Ecological Informatics 92 (2025) 103470

ECOLOGICAL
INFORMATICS

Contents lists available at ScienceDirect

Ecological Informatics

; 9.
ELSEVIER

journal homepage: www.elsevier.com/locate/ecolinf

Consistent nutrient mapping from Sentinel-2 and Sentinel-3 in nearshore
waters: A case study in Xiamen Bay

a,b,c,*

Wendian Lai“, Xiaolong Yu , Nengwang Chen ¢, Caiyun Zhang®, Yufang Wu ¢,
Shuiying Huang ¢, Lingling Li?, Zhongping Lee -

# State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China

b Fujian Ocean Innovation Center, Xiamen 361102, China

€ Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
4 Xiamen Environmental Monitoring Station, Xiamen 361022, China

ARTICLE INFO ABSTRACT

Keywords:

Nutrient remote sensing
High spatial resolution
Machine learning
Satellite data fusion
Sentinel-2

Optically complex waters

High-resolution monitoring of nutrient concentrations is essential for assessing water quality in coastal and bay
regions. This study proposes a two-step framework to map dissolved inorganic nitrogen (DIN) and phosphorus
(DIP) concentrations at high spatial resolution in Xiamen Bay (XMB). First, the nutrient retrieval models, termed
AutoGluon-DIN/DIP, were trained using matchups between radiometric measurements from Sentinel-3 Ocean
and Land Color Instrument (OLCI, 300 m resolution) and in situ nutrient observations. The high revisit frequency
of OLCI enabled the compilation of a large and representative training dataset. Then, a cross-sensor transfer
model, termed AutoGluon-transfer, was developed to convert Sentinel-2 Multi Spectral Instrument (MSI,
resampled to 10 m) reflectance data into OLCI-equivalent bands, enabling the implementation of OLCI-trained
models on MSI imagery. The key inputs of AutoGluon-DIN/DIP were the Rayleigh scattering-corrected top-of-
atmosphere reflectance (p,(4)) at eight bands common to both MSI and OLCI. Validation against in situ data
showed that AutoGluon-DIN/DIP outperformed other machine learning models, with a root mean squared dif-
ference of 0.11 mg L™! for DIN and 0.012 mg L™} for DIP (N = 636). The retrieved DIN/DIP values also aligned
well with independent buoy measurements in both magnitude and temporal variation (coefficient of determi-
nation R? ~ 0.6, N = 382). The AutoGluon-transfer effectively converts MSI-measured py.(1) to OLCI-equivalent
bands (R? > 0.8), yielding nutrient maps that are consistent with those from OLCI in both magnitude and spatial
pattern. Overall, the proposed framework offers a promising solution for high-resolution nutrient monitoring in
coastal waters.

1. Introduction

Nutrients such as nitrogen and phosphorus are crucial for phyto-
plankton growth, which supports primary production and diverse bio-
logical networks (Chen et al., 2013a). However, excess nutrients, often
resulting from anthropogenic activities such as agriculture, urban
runoff, and industrial discharges, can lead to eutrophication. This pro-
cess degrades water quality, disrupts ecological balance, and causes
harmful algal blooms (HABs) (Anand et al., 2024; Davidson et al., 2014;
Li et al., 2024a; Zheng et al., 2023), which threaten water resources,
marine life, and local economies dependent on fisheries and tourism.
Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus

(DIP) are widely used to characterize nutrient levels and are deemed the
key water quality parameters (WQPs) (Howarth et al., 2000; Li et al.,
2024b).

