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Abstract: Laser-induced fluorescence (LIF) technology has been widely applied in remote
sensing of aquatic phytoplankton. However, due to the weak fluorescence signal induced by laser
excitation and the significant attenuation of laser in water, profiling detection becomes challenging.
Moreover, it remains difficult to simultaneously retrieve the attenuation coefficient (Kmf

lidar) and
the fluorescence volume scattering function at 180° (βf ) through a single fluorescence lidar. To
address these issues, a novel all-fiber fluorescence oceanic lidar is proposed, characterized by:
1) obtaining subsurface fluorescence profiles using single-photon detection technology, and 2)
introducing the Klett inversion method for fluorescence lidar to simultaneously retrieve Kmf

lidar
and βf . According to theoretical analysis, the maximum relative error of βf for the chlorophyll
concentration ranging from 0.01 mg/m3 to 10 mg/m3 within a water depth of 10 m is less than
20%, while the maximum relative error of Kmf

lidar is less than 10%. Finally, the shipborne single-
photon fluorescence lidar was deployed on the experimental vessel for continuous experiments of
over 9 hours at fixed stations in the offshore area, validating its profiling detection capability.
These results demonstrate the potential of lidar in profiling detection of aquatic phytoplankton,
providing support for studying the dynamic changes and environmental responses of subsurface
phytoplankton.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Marine phytoplankton are the most important primary producers in the ocean, initiating the
flow of energy and cycling of matter in ecosystems, making them a primary focus of research in
biological oceanography. Since the 1970s, a series of ocean color satellites have been launched,
providing valuable phytoplankton products that have played a significant role in biological
oceanography and global change studies, leading to an unprecedented understanding of global
spatiotemporal variations in phytoplankton dynamics. These advancements have deepened
our understanding of biological resource distribution, ecological processes, and phytoplankton
diversity in large-scale marine ecosystems [1]. They have also provided valuable insights into
global marine primary productivity [2], carbon storage capacity, and the mechanisms behind
phytoplankton blooms and harmful algal blooms [3]. However, these measurements are limited to
clear sky, day-light, high sun elevation angles, and are exponentially weighted toward the ocean
surface. Fortunately, lidar has emerged as a stronger candidate due to its greater penetration
depth, which is three times deeper than that of passive ocean color, and its ability to continuously
profile water bodies day and night [4], position it as a crucial complement to passive ocean color
[5].

In the field of lidar for remotely sensing phytoplankton, there are two main techniques: elastic
oceanic lidar and laser-induced fluorescence lidar. Elastic lidar can obtain important parameters
such as the backscattering coefficient (bbp) [6,7] and the light attenuation coefficient (Kd) [8]
by analyzing the 180° volume scattering function (β), lidar attenuation coefficient (Klidar), and
polarization ratio (δ). Parameters related to phytoplankton, such as particulate organic carbon
(POC) [9,10], phytoplankton carbon [11], and chlorophyll concentration (Chl) [12], can be
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derived using empirical formulas based on bbp, Kd, and δ. On the other hand, fluorescence lidar
can directly monitor phytoplankton itself. However, despite the widespread use of fluorescence
lidar systems in applications such as historical monuments [13], insect monitoring [14], and
vegetation [15], there are still limitations in remote sensing monitoring of phytoplankton. This is
mainly due to two reasons: Firstly, the fluorescence induced by laser in phytoplankton occurs
in the red-light spectrum, with a central wavelength of ∼ 685 nm, where the light is heavily
absorbed in water; secondly, the fluorescence backscattered signal is relatively weak compared
to the elastic backscattered signal, so even with a high-power laser, only surface fluorescence
information of the water body can be obtained [16–21]. Fortunately, through the enhancement of
detection sensitivity to the single-photon level, lidar technology has achieved the capability to
profile weak signal energy under the constraints of low laser pulse energy and a small aperture
telescope. Consequently, this technological advancement has found successful applications in
various domains such as atmospheric studies [22], water Raman profiling [23], and standoff
underwater oil detection [24]. Notably, the utilization of single-photon detection technology in
fluorescence lidar has demonstrated its effectiveness in profiling and detecting weak fluorescence
backscattered signals, as evidenced by Refs. [25,26].

However, a challenge remains in inferring two unknown parameters, the fluorescence lidar
attenuation coefficient (Kmf

lidar), and the fluorescence volume scattering function at 180 ° (βf ), from
a single measurement after obtaining the profile data from the fluorescence lidar. To address this
problem, recent research has proposed a method of adding a Raman channel of water alongside
the fluorescence channel. This approach reduces the differential lidar attenuation coefficient
and enables the use of perturbation methods to invert βf [26,27]. In this study, we verified that
the Klett inversion method can be used to simultaneously obtain βf and Kmf

lidar by studying the
power-law relationship between βf and Kmf

lidar in fluorescence lidar. Furthermore, we investigated
that the quantum yield of phytoplankton (Φc) has no effect on the power-law terms of these two
parameters, further validating the feasibility of using the Klett inversion method [28]. Through
theoretical analysis, we confirmed the accuracy of this method for inverting these two parameters.
Additionally, by utilizing the relationship between beam attenuation coefficient (cmf ) and Kmf

lidar
established using a Monte Carlo (MC) simulation, as well as the relationship between βf and
phytoplankton absorption coefficients (aph), the fluorescence lidar can simultaneously obtain
cmf and aph. Note that the cmf , which signifies the rate at which light is absorbed and scattered
in seawater, is crucial for estimating parameters such as POC in the water column. Finally, we
conducted a 9-hour field experiment in an offshore area to verify the effectiveness of this method.

