GBD-v3 are termed GBD-Global. Note that the
bio-optical measurements in SO-GBD were mainly collected from the nearby waters of the
Antarctic Peninsula (see the blue squares in Fig. 1).

2.1.1. SO-GBD dataset

The GBD-v3 dataset can be accessed directly from https://doi.pangaea.de/10.1594/PANGAEA.
941318, which is a compilation of several publicly available datasets, such as the Marine Optical
Buoy (MOBY), SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) Bio-optical Archive and
Storage System (SeaBASS), and NASA bio-Optical Marine Algorithm Data set (NOMAD), for
measurements from global oceans between 1997 and 2021 [26]. We first extracted matched Rrs
and IOPs data from their respective spreadsheets aggregated within +/- 6 nm of the VIIRS bands.
Measurements in the Southern Ocean (south of 60°S) were then screened. As our main focus is
on the descriptions of the methods used to determine the bio-optical properties in SO-38, readers
are referred to the corresponding references for the protocols and practices of the measurements
of different bio-optical properties in SO-GBD [26]. In this effort, we further screened the Rrs
measurements in SO-GBD using a quality assurance (QA) system [27]. Specifically, the QA
system assigns a score between 0 and 1 to each Rrs spectrum, with 1 indicating perfect quality and
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Fig. 1. Sampling locations of the compiled bio-optical dataset in the Southern Ocean with red circles and blue squares 
standing for measurements from the SO-38 and SO-GBD datasets, respectively. Panel (b) shows the sampling 

locations in the nearby waters of the Antarctic Peninsula (AP, the black box in panel a). The green triangles in panel 
(a) represent stations with matched measurements from both in situ and satellite.

2.1.1 The SO-GBD dataset

The GBD-v3 dataset can be accessed directly from 
https://doi.pangaea.de/10.1594/PANGAEA.941318, which is a compilation of several publicly 
available datasets, such as the Marine Optical Buoy (MOBY), SeaWiFS (Sea-Viewing Wide 
Field-of-View Sensor) Bio-optical Archive and Storage System (SeaBASS), and NASA bio-
Optical Marine Algorithm Data set (NOMAD), for measurements from global oceans between 
1997 and 2021 [26]. We first extracted matched Rrs and IOPs data from their respective 
spreadsheets aggregated within +/- 6 nm of the VIIRS bands. Measurements in the Southern 
Ocean (south of 60°S) were then screened. As our main focus is on the descriptions of the 
methods used to determine the bio-optical properties in SO-38, readers are referred to the 
corresponding references for the protocols and practices of the measurements of different bio-
optical properties in SO-GBD [26]. In this effort, we further screened the Rrs measurements in 
SO-GBD using a quality assurance (QA) system [27]. Specifically, the QA system assigns a 
score between 0 and 1 to each Rrs spectrum, with 1 indicating perfect quality and 0 for 
questionable spectrum. Rrs measurements with a QA score less than 0.5 were considered low 
quality and were removed from further analysis. As a result, the SO-GBD dataset consists of 
88 valid measurements of Rrs(λ) and aph(λ) and 84 valid measurements of adg(λ), with these 
measurements mainly collected between 2000 and 2007. 

2.1.2 The SO-38 dataset

The 38th Chinese National Antarctic Research Expedition was conducted between 
December 2021 and March 2022. During this expedition, radiometric measurements were 
carried out and water samples were collected at 142 stations, with their locations shown in Fig. 
1a. Note that at some of these stations, only water samples were collected, and radiometric 
measurements were absent due to rough sea conditions or bad weather.

a) Remote sensing reflectance

Spectral Rrs(λ), defined as the ratio of water-leaving radiance (Lw(λ), in W·m−2·nm−1·sr−1) 
to the downwelling plane irradiance just above the sea surface (Ed(λ, z = 0+), in W·m−2·nm−1), 
were measured using the above-water approach [28]. At each station, radiance measurements 
of the upwelling radiance above the surface (Lu(λ)), standard Spectralon plaque (Lplaque(λ)), and 
downwelling sky radiance (Lsky(λ)) were acquired sequentially using a GER1500 

Fig. 1. Sampling locations of the compiled bio-optical dataset in the Southern Ocean
with red circles and blue squares standing for measurements from the SO-38 and SO-GBD
datasets, respectively. Panel (b) shows the sampling locations in the nearby waters of the
Antarctic Peninsula (AP, the black box in panel (a)). The green triangles in panel (a) represent
stations with matched measurements from both in situ and satellite.

0 for questionable spectrum. Rrs measurements with a QA score less than 0.5 were considered
low quality and were removed from further analysis. As a result, the SO-GBD dataset consists of
88 valid measurements of Rrs(λ) and aph(λ) and 84 valid measurements of adg(λ), with these
measurements mainly collected between 2000 and 2007.

2.1.2. SO-38 dataset

The 38th Chinese National Antarctic Research Expedition was conducted between December
2021 and March 2022. During this expedition, radiometric measurements were carried out and
water samples were collected at 142 stations, with their locations shown in Fig. 1(a). Note that at
some of these stations, only water samples were collected, and radiometric measurements were
absent due to rough sea conditions or bad weather.

a) Remote sensing reflectance

Spectral Rrs(λ), defined as the ratio of water-leaving radiance (Lw(λ), in W·m−2·nm−1·sr−1)
to the downwelling plane irradiance just above the sea surface (Ed(λ, z= 0+), in W·m−2·nm−1),
were measured using the above-water approach [28]. At each station, radiance measurements of
the upwelling radiance above the surface (Lu(λ)), standard Spectralon plaque (Lplaque(λ)), and
downwelling sky radiance (Lsky(λ)) were acquired sequentially using a GER1500 spectroradiome-
ter (Spectra Vista Corporation, USA). Note that GER1500 covers a spectral range of 350–1050
nm with a spectral resolution of 3 nm. The viewing geometry of each radiance measurement
conformed to NASA protocols [29]. The field-measured Rrs(λ) were then calculated as

Rrs (λ) =
ρ
(︁
Lu (λ) − r × Lsky (λ)

)︁
π × Lplaque (λ)

− ∆, (1)

where ρ is the reflectance of the spectralon plaque with a Lambertian surface (ρ ∼0.5) and r is
the air-water interface reflection coefficient, which was taken as 0.023 [30]. ∆ (sr−1) accounts for
the residual surface light (glint, etc.), and was corrected through an optimization scheme [31].
The corrected Rrs(λ) were further screened for the QA score, and only high-quality Rrs spectra
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(QA score ≥ 0.5) were retained (N= 78). Figure 2(a) shows the hyperspectral Rrs(λ) spectra of
SO-38, with the multispectral Rrs(λ) measurements from SO-GBD provided for comparison.

b) Component absorption coefficients

The absorption coefficients of suspended particles (ap(λ)), non-algae particles (ad(λ)), and
phytoplankton (aph(λ)) were determined using the filter-pad technique (QFT) [32]. Specifically,
surface water samples were collected and immediately filtered through a 25 mm diameter
Whatman GF/F glass fiber filter (pore size of 0.7 µm) under low vacuum. The volume of the water
sample was typically between 0.1 and 2 L to ensure that the absorptance of the particle-loaded
filter did not exceed 0.4, as recommended by the IOCCG (International Ocean Color Coordination
Group) Protocol [33]. The sample filters were stored at -80°C refrigerator until laboratory
analysis. Briefly, the optical density (OD(λ)) of the sample filters between 250 and 800 nm was
determined by a dual-beam PE Lambda 950 spectrophotometer equipped with an integrating
sphere (150 mm in diameter) using the Transmittance-Reflectance (T-R) method [34,35], with
the measured OD(λ) later converted to the spectral ap(λ) by accounting for the path-length
amplification factor (β). Stepwise procedures for obtaining ap(λ), including the calculation of
β, can be found in the latest IOCCG protocol [33]. ad(λ) were calculated from absorptance
measurements on the same sample filters after pigment extraction with methanol, whereas aph(λ)
were simply calculated by subtracting ad(λ) from ap(λ).
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Fig. 2. Spectra of field-measured (a) Rrs(λ), (b) adg(λ), and (c) aph(λ) from both SO-38 and SO-GBD datasets.

b) Component absorption coefficients
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surface water samples were collected and immediately filtered through a 25 mm diameter 
Whatman GF/F glass fiber filter (pore size of 0.7 µm) under low vacuum. The volume of the 
water sample was typically between 0.1 and 2 L to ensure that the absorptance of the particle-
loaded filter did not exceed 0.4, as recommended by the IOCCG (International Ocean Color 
Coordination Group) Protocol [33]. The sample filters were stored at -80°C refrigerator until 
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calculation of β, can be found in the latest IOCCG protocol [33]. ad(λ) were calculated from 
absorptance measurements on the same sample filters after pigment extraction with methanol, 
whereas aph(λ) were simply calculated by subtracting ad(λ) from ap(λ). 