Traditional water quality assessments rely on moored instruments,
drifting buoys, and in situ sampling. While these methods provide ac-
curate and reliable data, they offer limited spatial and temporal
coverage, making it challenging to capture the dynamic and heteroge-
neous distribution of nutrients in coastal waters (Bierman et al., 2011).
Remote sensing technology provides a promising alternative, enabling
large-scale and frequent observations of marine environments. Howev-
er, WQPs are not optically active and therefore cannot be directly
detected by satellite (Sathyendranath et al., 1991). To address this,
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previous studies have explored empirical relationships between WQPs
and satellite-derived environmental variables, such as sea surface tem-
perature (SST) (Pan et al., 2018; Poornima et al., 2016; Sarangi, 2011),
chlorophyll-a concentration (Chl) (Poornima et al., 2019; Silio-Calzada
et al., 2008), and sea surface salinity (SSS) (Wang et al., 2018; Yu et al.,
2021). While these variables can be retrieved from satellite data, they
are affected by a complex interplay of biophysical factors, including
physical mixing, upwelling, biological activity, and chemical reactions
(Chen et al., 2023). In contrast, machine learning techniques offer a
significant advantage in capturing complex, nonlinear relationships
between remote sensing measurements and WQPs, without the need for
explicit physical formulations.

Recent advances in machine learning have significantly improved
the capability of remote sensing for WQPs retrievals. For instance,
Unnithan et al. (2025) developed a dense deep learning model for
aquatic remote sensing applications to estimate total suspended solids
and dissolved organic carbon in coastal regions of southeastern
Australia. Chen et al. (2024) applied a stacking random forest model to
estimate DIN in the Northwest Pacific using MODIS-observed SST and
Chl. Xia et al. (2024) found that the eXtreme Gradient Boosting
(XGBoost) algorithm outperformed other commonly used machine
learning models in estimating total nitrogen concentration in Poyang
Lake, the largest freshwater lake in China. Similarly, Zhu et al. (2024)
demonstrated that XGBoost was the most effective for retrieving DIN in
the Northern South China Sea coastal waters when SST and Chl, SSS, sea
surface current (SSC), and depth were used as inputs. He et al. (2025)
proposed a novel quad-modality deep neural network that integrates Ry,
temporal features, and a custom environmental parameter to estimate
Chl concentrations in Lianyungang’s lakes, while Huang et al. (2023)
used Sentinel-2 and Sentinel-3 R, with the Support Vector Machine
(SVM) and Gaussian process regression (GPR) models to derive DIN and
DIP in the offshore waters of Dayu Bay. It is noted that these previous
studies predominantly focus on specific regions, utilizing mainly Ry, Ry
derivative products (Chl), SST, outputs from ocean models (SSS, SSC),
and satellite metadata, including longitude, latitude, and date. However,
Ry and its derivatives are particularly sensitive to atmospheric correc-
tion algorithms, especially in coastal regions. Failure of atmospheric
correction can result in missing or inaccurate R, data (Wang, 2002,
2005), thereby compromising the retrievals of WQPs. Moreover, moni-
toring nutrient dynamics in small-scale estuaries and bays requires high-
spatial-resolution data for all variables involved in retrieval models,
which remains a significant challenge (Huang et al., 2023). These lim-
itations underscore the need for advanced, high-spatial-resolution
remote sensing frameworks explicitly designed for complex coastal
environments.

Xiamen Bay (XMB), located on the southeastern coast of China, is
considered one of the most important bays in Fujian Province. Sub-
stantial nutrient inputs from the Jiulong River make XMB highly sus-
ceptible to eutrophication (Chen et al., 2013b). Rapid economic
development has exacerbated eutrophication issues, leading to frequent
and harmful algal blooms (He et al., 2022). Urban expansion and in-
dustrial activities have increased nutrient influx, heightening the risk of
ecological degradation (Lu et al., 2023). Nutrient levels in Xiamen Bay
(XMB) fluctuate seasonally due to river discharge, anthropogenic
pollution (including sewage, animal waste, and agricultural runoff), and
oceanic exchange processes. These dynamic influences create significant
challenges for water quality management. Therefore, there is a pressing
need for accurate and high-spatiotemporal monitoring approaches to
support near-real-time assessment of nutrient levels in XMB.