The article is organized as follows. We first introduce the all-fiber single-photon fluorescence
lidar technology, followed by the methodology, including the study of the power-law relationship
between βf and Kmf

lidar. Next, we analyze the error distribution through theoretical analysis.
Finally, we present the results of a field experiment to validate the robustness and feasibility of
the algorithm and lidar system.

2. Single-photon fluorescence lidar

As shown in Fig. 1, the single-photon fluorescence lidar system consists of three subsystems: a
532 nm picosecond pulse laser, a telescope, and a detection and data acquisition system. The
transmitter of this lidar system utilizes a fiber-based picosecond pulse laser based on the master
oscillator power amplifier (MOPA) architecture, with the seed light being a single longitudinal
mode picosecond 1064 nm laser. The seed laser is amplified by a single-mode ytterbium-doped
fiber amplifier (SM-YDFA) and a high-power ytterbium-doped fiber amplifier (HP-YDFA), and
then the lithium borate crystal (LBO) converts the fundamental frequency 1064 nm laser to a
532 nm laser. Additionally, the residual fundamental 1064 nm light is separated using a dichroic
mirror (DM). Finally, the generated 532 nm laser has a pulse width of 501 ps, a repetition
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frequency of 1 MHz, an output average power of 1.0 W, a divergence angle of 0.5 mrad, and a
spectral width of 0.04 nm.

96 repetition frequency of 1 MHz, an output average power of 1.0 W, a divergence angle of 0.5 
97 mrad, and a spectral width of 0.04 nm.
98 The laser incident on the water interacts with the phytoplankton in the water, inducing 
99 fluorescence. Among them, the induced fluorescence backscattering signal is coupled into a 

100 105 μm multimode fiber (MMF) through a numerical aperture (NA) 0.22. This coupling is 
101 achieved using an achromatic lens (Thorlabs RC12FC) with a focal length of 50.8 mm and an 
102 effective aperture of 22.4 mm, resulting in a narrow field of view of approximately 2.1 mrad. 
103 As shown in Fig. 1, the lidar system adopts a design with separate transmitter and receiver, with 
104 a distance of approximately 30 mm between the laser transmitter and the receiving lens, and 
105 the geometric overlap factor reaches 100% at a distance of about 7 m. In this work, the lidar is 
106 deployed on a ship with a distance of approximately 10 m from the water surface, so the 
107 geometric overlap factor of the water backscattered signal is 100% in the subsequent data 
108 inversion process.

109
110 Fig. 1. (a) Optical layout of the single-photon fluorescence lidar. SM-YDFA: single-mode 
111 ytterbium-doped fiber amplifier; HP-YDFA: high-power ytterbium-doped fiber amplifier; L: 
112 lens; LBO: lithium borate; DM: dichroic mirror; MMF: multimode fiber; SPCM: single photon 
113 counting module; Detection & AQ: detection and data acquisition system; TDC: time-to-digital 
114 converter; FG: function generator; PC: personal computer. (b) Internal photo of the single-
115 photon fluorescence lidar. (c) Photo of the single-photon fluorescence lidar.

116 To isolate the strong 532 nm elastic backscattered signal and extract the nearby 685 nm 
117 fluorescence signal, three fluorescence filter slices with a central wavelength of 685 nm and a 
118 bandwidth (full width at half maximum) of 10 nm are serially connected in front of the optical 
119 telescope. These filters provide a total isolation of 150 dB for the 532 nm elastic signal, and the 
120 total transmittance of the three filter slices is greater than 50%. It should be noted that due to 
121 the wide spectral width of the laser-induced phytoplankton fluorescence, a larger bandwidth 
122 can enhance the reception of fluorescence backscattering signals and improve signal-to-noise 
123 ratio (SNR). However, due to the use of a highly sensitive single-photon detector and 
124 background noise interference (such as signal lights on the research vessel and moonlight), a 
125 wider bandwidth results in stronger background noise. A wider bandwidth can also lead to 
126 interference from fluorescence signals induced by other substances (such as oil). Therefore, a 
127 bandwidth of 10 nm was chosen in this study. When the background noise on the platform is 
128 low and the fluorescence signals induced by negligible other substances, it is possible to 
129 consider using fluorescence filters with a larger bandwidth.
130 Finally, the extracted fluorescence backscattering signal is detected using a free-running 
131 single photon counting module (SPCM: Excelitas SPCM-AQRH-15), continuously counting 

Fig. 1. (a) Optical layout of the single-photon fluorescence lidar. SM-YDFA: single-mode
ytterbium-doped fiber amplifier; HP-YDFA: high-power ytterbium-doped fiber amplifier;
L: lens; LBO: lithium borate; DM: dichroic mirror; MMF: multimode fiber; SPCM: single
photon counting module; Detection & AQ: detection and data acquisition system; TDC:
time-to-digital converter; FG: function generator; PC: personal computer. (b) Internal photo
of the single-photon fluorescence lidar. (c) Photo of the single-photon fluorescence lidar.