Measurements of ag(λ) were performed according to the IOCCG protocol [36]. Briefly, 
water samples were filtered through Millipore membranes (pore size of 0.2 µm) under a low 
vacuum immediately following collection. Sample filtrates were then collected in amber glass 
bottles and stored in the dark in a -20°C refrigerator during the cruise. The sample filtrates were 
unfrozen in a dark environment when returning to the laboratory, and the absorbance of the 
sample filtrates was measured using the same PE Lambda 950 spectrophotometer with a 10-cm 

Fig. 2. Spectra of field-measured (a) Rrs(λ), (b) adg(λ), and (c) aph(λ) from both SO-38
and SO-GBD datasets.

Measurements of ag(λ) were performed according to the IOCCG protocol [36]. Briefly, water
samples were filtered through Millipore membranes (pore size of 0.2 µm) under a low vacuum
immediately following collection. Sample filtrates were then collected in amber glass bottles and
stored in the dark in a -20°C refrigerator during the cruise. The sample filtrates were unfrozen in
a dark environment when returning to the laboratory, and the absorbance of the sample filtrates
was measured using the same PE Lambda 950 spectrophotometer with a 10-cm cuvette, where
Milli-Q water was used as the standard reference water blank.

Note that both ap(λ) and ag(λ) samples were prepared in duplicate during the cruise, and the
final ap(λ) and ag(λ) were computed as an average of the duplicated samples after removing
questionable spectra via visual inspection. In addition, a baseline correction was used to remove
the residual scattering errors in the measured component absorption coefficients by subtracting
the values of ap(750), ad(750), and ag(750) from the respective ap(λ), ad(λ) and ag(λ) spectra.
Finally, the total absorption coefficient of seawater, a(λ), was calculated as the sum of ap(λ),
ag(λ), and the absorption coefficient of pure seawater, aw(λ). In this effort, aw(λ) values were
taken from Pope and Fry [37] for 550 - 750 nm, but employed values of Lee et al. [38] for
350–550 nm, as the latter is closer to the ‘true’ absorption coefficient of pure seawater in the
350–550 nm domain [39]. In this effort, aw(λ) values are kept constant, although they vary
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slightly with temperature [40]. adg(λ) were calculated as the sum of ad(λ) and ag(λ). In total, 72
concurrent measurements of Rrs(λ) and the component absorption coefficients were obtained for
SO-38.

Note that in situ measurements of bbp(λ) were absent in both SO-GBD and SO-38; therefore, we
focused mainly on the evaluation of derived absorption coefficients by different water components.
In general, the in situ data used for algorithm evaluation cover a variety of coastal and oceanic
water regimes in the Southern Ocean with a wide range of different absorption properties (see
Fig. 2(b) and 2(c)). For all measurements in the SO-GBD and SO-38, termed SO-All herein,
anw(443) (total absorption coefficient without pure seawater, in m−1) ranged from 0.0084 to 0.31
m−1, and the ratios of aph(443)/anw(443) and adg(443)/anw(443) varied in the range of 13.3% –
87.2% (51.8%± 17.0%) and 12.8% – 86.7% (48.2%± 17.0%), respectively, with the numbers in
the brackets referring to the mean value and the standard deviation.

2.2. Satellite data

The standard Level-2 Rrs(λ) products of Visible Infrared Imaging Radiometer Suite (VIIRS),
downloaded from the NASA Ocean Color website (https://oceancolor.gsfc.nasa.gov), were
employed in this study to perform the matchup analysis. VIIRS, onboard the Suomi National
Polar-orbiting Partnership (SNPP) satellite, provides radiometric measurements, at a spatial
resolution of 750 m, at six spectral bands in the visible domain centered at 410, 443, 486, 551,
671, and 745 nm, respectively. Note that the standard NASA Level-2 Rrs(λ) was atmospherically
corrected following the concept of the ‘black-pixel’ assumption in the near-infrared (NIR) bands
[41], but using an iterative bio-optical modeling approach to accurately estimate the water-leaving
radiance in the NIR bands [42]. In addition, Rrs(λ) products of R2022.0 reprocessing were used
in this effort.

Here, we computed the median value of all valid satellite-measured Rrs(λ) from a 5-by-5-pixel
box covering the in situ site as the matched VIIRS Rrs(λ) measurements. Note that a strict
comparison between satellite and in situ data usually requires a time difference of less than 3 h
between the two measurements [43]. However, due to persistent cloud coverage and occasional
sea ice appearance in our sampling locations, only a small number of matchups can be acquired
under this strict criterion. Thus, the time difference was set to 24 hours in this effort to acquire
matchups. Additionally, we used the QA score to assess the spectral quality of the VIIRS Rrs(λ),
and only Rrs(λ) spectra with QA score ≥ 0.5 were retained. Note that radiometric measurements
were not always concurrently collected with water sampling in SO-38, especially when some
water samples were collected at night. In total, we obtained 24 matched measurements between
VIIRS Rrs(λ) and field-measured Rrs(λ), and 35 matched measurements between VIIRS Rrs(λ)
and field-measured component absorption coefficients.

2.3. Semi-analytical algorithms

Two widely used SAAs, GIOP and QAA, were employed to evaluate their performance in the
Southern Ocean. The GIOP model employs a quadratic expression to describe the relationship
between the remote sensing reflectance just below the sea surface (rrs(λ)) and IOPs (i.e., a(λ)
and total backscattering coefficient bb(λ)) [44]:

rrs(λ) =
2∑︁

i=1
Gi

[︂
bb(λ)

a(λ)+bb(λ)

]︂ i
, (2)

where G1 and G2 are constants that are spectrally fixed at 0.0949 and 0.0794 sr−1, respectively.
rrs(λ) can be converted from Rrs(λ) as follows [23],

rrs(λ) =
Rrs(λ)

0.52+1.7Rrs(λ)
. (3)

https://oceancolor.gsfc.nasa.gov
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In Eq. (2), a(λ) can be calculated as the sum of all component absorption coefficients [45,46],
and the absorption by each component can be expressed as a function of the eigenvector
(mass-specific absorption spectrum, a*(λ)) and eigenvalue (magnitude or concentration, M):

a(λ) = aw(λ) +Mpha∗ph(λ) +Mda∗d(λ) +Mga∗g(λ), (4)

where the subscripts w, ph, d and g indicate the contribution of water, phytoplankton, non-algal
particles (NAP) and CDOM, respectively. The eigenvectors a*d,g(λ) are denoted as exp(-Sd,g × (λ
– 443)), both a*d(λ) and a*g(λ) differ only in the exponential slopes, and thus the two components
are typically combined for satellite applications and Eq. (4) becomes,

a(λ) = aw(λ) +Mpha∗ph(λ) +Mdga∗dg(λ). (5)

Similar to a(λ), bb(λ) can be expressed as,

bb(λ) = bbw(λ) +Mbpb∗bp(λ), (6)

where subscripts w and p indicate the contribution of water molecules and particles, with the
values of bbw(λ) taken from Zhang et al. [47].