In this study, we developed a novel framework to retrieve DIN and
DIP in XMB at high spatiotemporal resolution by leveraging the frequent
revisit capability of Sentinel-3 Ocean and Land Color Instrument (OLCI)
and the high spatial resolution of Sentinel-2 Multi Spectral Instrument
(MSI). Another key innovation is the use of Rayleigh scattering-
corrected top-of-atmosphere reflectance (p..(4)) as model input. This
approach avoids the uncertainties associated with atmospheric
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correction in nearshore waters and significantly improves the accuracy
of nutrient retrievals. The proposed framework comprises several ma-
chine learning models based on the AutoGluon: two models for DIN and
DIP retrieval (AutoGluon-DIN/DIP) and eight for cross-sensor data
fusion (AutoGluon-transfer). The fusion models convert p,.(4) at eight
MSI bands into the equivalent OLCI bands, enabling OLCI-trained
nutrient models to be directly applied to MSI data and supporting
consistent, high spatial resolution nutrient mapping in XMB. The data,
methods, results, and discussion are detailed in the following sections.

2. Data and methods
2.1. The overall framework for high-spatial-resolution nutrients mapping

The high revisit frequency of OLCI enables more matchups with in
situ measurements. Thus, we first developed nutrient retrieval models
based on matched OLCI-measured p,.(4) and in situ nutrients measure-
ments. The developed models were then validated using independent
datasets. However, due to the relatively coarse spatial resolution of
OLCL, its applicability for fine-scale mapping is limited in coastal waters.
To overcome this challenge, we proposed a cross-sensor fusion model
that enables the implementation of OLCI-based nutrient retrieval models
on MSI data, thereby generating high-resolution nutrient maps for the
XMB. The technical workflow of this study is illustrated in Fig. 1, con-
sisting of three main phases: data preprocessing, model development,
and model validation and application.

In the data preprocessing phase (Fig. 1(a)), the in situ-measured DIN
and DIP were matched with high revisit, low spatial resolution (300 m)
OLCI observations on the same day (termed satellite-in situ matchups).
These matchups were essential, as direct matchups between MSI and in
situ data alone did not yield sufficient samples for effective model
training. In addition, MSI and OLCI images acquired on the same day
were also paired, forming a matchup dataset of MSI- and OLCI-measured
prc(2) (termed cross-sensor matchups).

During the model development phase (Fig. 1(b)), OLCI-based Auto-
Gluon-DIN/DIP models were trained using satellite-in situ matchups to
derive DIN/DIP concentrations from OLCI-measured p;.(1). In parallel,
AutoGluon-transfer models were developed using the cross-sensor
matchups to convert MSI-measured p..(4) into p.(1) at equivalent
OLCI bands.

In the validation and application phase (Fig. 1(c)), the AutoGluon-
DIN/DIP models were evaluated using both the developing and valida-
tion datasets. These models were then applied to OLCI images to
generate time-series maps of DIN and DIP in XMB at 300 m spatial
resolution. The high-resolution nutrient maps were finally obtained by
sequentially applying the AutoGluon-transfer and AutoGluon-DIN/DIP
models to MSI data.

2.2. In situ measurements

The in situ measurements of DIN and DIP were compiled from three
sources, with the sampling locations shown in Fig. 2.

1) Monitoring data: The data were mainly collected in the XMB by the
Xiamen City Environmental Monitoring Center Station (XCEMCS)
between 2019 and 2022. To enhance the representativeness of the
dataset, additional nutrient measurements from other coastal areas
in Fujian Province outside of XMB were also incorporated. These
data are publicly available and were obtained from the Department
of Ecology and Environment of Fujian Province (DEEFP) (https://sth
jt.fujian.gov.cn/). The sampling locations are shown as orange cir-
cles in Fig. 2(b).

2) Survey data: Field survey data were collected by research teams at
Xiamen University from 2018 to 2022, with sampling locations
represented by blue circles in Fig. 2(b). DIN and DIP concentrations
in both the Monitoring and Survey data were measured using the
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Fig. 1. The workflow for nutrient retrieval from Sentinel-3 and Sentinel-2.

same method, which involved water sampling, filtration, and labo-
ratory analysis (Yu et al., 2020). Water samples were filtered on
research vessels using GF/F (0.7 pm) Whatman glass microfiber fil-
ters, and the filtrates were stored in cool containers until laboratory
analysis. In the laboratory, the filtrates were analyzed for NOs-N,
NO,-N, NH4-N, and P5Os5 concentrations using a SEAL AutoAnalyzer
3. DIN was calculated as the sum of NO3-N, NO,-N, and NH4-N, while
DIP was measured as orthophosphate (P20s). Instrument perfor-
mance was verified using a standard reference material provided by
the National Environmental Protection Agency for laboratory quality
control, with deviations ranging from —1 % to +4 % from the stan-
dard concentrations.