The laser incident on the water interacts with the phytoplankton in the water, inducing
fluorescence. Among them, the induced fluorescence backscattering signal is coupled into a
105 µm multimode fiber (MMF) through a numerical aperture (NA) 0.22. This coupling is
achieved using an achromatic lens (Thorlabs RC12FC) with a focal length of 50.8 mm and an
effective aperture of 22.4 mm, resulting in a narrow field of view of approximately 2.1 mrad. As
shown in Fig. 1, the lidar system adopts a design with separate transmitter and receiver, with
a distance of approximately 30 mm between the laser transmitter and the receiving lens, and
the geometric overlap factor reaches 100% at a distance of about 7 m. In this work, the lidar is
deployed on a ship with a distance of approximately 10 m from the water surface, so the geometric
overlap factor of the water backscattered signal is 100% in the subsequent data inversion process.

To isolate the strong 532 nm elastic backscattered signal and extract the nearby 685 nm
fluorescence signal, three fluorescence filter slices with a central wavelength of 685 nm and a
bandwidth (full width at half maximum) of 10 nm are serially connected in front of the optical
telescope. These filters provide a total isolation of 150 dB for the 532 nm elastic signal, and the
total transmittance of the three filter slices is greater than 50%. It should be noted that due to
the wide spectral width of the laser-induced phytoplankton fluorescence, a larger bandwidth can
enhance the reception of fluorescence backscattering signals and improve signal-to-noise ratio
(SNR). However, due to the use of a highly sensitive single-photon detector and background
noise interference (such as signal lights on the research vessel and moonlight), a wider bandwidth
results in stronger background noise. A wider bandwidth can also lead to interference from
fluorescence signals induced by other substances (such as oil). Therefore, a bandwidth of 10 nm
was chosen in this study. When the background noise on the platform is low and the fluorescence
signals induced by negligible other substances, it is possible to consider using fluorescence filters
with a larger bandwidth.

Finally, the extracted fluorescence backscattering signal is detected using a free-running single
photon counting module (SPCM: Excelitas SPCM-AQRH-15), continuously counting individual
photons without being constrained by specific time intervals or synchronization to external
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signals. The detection efficiency of the SPCM is 62% at 685 nm, with a dark count of 50 counts
per second (cps). In addition, a self-developed time-to-digital converter (TDC) with a resolution
of 500 ps is used to accurately capture the time information of the fluorescence backscattered
photons [25]. The electronic module employs a self-built function generator (FG) implemented
on a field-programmable gate array (FPGA) to generate precise control signals for the laser and
TDC.

3. Methodology

3.1. Formula derivation

The backscatter profile of the fluorescence lidar through a fluorescence filter can be expressed as
the convolution (⊗) of the backscatter profile [29] and the filter, as follows:

Pf (λf ,σf , z) =
Bf · Qf (z)
(n · H + z)2

· βf (λf , z) ⊗ g(λf ,σf ) · exp
{︃
−

∫ z

0
[Km

lidar(y) + Kf
lidar(y)]dy

}︃
, (1)

where Pf represents the water fluorescence backscattered signal at a depth of z, given an emitted
laser wavelength (λL) of 532 nm and a fluorescence wavelength (λf ) of 685 nm; H represents
the height at which the lidar is positioned above the water surface, which is 10 m in this case;
n represents the refractive index indicator of the water; Bf is a constant that includes lidar
parameters independent of depth, such as the output laser power, quantum efficiency of the
detector, and transmittance of the optical transceiver system; Qf (z) represents geometric overlap
factor; βf represents the volume scattering function at 180° for chlorophyll fluorescence at
a wavelength of 685 nm; g(λf , σf ) represents the transmittance function of a custom-made
fluorescence filter, which can be approximated as a Gaussian function with a center wavelength
of λf and a bandwidth of σf ; Km

lidar represents the attenuation coefficient of the lidar at 532 nm;
Kf

lidar represents the attenuation coefficient of the lidar at 685 nm.
Taking the natural logarithm of the backscattered signal squared depth yields:

S(λf ,σf , z) = ln[Pf (λf ,σf , z) · (n · H + z)2], (2)

S(λf ,σf , z0) = ln[Pf (λf ,σf , z0) · (n · H + z0)
2], (3)

where z0 is the depth of the first point of signal. By making the difference between Eq. (2) and
Eq. (3), we can get:

S(λf ,σf , z) − S(λf ,σf , z0) = ln

[︄
Pf (λf ,σf , z) · (n · H + z)2

Pf (λf ,σf , z0) · (n · H + z0)
2

]︄
= ln

[︃
βf (λf , z) ⊗ g(λf ,σf )

βf (λf , z0) ⊗ g(λf ,σf )

]︃
−

∫ z

z0

Kmf
lidar(y)dy

, (4)

where Kmf
lidar (z)=Km

lidar (z)+ Kf
lidar (z).