In this study, the default configuration of GIOP, referred to as GIOP for simplicity, was
employed. Specifically, the eigenvector a*dg(λ) is denoted as exp(-Sdg × (λ – 443)), where Sdg
describes the spectral slope and is set to 0.018 nm−1. The eigenvector a*ph(λ) was estimated
using the approach described by Bricaud et al. [48] with remotely sensed Chla, and further with
a*ph(443) forced as 0.055 m2 mg−1 [19]. The band-ratio algorithm of OC3V was employed
to estimate Chla from Rrs(λ) [49]. The eigenvector b*bp(λ) is expressed as (551/λ)Sbp, where
Sbp determines the steepness of the power-law variation in b*bp(λ) and is determined by the
blue-to-green ratio of Rrs(λ) [23]. The eigenvalues, i.e., Mdg, Mph, and Mbp, were estimated from
Rrs(λ) using spectral optimization with the Levenberg-Marquardt optimization. The component
absorption and backscattering coefficients were subsequently derived from the eigenvalues and
eigenvectors.

On the other hand, QAA algebraically solves IOPs from Rrs(λ) for optically deep water [23].
Here, the latest version (version 6) of the QAA, referred to as QAA herein for brevity, was used.
Stepwise descriptions of QAA version 6 can be found at http://www.ioccg.org/groups/Software_
OCA/QAA_v6_2014209.pdf. Briefly, QAA separates the inversion process into two consecutive
parts. The first part involves the retrieval of a(λ) and bb(λ) from Rrs(λ). QAA initiates IOPs
inversion with the empirical estimation of a(λ) at a reference wavelength (i.e., a(λ0), λ0 stands
for the reference wavelength), and then solves bb(λ0) algebraically from Rrs(λ0) and a(λ0). Then,
bbp(λ0) is calculated as the difference between bb(λ0) and bbw(λ0), and the spectral bbp(λ) can
be obtained from bbp(λ0) and the empirically-estimated Sbp following the power-law function.
With known bbp(λ), bb(λ) can be obtained and, subsequently, the a(λ). Note that the reference
wavelength is set to 551 nm for relatively clear waters with Rrs(670) less than 0.0015 sr−1 and set
to 670 nm for scenarios with Rrs(670) greater than 0.0015 sr−1. In our compiled SO dataset, all
Rrs(670) values were less than 0.0015 sr−1. In the second part of the QAA, a(λ) is partitioned
into aph(λ) and adg(λ) algebraically after estimating the ratio of ζ and ξ, where ζ and ξ are the
ratios of aph(410)/aph(443) and adg(410)/adg(443), respectively. Unlike GIOP treating Sdg as a
constant, Sdg in QAA is a function of rrs(443)/rrs(551). A simplified flow chart illustrating the
inversion of IOPs by both GIOP and QAA can be found in Fig. 3.

Note that inelastic scattering processes, such as Raman scattering, could result in elevated
Rrs(λ), particularly for the long wavelengths in oligotrophic waters. Therefore, prior to the
implementation of both QAA and GIOP, a simple correction of Rrs(λ) for Raman scattering
effects was performed following Lee et al. [50].

http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf
http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf
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Fig. 3. Simplified flow chart illustrating GIOP and QAA for the inversion of IOPs. 

2.4 Statistical metrics

The performances of both SAAs were quantified using statistical metrics calculated 
between derived IOPs and known values from in situ measurements, which included the median 
percentage difference (ε), Root Mean Square Difference (RMSD), Mean Absolute Percentage 
Difference (MAPD), and linear regression parameters, namely the slope and coefficient of 
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Fig. 3. Simplified flow chart illustrating GIOP and QAA for the inversion of IOPs.

2.4. Statistical metrics

The performances of both SAAs were quantified using statistical metrics calculated between
derived IOPs and known values from in situ measurements, which included the median percentage
difference (ε), Root Mean Square Difference (RMSD), Mean Absolute Percentage Difference
(MAPD), and linear regression parameters, namely the slope and coefficient of determination
(R2). Linear regressions were performed on the logarithmically transformed IOPs. The first three
metrics are defined as follows,

ε = Median
(︂

yn
xn
− 1

)︂
× 100%, (7)

RMSD =

√︄
1
N

N∑︁
n=1

(yn − xn)
2, (8)

MAPD = 1
N

N∑︁
n=1

|yn−xn |
xn

× 100%, (9)

where xn and yn represent the known and derived IOPs, respectively, and N is the number of
measurements used for metric calculation.

3. Results and discussion

3.1. Evaluation of derived IOPs from field-measured Rrs(λ)

The performance of both QAA and GIOP was first assessed using SO-38 and SO-GBD at the four
VIIRS bands in the blue-green domain, i.e., 410, 443, 486, and 551 nm. Here we only present
the evaluation results of a(λ), aph(λ), and adg(λ) derived by both SAAs. Retrieved IOPs at 670
nm are not necessary in this effort, as a(670) is dominated by the absorption of pure seawater in
our compiled dataset.

3.1.1. Evaluation of derived a(λ) by both SAAs

We first evaluated the derived a(λ) using the two SAAs, with scatterplots between the derived
and measured a(λ) presented in Fig. 4. The detailed statistical metrics used to quantify the
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performance of the two SAAs are listed in Table 1. To ensure consistency, the same aw(λ)
values are employed in the inversion schemes as those used in the calculation of a(λ) from the
lab-measured component absorption coefficients.

8

MAPD =
1
N

N

n=1

|𝑦𝑛 ― 𝑥𝑛|
𝑥𝑛

× 100%(8)

where xn and yn represent the known and derived IOPs, respectively, and N is the number of 
measurements used for metric calculation. 

3. Results and discussion

3.1 Evaluation of derived IOPs from field-measured Rrs(λ)

The performance of both QAA and GIOP was first assessed using SO-38 and SO-GBD at 
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20%log10(𝑎(λ)), with 𝑎(λ) as the mean a(λ) of SO-All.

As shown in Fig. 4, retrieved a(λ) by both GIOP and QAA show good agreement with the 
measured a(λ). Overall, the MAPD values of a(λ) from both algorithms ranged from ~8% at 
551 nm to ~31% at 410 nm, with remotely sensed a(λ) slightly lower than that from the water 
samples (see Table 1 for details). This is equivalent to those reported in the literature [18, 19, 
51], but better than those reported in coastal regions such as the South China Sea [52]. A larger 
deviation of a(λ) at the shorter wavelengths was also observed in the high-latitude Arctic region 

Fig. 4. Comparisons between in situ measured a(λ) and that derived by QAA and GIOP at
410, 443, 486, and 551 nm, respectively. The solid black line indicates the 1:1 relationship,
and the dashed lines represent the 1:1 line± 20%log10(ā(λ)), with ā(λ) as the mean a(λ) of
SO-All.