Buoy data: High-frequency measurements were collected from four
buoys positioned near the Huli Mountain (HLS, 118.10°E, 24.43°N),
Yefengzhai (YFZ, 118.19°E, 24.45°N), Tong’an Bay (TAW, 118.17°E,
24.57°N), and Baozhu Island (BZY, 118.07°E, 24.54°N) between
January and December 2022. The buoys’ locations are represented
by purple triangles in Fig. 2(c). DIN and DIP concentrations in the
buoy data were automatically measured by the Nutrient Auto-
Analyzer (Model is-3N1P, Hanhong Inc.) every 30 min. Note that
the Nutrient Auto-Analyzer was calibrated monthly using laboratory
measurements of DIN and DIP. Here, we employed only DIN and DIP
buoy data within the 1st to 99th percentile range for the subsequent
analysis to remove potential outliers from automatic measurements.
The buoy data revealed that DIN and DIP concentrations from the
four buoys exhibited similar seasonal patterns in 2022, with higher
values from January to June (spring and summer) and lower values
from July to December (autumn and winter).

3

=

2.3. Satellite data and processing

This study employed satellite measurements from the Sentinel-2 MSI
and the Sentinel-3 OLCI for the nutrients mapping in XMB, where both
data can be downloaded from the Copernicus Data Space Ecosystem
(https://dataspace.copernicus.eu/explore-data). To ensure consistency
in data processing and analysis across OLCI and MSI, we utilized the
eight spectral bands common to both sensors in developing the
AutoGluon-DIN/DIP and AutoGluon-transfer models. These bands have
identical or closely matched center wavelengths. Table 1 outlines the
spectral configuration and spatial resolution of these common bands in
the visible to near-infrared (NIR) domain.

To circumvent atmospheric correction issues in the coastal regions,
we used pr(4) for algorithm development in this study (Lai et al., 2022).
The prc(4) is defined as

where p(1) is the top-of-atmosphere reflectance, p,(1) is the Rayleigh
reflectance derived from a look-up table (LUT) generated by the 6SV
model (Kotchenova et al., 2006; Vermote et al., 1997). The p{1) is
defined as

7Le(4)

P8 = o Dcos(@)

(2)

where Li(2) is the sensor-measured radiance at the top-of-atmosphere, t;
is the gas transmittance, F is the extraterrestrial solar irradiance, and 6
is the solar zenith angle.

Level 1C products of MSI and OLCI were first downloaded and sub-
sequently processed to p.(1) using the ACOLITE software (version
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Fig. 2. Locations of in situ sampling and buoys.

Table 1
The spectral configuration and spatial resolution of the eight common bands
between Sentinel-2 MSI and Sentinel-3 OLCI in the visible and near-infrared
domain.

Sentinel-2 MSI Sentinel-3 OLCI

Band  Center Spatial Band  Center Spatial
wavelength resolution wavelength resolution
(nm) (m) (nm) (m)
1 443 60 3 443
2 492 10 4 490
3 560 10 6 560
4 665 10 8 620
5 704 20 11 709 300
6 740 20 12 754
7 783 20 16 779
8a 865 20 17 865

20231023.0, https://github.com/acolite/acolite/). ACOLITE automati-
cally estimates p,(1) and efficiently returns p,.(4).

In this procedure, all MSI bands were resampled to a 10 m spatial
resolution, while the OLCI bands were maintained at a 300 m spatial
resolution. Since aerosol correction was not applied, cloud and land
contamination pixels were manually excluded. Specifically, pixels with
prc(865) > 0.2 were removed, as well as any pixel with p,(1) < 0 or
pre(l) > 1 across all bands. Additionally, to minimize potential
contamination from strong sun glint, pixels with p,(1610) > 0.06 were
also masked out.