Theoretical analysis suggests that when the dβ/dz<1.6 ·10−9, the retrieved error of βf is within
20%, and the Klett method is not required. Then, Kmf

lidar (z) can be determined by solving Eq. (4)
using the slope method [30]:

Kmf
lidar(z) = −

dS(λf ,σf , z)
dz

= −
d{ln[Pf (λf ,σf , z) · (n · H + z)2]}

dz
, (5)

However, if the water is inhomogeneous (dβ/dz ≥ 1.6 · 10−9), it becomes necessary to assume
regarding the relationship between βf and Kmf

lidar in order to solve for the unknown quantity in



Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 10208

Eq. (4). After analysis, which will be further elaborated, βf and Kmf
lidar approximately satisfy the

following power law relationship:

βf (λf , z) = const · [Kmf
lidar(z)]

k, (6)

where const is a constant and k is the power exponent. After that, by differentiating Eq. (4) we
can get:

dS(λf ,σf , z)
dz

=
1

βf (λf , z)
·

d[βf (λf , z)]
dz

− Kmf
lidar(z)

=
k

Kmf
lidar(z)

·
d[Kmf

lidar(z)]
dz

− Kmf
lidar(z)

. (7)

The above nonlinear ordinary differential equation has a basic structure, namely Bernoulli
equation. Based on the Klett method [28], the inversion result of Kmf

lidar can be concluded as:

Kmf
lidar(z) =

2 · exp{[S(λf ,σf , z) − S(λf ,σf , zm)]/k}[︃
Kmf

lidar(zm)

2

]︃−1
+ 2

k

∫ zm

z exp{[S(λf ,σf , y) − S(λf ,σf , zm)]/k}dy
, (8)

After obtaining Kmf
lidar, βf can be obtained based on Eq. (6). To provide a clearer representation

of the inversion process, a flowchart is illustrated in Fig. 2.

3.2. Relationship between βf andKmf
lidar

Based on the above analysis, it is evident that the Klett method requires a power-law relationship
between βf and Kmf

lidar. Firstly, βf can be expressed as follows [31]:

βf (λf , Chl) = aph(λL, Chl)Φc
λL

λf
hc(λf )

1
4π

, (9)

where Φc is the quantum yield of chlorophyll fluorescence, which is affected by factors such as
light, nutrients and temperature; hc is the normalized emission wavelength function of chlorophyll
fluorescence, which can be expressed using a model [32], aph(λL, Chl) is the chlorophyll
fluorescence absorption coefficient at an excitation wavelength of 532 nm, the theoretical model
can be used to calculate it as follows [33]:

aph(λL, Chl) = 0.0113 · Chl0.871. (10)

According to Eq. (9,10), the relationship between βf and Chl can be established.
The inherent optical properties (IOPs) of the water are modeled as follows:

a(λ, Chl) = aw(λ) + 0.06A(λ) · Chl0.65 + ay(λ, Chl), (11)

b(λ, Chl) = bw(λ) + bp(λ, Chl), (12)

c(λ, Chl) = a(λ, Chl) + b(λ, Chl), (13)

where a, b and c are absorption coefficient, scattering coefficient and beam attenuation coefficient
respectively, aw is the absorption coefficient of pure seawater [34], A is the normalized spectral
absorption values of phytoplankton pigments [34], ay is the absorption coefficient of yellow
substance [35], bw is the scattering coefficient of pure water [36]; bp is the particulate scattering
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159 where z0 is the depth of the first point of signal. By making the difference between Eq. (2) and 
160 Eq. (3), we can get:

161

0

2

0 2
0 0

0

( , , ) ( )
( , , ) ( , , ) ln

( , , ) ( )

( , ) ( , )
ln ( )

( , ) ( , )

f f f
f f f f

f f f

zf f f f mf
lidarz

f f f f

P z n H z
S z S z

P z n H z

z g
K y dy

z g

 
   

 

   
   

   
   

    
 

  
  


,          (4)

162 where 𝐾𝑚𝑓
𝑙𝑖𝑑𝑎𝑟(z) = 𝐾𝑚

𝑙𝑖𝑑𝑎𝑟(z)+ 𝐾𝑓
𝑙𝑖𝑑𝑎𝑟(z).
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164 Fig. 2. Flowchart of the inversion process.
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Fig. 2. Flowchart of the inversion process.

coefficient [37] and the details are shown in Table 2. cmf is the sum of beam attenuation coefficient
at 532 nm and 685 nm, that is:

cmf (Chl) = c(λm, Chl) + c(λf , Chl) (14)