Table 1. Statistics of derived a(λ) by both QAA and GIOP at 410, 443, 486, and 551 nm
for SO-GBD, SO-38, and SO-All datasets, respectively

QAA GIOP

ε
(%)

MAPD
(%)

RMSD
(m−1)

Slope R2 ε
(%)

MAPD
(%)

RMSD
(m−1)

Slope R2

SO-GBD

a(410) -21.5 28.0 0.047 0.58 0.68 -20.8 28.1 0.047 0.60 0.67

a(443) -20.8 25.8 0.032 0.70 0.78 -21.8 26.4 0.035 0.72 0.76

a(486) -14.0 17.8 0.015 0.78 0.82 -13.8 18.6 0.020 0.80 0.80

a(551) -6.1 7.0 0.007 0.84 0.78 -5.3 8.0 0.011 0.94 0.62

SO-38

a(410) -30.1 34.7 0.047 0.68 0.46 -36.3 35.5 0.048 0.61 0.51

a(443) -10.5 28.4 0.033 0.86 0.57 -14.7 24.8 0.026 0.81 0.62

a(486) 3.4 25.3 0.024 1.00 0.62 -3.5 19.3 0.016 0.87 0.66

a(551) 0.0 12.5 0.021 1.44 0.37 -2.9 6.4 0.008 0.90 0.46

SO-All

a(410) -27.0 31.1 0.047 0.60 0.58 -28.1 31.5 0.047 0.58 0.60

a(443) -17.5 27.0 0.032 0.76 0.67 -20.0 25.7 0.031 0.75 0.70

a(486) -8.8 21.3 0.019 0.87 0.69 -11.1 18.9 0.018 0.84 0.73

a(551) -4.0 9.5 0.015 1.00 0.39 -4.7 7.3 0.010 0.92 0.55

As shown in Fig. 4, retrieved a(λ) by both GIOP and QAA show good agreement with the
measured a(λ). Overall, the MAPD values of a(λ) from both algorithms ranged from ∼8% at
551 nm to ∼31% at 410 nm, with remotely sensed a(λ) slightly lower than that from the water
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samples (see Table 1 for details). This is equivalent to those reported in the literature [18,19,51],
but better than those reported in coastal regions such as the South China Sea [52]. A larger
deviation of a(λ) at the shorter wavelengths was also observed in the high-latitude Arctic region
[51], and there are a few reasons behind this pattern. First, the statistically good performance
at 551 nm is largely attributed to the fact that aw(λ) is the dominant component of a(λ) at 551
nm for SO-All (aw(551)/a(551) ∼ 0.83). For the blue bands, on the one hand, there is an impact
associated with the empirically estimated Sbp. As both QAA and GIOP assume the same spectral
shape of bbp(λ), uncertainties in Sbp could be propagated to the estimated bbp(λ), and such
impacts would be amplified for bbp(λ) at shorter wavelengths [53,54], which will subsequently
affect the analytical inversion of a(λ) from Rrs(λ). For instance, Sbp for waters in SO is generally
between 1 and 2 [55], if Sbp changes from 1.5 to 1.8 (increased by 20%), derived bbp(410) will be
elevated by 9.3%, in comparison to a 3.8% increasing of derived bbp(486). This is particularly
important as the empirically estimated Sbp from the band ratio of Rrs(λ) could have relatively
large uncertainties [54,55]. On the other hand, field-measured a(λ) could have relatively larger
measurement errors in blue bands than in green bands. For instance, the residual scattering errors
of lab-measured ap(λ) and ag(λ) typically decrease towards longer wavelengths, and the baseline
correction approach may not be able to fully correct these errors in the blue bands [56].

Based on the metrics shown in Table 1, for the respective dataset of SO-GBD and SO-38,
QAA and GIOP have overall similar performance in retrieving a(λ), as indicated by the values of
ε and MAPD. However, between the two algorithms, QAA performed slightly better in SO-GBD
in terms of RMSD and R2, while GIOP predicted overall more accurate a(λ) in SO-38. Across
different datasets, it appears that the uncertainties of a(λ) by both SAAs are relatively smaller
for SO-GBD than for SO-38. For example, larger uncertainties of a(410) by both SAAs were
observed in SO-38, with greater ε values in SO-38 (ε = -30.2% and -37.4% for QAA and GIOP,
respectively) than that in SO-GBD (ε = -21.5% and -20.8%). These results suggest that there
could be slightly larger uncertainties in SO-38 than in SO-GBD, either in the measured Rrs(λ),
a(λ), or both. As discussed in previous studies, the above-water approach does not provide a direct
measurement of Lw(λ), and it is quite challenging to adequately remove the surface-reflected
light when the sea surface is roughened by waves, especially in the Southern Ocean, where
the reflected light consists of glints from sky, sun, and broken-ice [30,57–59]. Nevertheless,
the MAPD and ε values shown in this study were within the range observed in the algorithm
evaluation reported in the literature [19,52].

3.1.2. Evaluation of derived aph(λ) by both SAAs

Following the same evaluation strategy for derived a(λ), we further compared the derived aph(λ)
by GIOP and QAA with the measured aph(λ), with results presented in Fig. 5. Detailed statistical
metrics are given in Table 2.

As shown in Fig. 5, derived aph(λ) by both SAAs agree well with measured values at the
four wavelengths, where nearly all points are well distributed along the 1:1 line, suggesting that
both GIOP and QAA provide satisfying aph(λ) retrievals for the compiled dataset. In general,
GIOP and QAA have quite comparable performances in predicting aph(λ) in SO-All. Statistically,
GIOP slightly outperforms QAA in terms of MAPD, where the MAPD of the GIOP-derived
aph(λ) ranges between 35.8% and 40.9% for 410–486 nm, which is ∼10% smaller than that of
QAA-derived aph(λ). However, QAA could be deemed to perform better in terms of ε and RMSD
(see metrics in Table 2). These metrics are quite consistent with the evaluation results of both
SAAs using measurements from the South China Sea and the IOCCG dataset, where MAPD of
derived aph(λ) in the blue bands ranges from 25% to 60% [19,52]. Relatively larger uncertainties
were observed at aph(551) by both SAAs with MAPD of 123.0% and 56.8% for retrievals from
QAA and GIOP, respectively. This large deviation in derived aph(551) is mainly because aph(551)
values are very small for these waters (aph(551) only accounts for ∼ 8% of a(551)). Thus, the
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3.1.2 Evaluation of derived aph(λ) by both SAAs

Following the same evaluation strategy for derived a(λ), we further compared the derived 
aph(λ) by GIOP and QAA with the measured aph(λ), with results presented in Fig. 5. Detailed 
statistical metrics are given in Table 2.

Fig. 5. Same as Fig. 4, but for derived aph(λ). 

As shown in Fig. 5, derived aph(λ) by both SAAs agree well with measured values at the 
four wavelengths, where nearly all points are well distributed along the 1:1 line, suggesting that 
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Statistically, GIOP slightly outperforms QAA in terms of MAPD, where the MAPD of the 
GIOP-derived aph(λ) ranges between 35.8% and 40.9% for 410 – 486 nm, which is ~10% 
smaller than that of QAA-derived aph(λ). However, QAA could be deemed to perform better in 
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evaluation results of both SAAs using measurements from the South China Sea and the IOCCG 
dataset, where MAPD of derived aph(λ) in the blue bands ranges from 25% to 60% [19, 52]. 
Relatively larger uncertainties were observed at aph(551) by both SAAs with MAPD of 123.0% 
and 56.8% for retrievals from QAA and GIOP, respectively. This large deviation in derived 
aph(551) is mainly because aph(551) values are very small for these waters (aph(551) only 
accounts for ~ 8% of a(551)). Thus, the retrieval of aph(551) is highly sensitive to errors in the 
derived a(551), which is particularly true for QAA-derived aph(λ), where aph(551) is solely 
derived from a(551). In particular, aph(551) derived by QAA could even be negative for waters 
with very low aph(551). For GIOP-derived aph(551), it is an extension of the estimated aph(443) 
based on the pre-assumed aph(λ) spectral shape; thus, it is not highly dependent on the value of 
a(551). For SO-All, QAA yielded a few negative aph(551) retrievals (N = 28), as also observed 
in Arctic and low-latitude waters [51]. Those negative retrievals were removed from further 

Fig. 5. Same as Fig. 4, but for derived aph(λ).