(1) Satellite-in situ matchups

The prc (1) data from OLCI were matched with in situ observations,
including the Monitoring data, Survey data, and Buoy data, usinga 3 x 3
pixel window within the same day. A total of 692 OLCI images over XMB
and other Fujian coastal regions (23°N-28°N, 117°E-122°E) from 2018
to 2023 were collected. Both Sentinel-3A and Sentinel-3B are equipped
with OLCL If an in situ nutrient measurement matched with both
Sentinel-3A and Sentinel-3B, each was treated as an independent
matchup. This strategy increased the number of valid matchups and
reduced the model’s dependency on the satellite platform. Each in situ
nutrient measurement could be matched with up to 9 OLCI p.(1)
spectra. Any spectrum with p;. (620) deviating by more than 10 % from
the 3 x 3 average was considered an outlier and excluded, as the 620 nm
band is highly sensitive to turbidity and water dynamics in the study
area. The remaining spectra were averaged to represent the satellite-
measured p,.(1) corresponding to each in situ data.

All the satellite-in situ matchups were categorized into two principal
groups: the development and validation datasets (see Table 2 for de-
tails). The development dataset consists of matchups from the Moni-
toring data, Survey data, and three Buoys data (HLS, YFZ, and TAW).
Within this dataset, 70 % of the data were randomly selected for model
training (termed Nutrient-Train dataset), while the remaining 30 %
were used for hyperparameter tuning (termed Nutrient-Tuning dataset).
Model performance was evaluated on the Nutrient-Tuning dataset dur-
ing training to facilitate manual hyperparameter adjustment and opti-
mize overall model performance. The DIN and DIP measurements from
the BZY buoy exhibited wide dynamic ranges and were selected as the
independent validation dataset (see Table 2), which is hereafter termed
the Nutrient-Val dataset.

(2) Cross-sensor matchups between OLCI and MSI
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Table 2
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Descriptions of the development and validation datasets used in this study. Min, Max, ¢, and CV indicate the values of minimum, maximum, standard deviation, and

coefficient of variation, respectively. N is the number of matchups.

Datasets Source Date WQPs Min Max Mean o CV N
mg mg mg (%)
Lt Lt Lt
o 2018/01/ DIN 0003 210 019 021 1133
Monitoring data 01-2022/12/31 DIP 0001 0260 0019 002 1203 ‘0%
i ) e 2018/01/ DIN 0.5 1.27 061 032 519
The develop me";]i"t‘:f‘:;t(Tlunli':“ézrt’;:eiaz iaéfg)t’ N=1481;2. Survey data 01-2022/12/31 DIP 0003 0083 0037 002 459 %
J N Buoy data DIN  0.11 1.24 043 023 528
(HLS, YFZ, and 2022/01/ 1016
AW 01-2022/12/31 DIP 0006 0.069 0034 002 46.4
o ) Buoy data 2022/01/ DIN 015 1.07 047 019 39.2
The validation dataset (Nutrient-Val dataset) BZY) 01-2022/12/31 DIP 0.018 0.083 0.040 0.01 371 390

To apply the OLCI-based nutrients model to high-spatial-resolution
MSI images, transfer models were developed to convert MSI p,.(1) data
to OLCl-equivalent p,(2) data. For this purpose, we screened all MSI
images over XMB in 2022 and matched them with OLCI images acquired
on the same day, resulting in 44 image pairs spanning all seasons. Note
that the difference between the acquisition time of paired MSI and OLCI
images was mostly under one hour, during which water conditions can
be assumed relatively stable. Here, we resampled MSI p,.(4) data to align
with the coordination of OLCI using the linear interpolation (MATLAB
function griddata), yielding 363,190 pairs of p,(1) matchups. These
matchups were then used as the development dataset for AutoGluon-
transfer. Among them, 70 % (N = 254,233) were randomly selected
for model training (termed the Transfer-Train dataset), and the
remaining 30 % (N = 108,957) were used for model tuning (Transfer-
Tuning dataset). In addition, an independent validation set (Transfer-
Val dataset) was generated using the same-day OLCI and MSI mea-
surements from Oct. 21, 2019, resulting in 48,293 matchups.