Therefore, the relationship between cmf and Chl can be established based on Eq. (11–14). Then,
the relationship between βf and cmf can be established through Chl. However, it is necessary to
establish the relationship between cmf and Kmf

lidar first before establishing the relationship between
βf and Kmf

lidar.
Subsequently, the relationship between Kmf

lidar and the IOPs of the water is established. Due to
the fact that this relationship is influenced by both the hardware parameters of the lidar system
and the IOPs of the water, determining this relationship requires the use of the MC simulation.
MC simulation is widely recognized as a crucial tool for simulating complex processes and has
been extensively employed in simulating the backscattered signal of oceanic lidars [38]. In this
study, a brief introduction to MC-based simulation of backscattered signals is provided without
delving into specific details. For a more comprehensive understanding of the simulation process,
it is recommended to refer to a recent article [39].
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The MC method is used to simulate the random trajectories of photon propagation in a specific
medium. Both the step and direction are determined by the scattering and absorption properties
of the medium. The step refers to the distance or interval traveled during each random sampling
iteration, while the direction denotes the path taken by the photon. The MC method ignores
the photon’s wave properties, and the propagation of laser signal in the water is acted as the
combination of many photon trajectories. The attenuation of laser energy is determined by three
factors: the absorption of medium, the scattering probability, and the probability distribution of
the steps. Thus, the MC method is widely utilized to simulate the photon propagation trajectories
and monitor the energy changes. To enhance the utilization efficiency of individual photons, a
semi-analytic MC model is applied [39]. This model allows for the calculation of the expected
energy value and position recording of each photon within the FOV of the telescope. Note
that the key parameters of the fluorescence lidar have been listed in Table 1, and the hardware
parameters used during the MC simulation process match those of the fluorescence lidar.

Table 1. Key parameters of the fluorescence lidar system

Parameter Value

Pulsed laser Wavelength 532 nm

Pulse duration 501 ps

Average power 1 W

Pulse repetition rate 1 MHz

Radius of laser beam 2 mm

Divergence angle 0.5 mrad

Receiver Focal length 50.8 mm

Mode-field diameter of the MMF 105 µm

Effective aperture 22.4 mm

Bandwidth of the fluorescence filter 10 nm

Center of the fluorescence filter 685 nm

SPCM Detection efficiency at 685 nm 62%

Dark count rate 50 cps

Table 2. The bio-optical models used in the MC simulation

Empirical relationships Applicable range of Chl References⎧⎪⎪⎨⎪⎪⎩
ay(λ) = ay(440)exp[−0.014(λ − 440)]

ay(440) = 0.2[aw(440) + 0.06A(440) · Chl0.65]
0.02-20 mg/m3 [35]

bw(λ) = 0.0046(450/λ)4.32 - [36]

bR(λ) = 2.6 × 10−4(488/λ)5.5 - [37]

bp(λ) = 0.3Chl0.62(550/λ) 0.03-30 mg/m3 [37]

In the simulations, a widely used Petzold phase function was adopted [40]. With a sampling
length of 10 m and a sampling interval of 0.1 m, a total of 100 sampling points can be obtained.
As shown in Fig. 3(a), the simulated fluorescence backscattering signal decays exponentially.
To mitigate the effects of multiple scattering in the lidar backscatter signal, a small-aperture
telescope with a narrow FOV is employed.

As shown in Fig. 3(a), when the Chl is low, the percentage of multiple scattering (PMS), which
includes secondary scattering and higher-order scattering, is low. Consequently, the lidar signal is
predominantly governed by single scattering. However, as the Chl increases, the PMS increases.
Afterwards, Kmf

lidar at different Chl is obtained by selecting the original signal with a PMS less
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 1 

Fig. 3. (a) Simulate fluorescence backscattered signals (lines) and the percentage of multiple
scattering (PMS) in the signals (scatters) for Chl ranging from 0.01 to 10 mg/m3 using
the Petzold phase function [40]. (b) Relationships between Kmf

lidar and cmf , where scatter
represents the results of MC simulations, and the solid line represents the fitted results.

than 100% and using the slope method [23]. The relationship between Kmf
lidar and cmf is presented

in Fig. 3(b). Subsequently, a second-order polynomial is used to fit the relationship between Kmf
lidar

and cmf . The fitting results are shown in Fig. 3(b), with a high degree of correlation indicated by
the R-Square (R2) value of 0.99. From Fig. 3(b), it can be observed that when Chl is low, Kmf

lidar is
approximately equal to cmf . As Chl increases, PMS increases, leading to an increasing difference
between Kmf

lidar and cmf . The conclusion is consistent with the finding that Kmf
lidar tends to closely

align with the cmf when the lidar backscattered signal is predominantly governed by quasi-single
scattering, whereas the lidar attenuation coefficient is given by the Kd when the backscattered
signal is primarily influenced by multi-scattering [41].