Table 2. Same as Table 1, but for derived aph(λ)

QAA GIOP

ε
(%)

MAPD
(%)

RMSD
(m−1)

Slope R2 ε
(%)

MAPD
(%)

RMSD
(m−1)

Slope R2

SO-GBD

aph(410) -25.3 26.7 0.013 1.00 0.91 -34.3 33.4 0.027 0.98 0.91

aph(443) -23.7 25.7 0.015 0.97 0.91 -25.4 25.8 0.028 0.92 0.90

aph(486) -21.6 24.5 0.008 1.07 0.92 -16.1 20.1 0.019 0.94 0.92

aph(551) -49.0 51.7 0.004 2.09 0.71 -43.3 42.3 0.011 1.13 0.91

SO-38

aph(410) 32.9 67.6 0.034 0.99 0.69 13.2 38.5 0.040 1.06 0.81

aph(443) 56.9 75.0 0.040 0.97 0.72 46.0 55.6 0.049 0.99 0.82

aph(486) 67.4 85.2 0.036 1.02 0.74 53.3 64.7 0.033 0.95 0.83

aph(551) 81.3 181.7 0.025 1.75 0.66 37.4 73.2 0.017 1.28 0.81

SO-All

aph(410) -8.2 45.5 0.025 1.00 0.72 -16.7 35.8 0.033 1.02 0.79

aph(443) -3.2 48.4 0.030 0.94 0.69 -1.4 39.7 0.039 0.93 0.76

aph(486) -1.1 52.5 0.025 1.03 0.70 4.6 40.9 0.027 0.94 0.78

aph(551) -3.9 123.0 0.019 1.37 0.40 -18.8 56.8 0.014 1.15 0.73

retrieval of aph(551) is highly sensitive to errors in the derived a(551), which is particularly true
for QAA-derived aph(λ), where aph(551) is solely derived from a(551). In particular, aph(551)
derived by QAA could even be negative for waters with very low aph(551). For GIOP-derived
aph(551), it is an extension of the estimated aph(443) based on the pre-assumed aph(λ) spectral
shape; thus, it is not highly dependent on the value of a(551). For SO-All, QAA yielded a few
negative aph(551) retrievals (N= 28), as also observed in Arctic and low-latitude waters [51].
Those negative retrievals were removed from further statistical analysis. Consequently, there
were fewer scatter points from QAA-derived aph(551) in Fig. 5(d) compared to those from GIOP.



Research Article Vol. 32, No. 9 / 22 Apr 2024 / Optics Express 15751

However, negative aph(551) retrievals could be easily recovered by linking aph(551) with aph(443)
if needed [19,21].

Between SO-GBD and SO-38, it appears that both SAAs present better agreement in aph(λ) for
SO-GBD. Statistically, retrieved aph(λ) by both SAAs showed overall higher values of ε, MAPD,
RMSD, and slope, and smaller R2 in SO-38 compared to that in SO-GBD. Generally, ε is greater
than 0 for both SAAs for SO-38, indicating that the retrievals from these algorithms are higher
than in situ measurements for SO-38, but the opposite is true for SO-GBD.

3.1.3. Evaluation of derived adg(λ) by both SAAs

A comparison between the derived adg(λ) by both SAAs and in situ adg(λ) is presented in Fig. 6,
with the statistical measures tabulated in Table 3. Compared to the generally quite consistent
retrievals of aph(λ) and a(λ), derived adg(λ) from both SAAs showed large deviations versus in
situ measurements for both SO-38 and SO-GBD. Specifically, at the lower end (adg(443)<∼0.01
m−1), adg(λ) from SAAs are systematically higher, but adg(λ) from SAAs are lower at the higher
end (adg(443)>∼0.03 m−1). As a result, while in situ adg(443) shows a range of ∼0.003 to 0.2
m−1, adg(443) from Rrs(λ) is in the range of ∼0.003 to 0.03 m−1, i.e., a much narrower dynamic
range from remote sensing. In particular, there are a few stations where adg(443) from Rrs(λ)
is ∼10 times lower than in situ-measured adg(443). This result is quite puzzling as very good
agreements are observed for a(λ) and aph(λ) (see Fig. 4 and Fig. 5), especially in situ a(λ) is
simply a sum of aw(λ), aph(λ), and adg(λ), and the dynamic ranges for both of aph(λ) and adg(λ)
in SO-All are similar (i.e., aph(λ) is not dominating a(λ)). In the following, we try to provide a
thorough explanation of this deviation.

12

Fig. 6. Same as Fig. 4, but for derived adg(λ).

Table 3. Same as Table 1, but for derived adg(λ). 
QAA GIOP

ε   
(%)

MAPD 
(%)

RMSD   
(m-1) Slope R2 ε   

(%)
MAPD 

(%)
RMSD   
(m-1) Slope R2

adg(410) -19.1 46.8 0.045 0.07 0.01 -12.7 45.6 0.043 0.17 0.11
adg(443) -18.7 52.2 0.026 0.07 0.01 -16.9 49.0 0.026 0.17 0.12
adg(486) -16.1 57.5 0.013 0.07 0.01 -23.4 51.1 0.013 0.17 0.13

SO-
GBD

adg(551) -29.3 42.6 0.006 -0.05 0.00 -39.9 50.6 0.006 0.17 0.13
adg(410) -65.1 62.1 0.051 0.04 0.00 -61.0 55.7 0.047 0.12 0.04
adg(443) -66.3 59.8 0.030 0.03 0.00 -62.5 56.0 0.029 0.11 0.04
adg(486) -64.9 58.0 0.016 0.05 0.00 -63.6 57.5 0.016 0.10 0.04

SO-
38

adg(551) -61.9 57.8 0.006 0.03 0.00 -66.5 59.9 0.006 0.08 0.03
adg(410) -43.9 53.8 0.048 -0.07 0.01 -37.7 50.2 0.045 0.06 0.01
adg(443) -41.5 55.6 0.028 -0.05 0.00 -41.4 52.1 0.027 0.07 0.02
adg(486) -37.1 57.7 0.014 -0.04 0.00 -44.0 54.0 0.014 0.08 0.02

SO-
All

adg(551) -49.7 50.9 0.006 0.01 0.00 -52.9 54.8 0.006 0.11 0.04

As illustrated clearly with the QAA scheme, while the retrieval of a(λ) is governed by the 
spectral shape of Rrs(λ), the separation of aph(λ) and adg(λ) from a(λ) is determined by a(λ) in 
the blue bands and the spectral shapes of aph(λ) and adg(λ), i.e., the ζ (aph(410)/aph(443)) and ξ 
(adg(410)/adg(443)) parameters. Generally, ζ is within a narrow range, so it does not significantly 
impact the derivation of aph(λ) and adg(λ). For instance, if the value of ζ increases by 10%, the 
QAA-derived adg(443) will be changed by less than ~2%.On the other hand, ξ , equivalent to 
exp(Sdg(443-410)), could change from 1.39 (Sdg = 0.01 nm-1) to 1.93 (Sdg = 0.02 nm-1), and 
higher Sdg value will result in lower adg(443). Therefore, if in situ data are assumed to be 

Fig. 6. Same as Fig. 4, but for derived adg(λ).