2.4. The machine learning models based on AutoGluon

A significant challenge in model development is the limited avail-
ability of training data. Automated Machine Learning addresses this
issue by automating model selection and parameter optimization,
reducing the need for manual tuning. AutoGluon, recognized for its ef-
ficiency and ease of use, streamlines these processes and facilitates the
rapid deployment of high-performance machine learning models
(Erickson et al., 2020). Its core strength lies in the sequential stacking of
multiple models with minimal hyperparameter tuning (Fig. 1(b)). This
multilayer stack ensemble integrates algorithms such as k-nearest
neighbors, neural networks, LightGBM, random forests, Catboost, and
XGBoost, and has been shown to outperform individual models (Van der
Laan et al., 2007). To prevent overfitting, AutoGluon employs repeated
k-fold bagging and Bayesian optimization during hyperparameter tun-
ing (Caruana et al., 2025). Users can control the total training time,
within which AutoGluon optimizes the ensemble, achieving high per-
formance with minimal computational effort.

In this study, all the models were trained using Python 3.11 and
AutoGluon version 1.0.0. During the model development phase (Fig. 1
(b)), we developed 10 AutoGluon models, where two of them are the
AutoGluon-DIN/DIP model for DIN and DIP retrievals, and the
remaining eight models are for converting MSI p,.(4) to equivalent OLCI
bands.

(a) OLCI-based AutoGluon-DIN/DIP models

The inputs for AutoGluon-DIN/DIP models include OLCI p,(1) at
443, 490, 560, 620, 709, 754, 779, and 865 nm, the ratio of p,.(4, except
560 nm) to p,(560) (termed p,(1)™9°), and the acquisition date of the
OLCI image. Our experiments demonstrated that incorporating the
pre()™° could significantly enhance the model’s performance during

feature engineering. AutoGluon automatically extracts temporal fea-
tures from the date variable, including year, month, day, and the day of
the week. These features allow the model to capture seasonal cycles,
weekly patterns, and other temporal patterns essential for accurate
predictions of DIN and DIP. The model outputs are the logarithmic
values of DIN and DIP, ie., In(DIN) and In(DIP), respectively. Using
logarithmic values enhances the model’s predictive accuracy and
robustness by stabilizing the variance and reducing data skewness, thus
ensuring that the developed models can be applied to a wide range of
nutrient concentrations (Yasin et al., 2024). After extensive testing, we
found that setting the stack levels to 1 and the bagging folds to 5 yields
the highest nutrient retrieval accuracy in this study.

(b) AutoGluon-transfer models

Eight AutoGluon-transfer models were trained to convert MSI-
measured p,.(1) to OLCI-equivalent bands. Each model used the same
inputs—p, (1) at eight MSI bands (443, 492, 560, 665, 704, 740, 783,
and 865 nm)—and was designed to predict p,.(1) at one specific OLCI
band at 443, 490, 560, 620, 709, 754, 779, and 865 nm, respectively.
These models were referred to as AutoGluon-transfersss, AutoGluon-
transfer49g, AutoGluon-transfersgy, AutoGluon-transfergyg, AutoGluon-
transferygg, AutoGluon-transfer;sy, AutoGluon-transfer;79, and Auto-
Gluon-transferggs, respectively. All models were trained using the same
configuration as the AutoGluon-DIN/DIP models, with the stack levels
set to 1 and the bagging folds set to 5.

2.5. Accuracy assessment

We employed four metrics to evaluate the performance of the
AutoGluon models, including the coefficient of determination (Rz), Root
Mean Square Difference (RMSD), Median Absolute Relative Percentage
Difference (MAPD), and Unbiased Relative Percentage Difference
(URPD), and they are expressed as,

>0 - 50
RP=1-1 ®
= 2
i:Zl(yl Y)

RMSD = \/%Z; A 4

MAPD — median{ u‘} % 100% 5)
URPD =% 7;’ X 200% ©)

where y; is the in situ value, y is the mean of the in situ value, y; is the
derived value from the model, and n is the total number of pairs used in
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the analyses.