Subsequently, the relationship between cmf (comprising the beam attenuation coefficient at
532 nm and 685 nm) and Kmf

lidar is established through the MC simulation. This relationship is
depicted in Fig. 3(b) and can be expressed as follows:

cmf = 0.31 · (Kmf
lidar)

2 + 0.71 · Kmf
lidar + 0.04. (15)

Existing models [31,34–36] were utilized to establish separate relationships between βf and
Chl, as well as between cmf and Chl. By considering Chl as the pivot, the relationship between 1 

 2 

Fig. 4. Relationship between βf and Kmf
lidar for Φc values of 0.01, 0.03, 0.05, and 0.07.

Among them, the solid line represents the relationship given by the empirical model, and the
dashed line is the fitted result.
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βf and cmf was subsequently determined. Subsequently, based on Eq. (15), the relationship
between βf and Kmf

lidar can be established. According to the specified range (∼0.005-0.07) of Φc

[42], Fig. 4 depicts the relationship between βf and Kmf
lidar for different values of Φc (0.01, 0.03,

0.05, and 0.07), with the Chl ranging from 0.01 mg/m3 to 10 mg/m3. Notably, the power index k
remains constant regardless of Φc. While const varies with Φc, it has been established in Section
3 that the value of const does not affect the inversion result. Hence, the Klett inversion algorithm
can be applied, utilizing the power law relationship between βf and Kmf

lidar, where k is determined
as 2.97.

4. Inversion error analysis

In this section, the errors caused by the inversion algorithm will be analyzed. It should be noted
that this analysis exclusively focuses on the errors originating from the inversion algorithm, while
excluding errors that arise from the SNR of the lidar backscattered signal. Four typical vertical
distribution models of Chl will be used for analysis, representing the waters of North Benguela
[43], North Western Shelf [44], surrounding Europe [45], and acidic lakes [46], respectively. The
vertical distribution profiles of these four chlorophyll profiles are shown in Fig. 5.

To calculate the errors, firstly, it is needed to reconstruct the fluorescence backscattered signal.
Based on the four vertical distribution models of Chl in Fig. 5, utilizing the bio-optical models
of Eqs. (11–13), the value of cmf is calculated. Then referring to the relationship between cmf

and Kmf
lidar of Eq. (15), the vertical profile of Kmf

lidar can be obtained. In addition, according to the
vertical distribution models of Chl and the empirical relationship of βf in Eq. (9), the vertical
profile of βf can be acquired. Finally, based on the reconstruction of Kmf

lidar and βf , along with the
assumption of Bf , Pf can be reconstructed based on Eq. (1).

After obtaining the reconstructed signal, the inversion is performed using the iterative method
mentioned in Section 3, the initial value of the iterative method is calculated by using the slope
method on the farthest end of the signal. According to the assumed relationship in Eq. (6),
combined with Fig. 4, the inversion result of Kmf

lidar and βf can be obtained. By utilizing the
relationship between cmf and Kmf

lidar shown in Eq. (15), the vertical distribution profile of cmf can
be obtained. Finally, based on the bio-optical models of Eq. (11–13), the Chl vertical profile can
be further inverted. After obtaining the inversion values, the respective deviations from the true
values, denoted as Errorc (error for cmf ), Errorβ (error for βf ) and ErrorChl (error for Chl) can be
calculated as follows:

Errorc = |[cmf (z) − cgt
mf (z)]/c

gt
mf (z)| × 100%, (16)

Errorβ = |[βf (z) − βgt
f (z)]/β

gt
f (z)| × 100%, (17)

ErrorChl = |[Chl(z) − Chlgt(z)]/Chlgt(z)| × 100%, (18)

where, cgt
mf

, β
gt
f and Chlgt are the true value of cmf , βf and Chl respectively.

Based on the aforementioned analysis, the Errorc, Errorβ and ErrorChl for the four different
Chl distributions are shown in Fig. 5. As shown in Fig. 5(a) and Fig. 5(b), When Chl demonstrates
a linear increase or decrease with a determined slope, Errorc, Errorβ and ErrorChl are relatively
small, which are all below 10%. In the other two scenarios depicted in Fig. 5(c) and Fig. 5(d),
where Chl exhibits a layered distribution ranging from 0.01 to 10 mg/ m3, Errorc, and ErrorChl
are both below 15%, and although Errorβ is influenced by the assumed relationship, it remains
below 20%.
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𝑚𝑓

 , 𝛽𝑔𝑡
𝑓  and Chlgt are the true value of cmf, βf and Chl respectively.
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303 Fig. 5. Inversion errors under different vertical distributions of Chl. The sub-figures (a)-(d) show 
304 different Chl vertical distribution: (a) linearly increasing [43], (b) linearly decreasing [44], (c) 
305 unimodal with a single Gaussian distribution [45], and (d) bimodal with two Gaussian 
306 distribution [46]. Each sub-figure comprises three panels. The first panel displays the 
307 corresponding Chl vertical distribution; the second panel shows the distribution of Errorc and 
308 Errorβ; while the third panel displays the distribution of ErrorChl. 