As illustrated clearly with the QAA scheme, while the retrieval of a(λ) is governed by the
spectral shape of Rrs(λ), the separation of aph(λ) and adg(λ) from a(λ) is determined by a(λ)
in the blue bands and the spectral shapes of aph(λ) and adg(λ), i.e., the ζ (aph(410)/aph(443))
and ξ (adg(410)/adg(443)) parameters. Generally, ζ is within a narrow range, so it does not
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Table 3. Same as Table 1, but for derived adg(λ)

QAA GIOP

ε
(%)

MAPD
(%)

RMSD
(m−1)

Slope R2 ε
(%)

MAPD
(%)

RMSD
(m−1)

Slope R2

SO-GBD

adg(410) -19.1 46.8 0.045 0.07 0.01 -12.7 45.6 0.043 0.17 0.11

adg(443) -18.7 52.2 0.026 0.07 0.01 -16.9 49.0 0.026 0.17 0.12

adg(486) -16.1 57.5 0.013 0.07 0.01 -23.4 51.1 0.013 0.17 0.13

adg(551) -29.3 42.6 0.006 -0.05 0.00 -39.9 50.6 0.006 0.17 0.13

SO-38

adg(410) -65.1 62.1 0.051 0.04 0.00 -61.0 55.7 0.047 0.12 0.04

adg(443) -66.3 59.8 0.030 0.03 0.00 -62.5 56.0 0.029 0.11 0.04

adg(486) -64.9 58.0 0.016 0.05 0.00 -63.6 57.5 0.016 0.10 0.04

adg(551) -61.9 57.8 0.006 0.03 0.00 -66.5 59.9 0.006 0.08 0.03

SO-All

adg(410) -43.9 53.8 0.048 -0.07 0.01 -37.7 50.2 0.045 0.06 0.01

adg(443) -41.5 55.6 0.028 -0.05 0.00 -41.4 52.1 0.027 0.07 0.02

adg(486) -37.1 57.7 0.014 -0.04 0.00 -44.0 54.0 0.014 0.08 0.02

adg(551) -49.7 50.9 0.006 0.01 0.00 -52.9 54.8 0.006 0.11 0.04

significantly impact the derivation of aph(λ) and adg(λ). For instance, if the value of ζ increases
by 10%, the QAA-derived adg(443) will be changed by less than ∼2%.On the other hand, ξ,
equivalent to exp(Sdg(443-410)), could change from 1.39 (Sdg = 0.01 nm−1) to 1.93 (Sdg = 0.02
nm−1), and higher Sdg value will result in lower adg(443). Therefore, if in situ data are assumed
to be accurate, to balance the higher retrieval at the lower end and lower retrieval at the higher
end, as shown in Fig. 6, it requires a higher Sdg value at the lower end, while a lower Sdg value at
the higher end, rather than a nearly fixed Sdg value (∼0.016 nm−1 for QAA and 0.018 nm−1 for
GIOP) in both SAAs. Such a spatial variation of Sdg is not yet known in the SO and has not been
reported in the literature for other regions. Furthermore, a 100% increase of Sdg from 0.01 to
0.02 nm−1 will only result in adg(410) increasing by ∼39% and adg(551) declining by ∼66%. In
short, errors in estimated ζ and ξ could not be the primary sources to explain the large deviations
observed in derived adg(λ).

This is further supported by evaluations of both SAAs with GBD-Global, where Fig. 7
compares the derived adg(443) with the measured values. For this more inclusive dataset, we
do not observe the “twisted” pattern as shown in Fig. 6. Statistically, the slope and R2 values
between the estimated and measured log(adg(443)) are close to 1.0, which are significantly better
than those of the SO datasets. Moreover, as shown in Fig. 7, the points of the SO dataset generally
overlap with those of the GBD-Global, indicating that the quality of the SO dataset is overall
equivalent to that of the global dataset, or at least no significant regional bias. These comparisons
further indicate that the nearly constant Sdg values used in both SAAs are in general acceptable
for the retrieval of adg.

The “twisted” pattern shown in Fig. 7 is more likely due to the inconsistency between measured
Rrs(λ) and measured adg(λ) in the blue bands, as revealed between measured Rrs(λ) and modeled
Rrs(λ) using measured IOPs (see Fig. 8). For example, for a station where the estimated adg(λ) is
much lower than the measured adg(λ) (the higher end as shown in Fig. 6(b)), Fig. 8(a) shows the
comparison between measured Rrs(λ) and modeled Rrs(λ), where the latter one was simulated
used in situ a(λ) along with an optimized bb(λ) for the best match in the green-red wavelengths
following Eqs. (2) – (3). In this case, the Rrs(410)/Rrs(443) ratio of the modeled Rrs(λ) is ∼0.9,
but this ratio from the measured Rrs(λ) is ∼1.4, i.e., measured Rrs(blue) is significantly higher
than modeled Rrs(blue). Since blue bands play the major role in the retrieval of adg(λ) and
Rrs(λ) is an inverse function of a(λ), this no closure in Rrs(blue) caused adg(λ) derived from
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accurate, to balance the higher retrieval at the lower end and lower retrieval at the higher end, 
as shown in Fig. 6, it requires a higher Sdg value at the lower end, while a lower Sdg value at the 
higher end, rather than a nearly fixed Sdg value (~0.016 nm-1 for QAA and 0.018 nm-1 for GIOP) 
in both SAAs. Such a spatial variation of Sdg is not yet known in the SO and has not been 
reported in the literature for other regions. Furthermore, a 100% increase of Sdg from 0.01 to 
0.02 nm-1 will only result in adg(410) increasing by ~39% and adg(551) declining by ~66%. In 
short, errors in estimated ζ and ξ could not be the primary sources to explain the large deviations 
observed in derived adg(λ). 

This is further supported by evaluations of both SAAs with GBD-Global, where Fig. 
7Error! Reference source not found. Error! Reference source not found.compares the 
derived adg(443) with the measured values. For this more inclusive dataset, we do not observe 
the “twisted” pattern as shown in Fig. 6. Statistically, the slope and R2 values between the 
estimated and measured log(adg(443)) are close to 1.0, which are significantly better than those 
of the SO datasets. Moreover, as shown in Fig. 7, the points of the SO dataset generally overlap 
with those of the GBD-Global, indicating that the quality of the SO dataset is overall equivalent 
to that of the global dataset, or at least no significant regional bias. These comparisons further 
indicate that the nearly constant Sdg values used in both SAAs are in general acceptable for the 
retrieval of adg. 

Fig. 7. Comparisons between measured adg(443) and that derived by (a) GIOP and (b) QAA for measurements from 
GBD-Global (tan circles), SO-38 (purple squares), and SO-GBD (green circles) datasets. The solid black line 

indicates the regression line for all data and the dashed line for the 1:1 relationship. 

The “twisted” pattern shown in Fig. 6 is more likely due to the inconsistency between 
measured Rrs(λ) and measured adg(λ) in the blue bands, as revealed between measured Rrs(λ) and 
modeled Rrs(λ) using measured IOPs (see Fig. 8). For example, for a station where the estimated 
adg(λ) is much lower than the measured adg(λ) (the higher end as shown in Fig. 6b), Fig. 8a 
shows the comparison between measured Rrs(λ) and modeled Rrs(λ), where the latter one was 
simulated used in situ a(λ) along with an optimized bb(λ) for the best match in the green-red 
wavelengths following Eqs. (2) – (3). In this case, the Rrs(410)/Rrs(443) ratio of the modeled 
Rrs(λ) is ~0.9, but this ratio from the measured Rrs(λ) is ~1.4, i.e., measured Rrs(blue) is 
significantly higher than modeled Rrs(blue). Since blue bands play the major role in the retrieval 
of adg(λ) and Rrs(λ) is an inverse function of a(λ), this no closure in Rrs(blue) caused adg(λ) 
derived from the two SAAs much lower than measured adg(λ). Conversely, for the case at the 
lower end of adg(λ) as shown in Fig. 6b, the simulated Rrs(λ) with known a(λ) is much higher 
than the measured Rrs(λ) in the blue bands (see Fig. 8b), i.e., retrieved adg(λ) is higher than 

Fig. 7. Comparisons between measured adg(443) and that derived by (a) GIOP and (b) QAA
for measurements from GBD-Global (tan circles), SO-38 (purple squares), and SO-GBD
(green circles) datasets. The solid black line indicates the regression line for all data and the
dashed line for the 1:1 relationship.

the two SAAs much lower than measured adg(λ). Conversely, for the case at the lower end of
adg(λ) as shown in Fig. 6(b), the simulated Rrs(λ) with known a(λ) is much higher than the
measured Rrs(λ) in the blue bands (see Fig. 8(b)), i.e., retrieved adg(λ) is higher than measured
adg(λ) due to this no closure. Possible sources of errors or uncertainties for the no closure in
Rrs(blue) include insufficient corrections of the residual scattering for measured adg(λ) [33,36]
and incomplete removal of surface-reflected skylight for the measurement of Rrs(λ) [58], where
both could significantly impact adg(λ) or Rrs(λ) in the blue bands. Nevertheless, Fig. 8 suggests
that optical closure between measured IOPs and Rrs(λ) can be reached for the 450–700 nm domain,
which supports the overall good agreement observed between measured and retrieved a(λ) and
aph(λ). Further, due to that adg(λ) is just one component of the total absorption coefficient,
the relative impact of adg(λ) is different between the evaluation of adg(λ) and the evaluation of
a(λ). For instance, the ratio of adg(443) to a(443) is ∼0.42± 0.16 (significantly lower for longer
wavelengths) for SO-All, i.e., any deviations in adg(443) will be about halved for deviations in
a(443), which is consistent with the observations shown in Fig. 4 where overall better agreements
are found in the longer wavelengths.
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In addition, the retrieval of aph(λ) by SAAs is primarily determined by Rrs(λ) at blue-green 
bands (i.e., 443 and 551 nm), while adg(λ) is largely determined by Rrs(λ) at blue bands (i.e., 410 
and 443 nm). Thus, failure or no closure at the blue bands has relatively small impacts on the 
retrieval of aph(λ). In other words, the performance of both SAAs in retrieving adg(λ) is largely 
dependent on the accuracy of measured Rrs(λ) at blue bands, which highlights the importance 
of accurate atmospheric correction for the global estimation of adg(λ). On the other hand, as 
long as ocean color satellites can provide good Rrs(λ) products at 443 and 551 nm, small errors 
in Rrs(410) may not significantly affect the retrieval of aph(λ) by SAAs. 

Fig. 8. Examples of measured Rrs(λ) compared with simulated Rrs(λ) using measured IOPs. (a) for a station with 
measured adg(λ) in the higher end (the black star shown in Fig. 6b), while (b) for a station with measured adg(λ) in the 
lower end (also a black star shown in Fig. 6b). The solid black line represents measured Rrs(λ), while the red dashed 

line for simulated Rrs(λ).

3.2 Evaluation of VIIRS Rrs(λ) and IOPs products 

Since the ultimate objective of the IOPs inverse algorithm is to obtain the spatial-temporal 
distribution of IOPs in the global ocean, it is of great interest to evaluate the derived IOPs by 
both SAAs from satellite measurements. In this effort, VIIRS matchups, with the locations of 
satellite-in situ matchups shown in Fig. 1, were employed for the evaluation. 

3.2.1 Evaluation of VIIRS-measured Rrs(λ)

The robustness of satellite-derived IOPs is, of the first order, determined by the accuracy 
of the atmospherically corrected Rrs(λ) from satellite measurements. Thus, we first evaluated 
the quality of the standard VIIRS Rrs(λ) product for the Southern Ocean. Specifically, VIIRS 

Fig. 8. Examples of measured Rrs(λ) compared with simulated Rrs(λ) using measured IOPs.
(a) for a station with measured adg(λ) in the higher end (the black star shown in Fig. 6(b)),
while (b) for a station with measured adg(λ) in the lower end (also a black star shown in
Fig. 6(b)). The solid black line represents measured Rrs(λ), while the red dashed line for
simulated Rrs(λ).
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In addition, the retrieval of aph(λ) by SAAs is primarily determined by Rrs(λ) at blue-green
bands (i.e., 443 and 551 nm), while adg(λ) is largely determined by Rrs(λ) at blue bands (i.e., 410
and 443 nm). Thus, failure or no closure at the blue bands has relatively small impacts on the
retrieval of aph(λ). In other words, the performance of both SAAs in retrieving adg(λ) is largely
dependent on the accuracy of measured Rrs(λ) at blue bands, which highlights the importance of
accurate atmospheric correction for the global estimation of adg(λ). On the other hand, as long
as ocean color satellites can provide good Rrs(λ) products at 443 and 551 nm, small errors in
Rrs(410) may not significantly affect the retrieval of aph(λ) by SAAs.

3.2. Evaluation of VIIRS Rrs(λ) and IOPs products

Since the ultimate objective of the IOPs inverse algorithm is to obtain the spatial-temporal
distribution of IOPs in the global ocean, it is of great interest to evaluate the derived IOPs by
both SAAs from satellite measurements. In this effort, VIIRS matchups, with the locations of
satellite-in situ matchups shown in Fig. 1, were employed for the evaluation.

3.2.1. Evaluation of VIIRS-measured Rrs(λ)

The robustness of satellite-derived IOPs is, of the first order, determined by the accuracy of
the atmospherically corrected Rrs(λ) from satellite measurements. Thus, we first evaluated the
quality of the standard VIIRS Rrs(λ) product for the Southern Ocean. Specifically, VIIRS Rrs(λ)
at 410, 443, 486, and 551 nm were evaluated against matched field-measured Rrs(λ) from the
SO-38 dataset (N= 24) (see Fig. 9). Note that only good-quality VIIRS-Rrs(λ) (QA score ≥ 0.5)
were employed for the matchup analysis.
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Fig. 9. Comparisons between VIIRS-measured and matched in situ-measured Rrs(λ) at (a) 410 nm, (b) 443 nm, (c) 
486 nm, and (d) 551 nm, respectively. 

VIIRS-measured Rrs(λ) agree overall well with in-situ Rrs(λ) at the four VIIRS bands with 
MAPD values ranging between 19.8% and 23.9%, and there are no systematic deviations 
between VIIRS and in situ Rrs(λ) at these bands (ε in a range of -1.3 – -13.6%). Slightly larger 
uncertainties were observed at the two blue bands in terms of MAPD and R2, which could be 
probably due to uncertainties associated with the atmospheric correction for blue wavelengths 
[60]. Note that the error statistics of VIIRS-measured Rrs(λ) in this effort are overall consistent 
with previous studies on the evaluation of VIIRS Rrs(λ) [61-63], and the cross-sensor validations 
[64-66]. Thus, it is feasible to use the standard VIIRS Rrs(λ) product screened by the QA score 
to generate confident IOPs products in the Southern Ocean.

3.2.2 Evaluation of VIIRS-derived IOPs

Both GIOP and QAA were applied to VIIRS Rrs(λ) and the derived IOPs at 410, 443, and 
486 nm were then compared with the matched field-measured a(λ), adg(λ), and aph(λ) (see Fig. 
10), with detailed statistical metrics provided in Table 4. In general, as found with field-
measured Rrs(λ), both SAAs have quite comparable performance in the retrieval of absorption 
coefficients by different water components. Moreover, uncertainties in VIIRS-derived a(λ) and 
aph(λ) by both SAAs are overall smaller than that of derived adg(λ), which are also consistent 
with results obtained from filed measured Rrs(λ). Statistically, MAPD of derived a(λ) and aph(λ) 
by both SAAs are ~30% and ~40%, respectively, in comparison to MAPD of ~60% for derived 
adg(λ). In particular, aph(λ) from VIIRS by both SAAs explained more than ~70% of the 
variability (R2 > 0.7), providing confidence to use VIIRS-derived aph(λ) for further applications, 

Fig. 9. Comparisons between VIIRS-measured and matched in situ-measured Rrs(λ) at
(a) 410 nm, (b) 443 nm, (c) 486 nm, and (d) 551 nm, respectively.