309 Based on the aforementioned analysis, the Errorc, Errorβ and ErrorChl for the four different 
310 Chl distributions are shown in Fig. 5. As shown in Fig. 5(a) and Fig. 5(b), When Chl 
311 demonstrates a linear increase or decrease with a determined slope, Errorc, Errorβ and ErrorChl 
312 are relatively small, which are all below 10%. In the other two scenarios depicted in Fig. 5(c) 

Fig. 5. Inversion errors under different vertical distributions of Chl. The sub-figures (a)-(d)
show different Chl vertical distribution: (a) linearly increasing [43], (b) linearly decreasing
[44], (c) unimodal with a single Gaussian distribution [45], and (d) bimodal with two
Gaussian distribution [46]. Each sub-figure comprises three panels. The first panel displays
the corresponding Chl vertical distribution; the second panel shows the distribution of Errorc
and Errorβ ; while the third panel displays the distribution of ErrorChl.
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5. Field experiment

To validate the effectiveness of the algorithm, the laser-induced fluorescence lidar was mounted
on the R/V Experiment 3 of the Chinese Academy of Sciences. From October 10, 2023, 21:25 to
October 11, 6:30, a continuous field experiment of over 9 hours was conducted at the location
marked by the red pentagon in Fig. 6(a). The lidar was installed on the deck of the research
vessel, positioned approximately 10 m above the water surface, and it emitted laser beams into
the water at a zenith angle of 10 degrees.

313 and Fig. 5(d), where Chl exhibits a layered distribution ranging from 0.01 to 10 mg/ m3, Errorc, 
314 and ErrorChl are both below 15%, and although Errorβ is influenced by the assumed relationship, 
315 it remains below 20%.
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317 To validate the effectiveness of the algorithm, the laser-induced fluorescence lidar was mounted 
318 on the R/V Experiment 3 of the Chinese Academy of Sciences. From October 10, 2023, 21:25 
319 to October 11, 6:30, a continuous field experiment of over 9 hours was conducted at the location 
320 marked by the red pentagon in Fig. 6(a). The lidar was installed on the deck of the research 
321 vessel, positioned approximately 10 m above the water surface, and it emitted laser beams into 
322 the water at a zenith angle of 10 degrees.
323 During the experiment, the fluorescence lidar accumulated photon counts every 40 s at 
324 depth intervals of 0.11 m. The spatial-temporal distribution of the logarithm of fluorescence 
325 photon count, ln(Pf), with a dynamic measurement range of approximately 30 dB, is depicted 
326 in Fig. 7(a), where the actual depth positions of photons were adjusted based on a zenith angle 
327 of 10 degrees. For the parameter inversion process, the initial value of 𝐾𝑚𝑓

𝑙𝑖𝑑𝑎𝑟 was obtained 
328 using the slope method, followed by the inversion of βf and 𝐾𝑚𝑓

𝑙𝑖𝑑𝑎𝑟 using the Klett method. The 
329 cmf profile was derived from the inverted 𝐾𝑚𝑓

𝑙𝑖𝑑𝑎𝑟and the relationship established between cmf and  
330 𝐾𝑚𝑓

𝑙𝑖𝑑𝑎𝑟 from Eq. (15) using the MC method. The cmf and βf profiles are shown in Fig. 7(b) and 
331 7(c), respectively. Lastly, based on the biogeochemical model presented in Table 2, Chl was 
332 obtained through the inversion of cmf profile data, as shown in Fig. 7(d).
333 The results in Fig. 7(d) indicate that the Chl in the area mostly remains below 1 mg/m3, 
334 which is consistent with the results shown in Fig. 6(a) obtained from water color satellite remote 
335 sensing. Furthermore, from Fig. 7(b-d), it can be observed that the Chl in the 0-2 m depth range 
336 is generally higher than that in the 2-4 m depth range. The typical vertical distribution of 
337 chlorophyll is shown in Fig. 7 (e-f), with the respective observation times being October 10 at 
338 22:00, October 11 at 00:10, and October 11 at 03:00. Additionally, a low Chl is observed 
339 between 23:00 and 02:00, as indicated by the values at a depth of 1 m in the figure. This may 
340 be related to the feeding behavior of zooplankton during that period, although further 
341 investigation is needed to determine the exact reasons. Overall, laser-induced fluorescence lidar 
342 provides a new approach for subsurface phytoplankton detection, enabling the observation of 
343 dynamic changes in aquatic phytoplankton with high temporal and depth resolution.

344
345 Fig. 6. (a) The location of the lidar overlaid on a monthly averaged Chl map from an ocean color 
346 satellite. (b) Photograph of the lidar in operation. Chl data sourced from NASA MODIS standard 
347 monthly composite for October 2023.

Fig. 6. (a) The location of the lidar overlaid on a monthly averaged Chl map from an ocean
color satellite. (b) Photograph of the lidar in operation. Chl data sourced from NASA
MODIS standard monthly composite for October 2023.

During the experiment, the fluorescence lidar accumulated photon counts every 40 s at depth
intervals of 0.11 m. The spatial-temporal distribution of the logarithm of fluorescence photon
count, ln(Pf ), with a dynamic measurement range of approximately 30 dB, is depicted in Fig. 7(a),
where the actual depth positions of photons were adjusted based on a zenith angle of 10 degrees.
For the parameter inversion process, the initial value of Kmf

lidar was obtained using the slope
method, followed by the inversion of βf and Kmf

lidar using the Klett method. The cmf profile
was derived from the inverted Kmf

lidar and the relationship established between cmf and Kmf
lidar

from Eq. (15) using the MC method. The cmf and βf profiles are shown in Fig. 7(b) and 7(c),
respectively. Lastly, based on the biogeochemical model presented in Table 2, Chl was obtained
through the inversion of cmf profile data, as shown in Fig. 7(d).

The results in Fig. 7(d) indicate that the Chl in the area mostly remains below 1 mg/m3, which
is consistent with the results shown in Fig. 6(a) obtained from water color satellite remote sensing.
Furthermore, from Fig. 7(b-d), it can be observed that the Chl in the 0-2 m depth range is generally
higher than that in the 2-4 m depth range. The typical vertical distribution of chlorophyll is
shown in Fig. 7(e-f), with the respective observation times being October 10 at 22:00, October
11 at 00:10, and October 11 at 03:00. Additionally, a low Chl is observed between 23:00 and
02:00, as indicated by the values at a depth of 1 m in the figure. This may be related to the
feeding behavior of zooplankton during that period, although further investigation is needed to
determine the exact reasons. Overall, laser-induced fluorescence lidar provides a new approach
for subsurface phytoplankton detection, enabling the observation of dynamic changes in aquatic
phytoplankton with high temporal and depth resolution.
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348
349 Fig. 7. Field experiment results: (a) measured fluorescence backscattered signal presented as the 
350 natural logarithm of photon count, i.e., ln(Pf), accompanied by lidar-inverted (b) cmf, (c) βf, and 
351 (d) Chl, each including their respective time series at a depth of 1 m. Typical Chl vertical 
352 distributions at (e) October 10, 22:30, (f) October 11, 00:10, (g) October 11, 03:00.

Fig. 7. Field experiment results: (a) measured fluorescence backscattered signal presented
as the natural logarithm of photon count, i.e., ln(Pf ), accompanied by lidar-inverted (b) cmf ,
(c) βf , and (d) Chl, each including their respective time series at a depth of 1 m. Typical Chl
vertical distributions at (e) October 10, 22:30, (f) October 11, 00:10, (g) October 11, 03:00.
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6. Conclusion

In this study, we propose and demonstrate an algorithm that can accurately retrieve the profiles of
βf and Kmf

lidar from fluorescence oceanic lidar simultaneously. To the best of our knowledge, this
is the first time that βf and Kmf

lidar profiles have been retrieved simultaneously using single-photon
fluorescence lidar. This provides a pathway to improve the capability of fluorescence lidar for
phytoplankton detection by inverting aph based on βf and retrieving cmf based on Kmf

lidar.
In terms of hardware, the adoption of single-photon detection technology enables fluorescence

lidar to obtain profiles of phytoplankton fluorescence signals, laying the foundation for simul-
taneous retrieval of βf and Kmf

lidar. In terms of algorithms, theoretical analysis verifies that the
relationship between βf and Kmf

lidar in our single-photon fluorescence lidar can be expressed by a
power-law exponent, satisfying the conditions for using the Klett algorithm. In the process of
establishing the relationship between βf and Kmf

lidar, the shipborne single-photon fluorescence
lidar adopts a small beam laser and a small-aperture telescope, which tends to make Kmf

lidar serve
as the cmf of IOPs, facilitating the establishment of the relationship between βf and Kmf

lidar. The
feasibility and effectiveness of the algorithm in fluorescence oceanic lidar are demonstrated
through theoretical analysis and field experiments.

In future work, we will further validate the applicability of the relationship between βf and
Kmf

lidar under case 2 water conditions, as it was initially established based on case 1 water conditions.
Additionally, a comprehensive comparison between fluorescence lidar measurements and in-situ
data, as well as ocean color remote sensing results, will be conducted to optimize the algorithm.
Regarding the hardware aspect of the lidar system, the broad fluorescence spectrum and the wide
bandwidth of the fluorescence filter (10 nm) pose a challenge when employing single-photon
detection, as they make the system susceptible to interference from solar radiation noise. To
address this issue, the plan will be to integrate the miniaturized fluorescence lidar into underwater
platforms, as demonstrated in our previous research [24,47,48]. This deployment will help
eliminate interference arising from the air-sea interface and mitigate the impact of solar radiation
noise on our detection capabilities. We believe that this work will be an important complement
to color remote sensing of phytoplankton, deepening our understanding of the spatiotemporal
distribution and dynamic changes of marine phytoplankton.
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