VIIRS-measured Rrs(λ) agree overall well with in-situ Rrs(λ) at the four VIIRS bands with
MAPD values ranging between 19.8% and 23.9%, and there are no systematic deviations between
VIIRS and in situ Rrs(λ) at these bands (ε in a range of -1.3 – -13.6%). Slightly larger uncertainties
were observed at the two blue bands in terms of MAPD and R2, which could be probably due to
uncertainties associated with the atmospheric correction for blue wavelengths [60]. Note that the
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error statistics of VIIRS-measured Rrs(λ) in this effort are overall consistent with previous studies
on the evaluation of VIIRS Rrs(λ) [61–63], and the cross-sensor validations [64–66]. Thus, it is
feasible to use the standard VIIRS Rrs(λ) product screened by the QA score to generate confident
IOPs products in the Southern Ocean.

3.2.2. Evaluation of VIIRS-derived IOPs

Both GIOP and QAA were applied to VIIRS Rrs(λ) and the derived IOPs at 410, 443, and 486
nm were then compared with the matched field-measured a(λ), adg(λ), and aph(λ) (see Fig. 10),
with detailed statistical metrics provided in Table 4. In general, as found with field-measured
Rrs(λ), both SAAs have quite comparable performance in the retrieval of absorption coefficients
by different water components. Moreover, uncertainties in VIIRS-derived a(λ) and aph(λ) by
both SAAs are overall smaller than that of derived adg(λ), which are also consistent with results
obtained from filed measured Rrs(λ). Statistically, MAPD of derived a(λ) and aph(λ) by both
SAAs are ∼30% and ∼40%, respectively, in comparison to MAPD of ∼60% for derived adg(λ).
In particular, aph(λ) from VIIRS by both SAAs explained more than ∼70% of the variability
(R2 > 0.7), providing confidence to use VIIRS-derived aph(λ) for further applications, such as the
estimation of chlorophyll concentration [48,67] or primary production [7,8]. For adg(λ), however,
there is also a “twisted” pattern between the retrieved and measured values, which is reflected in
the very small slope and R2 values. As indicated in the above section, this pattern is a puzzle,
as it was shown in both SO-38 and SO-GBD, which is probably due to uncertainties in adg(λ)
measurements and the inversion algorithms (i.e., Sdg in GIOP, ζ and ξ in QAA).
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Fig. 10. Evaluation of VIIRS-derived IOPs by GIOP and QAA using the matchups. The upper, middle, and lower 
panels show the results for derived a(λ), aph(λ), and adg(λ), respectively. The orange circles and green triangles 
represent the results of QAA and GIOP, respectively. The solid black line indicates the 1:1 relationship and the 
dashed lines represent the 1:1 line ± 20% log10(IOPs), with IOPs as the mean value of matched in situ IOPs.

Table 4 Statistics of derived a(λ), aph(λ), and adg(λ) from VIIRS matchups by both QAA and GIOP at 410, 443, and 
486 nm, respectively.

QAA GIOP
ε   

(%)
MAPD 

(%)
RMSD   
(m-1) Slope R2 ε   

(%)
MAPD 

(%)
RMSD   
(m-1) Slope R2

a(410) -45.6 46.9 0.053 0.48 0.31 -37.5 41.9 0.049 0.51 0.36 
a(443) -24.9 29.1 0.030 0.61 0.59 -23.2 25.6 0.029 0.58 0.60 
a(486) -11.8 17.4 0.016 0.62 0.60 0.2 15.7 0.014 0.69 0.61 

aph(410) -4.6 32.2 0.035 0.99 0.74 11.6 35.7 0.037 1.05 0.83 
aph(443) 19.4 42.1 0.043 0.91 0.74 23.8 44.6 0.044 1.01 0.84 
aph(486) 30.9 53.0 0.029 0.80 0.68 58.9 88.6 0.052 0.99 0.76 
adg(410) -65.0 63.9 0.048 -0.06 0.00 -60.8 60.3 0.046 0.09 0.02 
adg(443) -67.5 64.6 0.043 -0.04 0.00 -62.3 59.3 0.042 0.04 0.00 
adg(486) -68.8 64.4 0.027 0.06 0.01 -61.5 70.1 0.035 0.17 0.03 

The statistical measures for derived a(λ) and aph(λ) from VIIRS-measured Rrs(λ) are overall 
worse than those from field-measured Rrs(λ), which could be expected because errors in the 

Fig. 10. Evaluation of VIIRS-derived IOPs by GIOP and QAA using the matchups. The
upper, middle, and lower panels show the results for derived a(λ), aph(λ), and adg(λ),
respectively. The orange circles and green triangles represent the results of QAA and GIOP,
respectively. The solid black line indicates the 1:1 relationship and the dashed lines represent
the 1:1 line± 20% log10(IOPs), with IOPs as the mean value of matched in situ IOPs.
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Table 4. Statistics of derived a(λ), aph(λ), and adg(λ) from VIIRS matchups by both QAA and
GIOP at 410, 443, and 486 nm, respectively

QAA GIOP

ε
(%)

MAPD
(%)

RMSD
(m−1)

Slope R2 ε
(%)

MAPD
(%)

RMSD
(m−1)

Slope R2

a(410) -45.6 46.9 0.053 0.48 0.31 -37.5 41.9 0.049 0.51 0.36

a(443) -24.9 29.1 0.030 0.61 0.59 -23.2 25.6 0.029 0.58 0.60

a(486) -11.8 17.4 0.016 0.62 0.60 0.2 15.7 0.014 0.69 0.61

aph(410) -4.6 32.2 0.035 0.99 0.74 11.6 35.7 0.037 1.05 0.83

aph(443) 19.4 42.1 0.043 0.91 0.74 23.8 44.6 0.044 1.01 0.84

aph(486) 30.9 53.0 0.029 0.80 0.68 58.9 88.6 0.052 0.99 0.76

adg(410) -65.0 63.9 0.048 -0.06 0.00 -60.8 60.3 0.046 0.09 0.02

adg(443) -67.5 64.6 0.043 -0.04 0.00 -62.3 59.3 0.042 0.04 0.00

adg(486) -68.8 64.4 0.027 0.06 0.01 -61.5 70.1 0.035 0.17 0.03

The statistical measures for derived a(λ) and aph(λ) from VIIRS-measured Rrs(λ) are overall
worse than those from field-measured Rrs(λ), which could be expected because errors in the
atmospherically-corrected Rrs(λ) will inevitably propagate to the derived IOPs, especially for the
short blue bands [60]. In addition, the mismatch between satellite and field measurements due to
the time and space gap will also introduce deviations between satellite and field measurements
[68–70], especially when we employed a relatively relaxed time window (i.e., 24h) to acquire
satellite-field matchups (see Section 2.2). Nevertheless, from the evaluations of both satellite
and field measurements, we can conclude that QAA and GIOP can derive overall satisfying
retrievals of a(λ) and aph(λ) in the Southern Ocean, with MAPD of derived a(λ) and aph(λ)
being ∼20% and ∼40%, respectively. However, large uncertainties are observed in derived adg(λ)
(MAPD> 60%), and it may require more high-quality field data and regional optimized inversion
algorithms to resolve the puzzle associated with the “twisted” pattern about adg(λ).

4. Conclusion

In this effort, a relatively large bio-optical dataset for the Southern Ocean was compiled to
evaluate the performance of two widely used semi-analytical algorithms (QAA and GIOP) in the
inversion of IOPs. To the best of our knowledge, this is the first systematic evaluation of both
SAAs for waters in SO. Results of this effort show that both QAA and GIOP can provide overall
satisfying retrievals of a(λ) and aph(λ), but there is a “twisted” pattern between the retrieved
and measured adg(λ). While it is always an ongoing effort to validate satellite products and
improve remote sensing algorithms, results here advocate strong efforts to acquire high-quality
field measurements for the evaluation, and improved inversion of adg(λ) in the Southern Ocean.
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