3. Results

3.1. Evaluation of AutoGluon-DIN/DIP models with in situ data

To assess the performance of the proposed AutoGluon-DIN/DIP
models, the estimated DIN (DIN.g) was first validated against in situ-
measured DIN (DINy, ) using the Nutrient-Train dataset. As shown in
Fig. 3(a), the AutoGluon-DIN model demonstrated robust performance,
with an R? of 0.86 and an RMSD of 0.10 mg L', Notably, there were a
few outliers in the predicted DIN, which could probably be attributed to
the influence of cloud-contaminated or land-mixed pixels. Further
validation was performed using the Nutrient-Tuning dataset (Fig. 3(b)).
Similar to the results from the Nutrient-Train dataset, most data points
were distributed around the 1:1 line, yielding an R? of 0.81 and RMSD of
0.11 mg L™! for DIN ranging from 0.003 to 1.18 mg L™\

Fig. 3(c) and Fig. 3(d) display the relationship between the estimated
DIP (DIP¢g) and in situ-measured DIP (DIP;, i) for the Nutrient-Train
and Nutrient-Tuning datasets, respectively. The AutoGluon-DIP model
achieved an R? of 0.83 and an RMSD of 0.01 mg L™} on the Nutrient-
Train dataset and an R? of 0.62 and an RMSD of 0.012 mg L' on the
Nutrient-Tuning dataset, for DIP ranging from 0.001 to 0.14 mg L1,
These results also demonstrate the robust performance of AutoGluon-
DIP across different datasets.

To maximize the available training data, the AutoGluon-DIN/DIP
models were retrained using the entire nutrient development dataset,
combining both the Nutrient-Train and Nutrient-Tuning datasets. The
retrained models were then used in subsequent analyses and applica-
tions. The final AutoGluon-DIN model achieved an R? of 0.88, an RMSD
of 0.09 mg L7!, and a MAPD of 11.5 %, while the final AutoGluon-DIP
model achieved an R? of 0.80, an RMSD of 0.010 mg L™}, and a
MAPD of 9.6 %.

1.2 . -
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_nol RMSD =0.10 mg L g 9
09 MAPD = 9.0% s oy
o N = 1481 &
©
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Fig. 3. The comparison of in situ measurements with AutoGluon-DIN/DIP estimatil
(c) DIP in the Nutrient-Train dataset, and (d) DIP in the Nutrient-Tuning dataset.
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3.2. Independent validation of AutoGluon-DIN/DIP

The robustness and validity of the AutoGluon-DIN/DIP models were
further evaluated using the Nutrient-Val dataset, which was not
included in the model training. Fig. 4(a) and Fig. 4(b) illustrate the
validation results for AutoGluon-DIN and AutoGluon-DIP, respectively.
In Fig. 4(a), the grey line shows the daily average DIN from buoy
measurements, with the light grey shading area indicating +1 standard
deviation (6). The blue points represent DIN derived from the same day
OLCI imagery, and the error bars reflect +1 ¢ within the matched 3 x 3
pixels. A similar comparison is shown in Fig. 4(b) for DIP. Both models
successfully capture the seasonal variation in nutrient levels, exhibiting
higher concentrations from January to June and lower levels from July
to December, which closely aligns with the original buoy data.

Statistical analysis further supports the consistency between model-
estimated and in situ-measured DIN/DIP. The AutoGluon-DIN model
achieved an R? of 0.55, an RMSD of 0.13 mg L~1, and a MAPD of 21.6 %,
indicating relatively low uncertainties compared to buoy measurements.
Similarly, the AutoGluon-DIP model yielded an R? of 0.62, an RMSD of
0.013 mg L%, and a MAPD of 27.1 %. Despite the overall agreement,
some discrepancies were observed. For example, the AutoGluon-DIP
model systematically underestimated DIP in April and late September
of 2022. These deviations may be due to quality issues in the buoy
measurements or satellite imagery during those periods and require
further investigation. Nevertheless, the overall good agreement between
the model predictions and buoy observations supports the reliability of
AutoGluon-DIN/DIP for monitoring nutrient concentrations in XMB.

3.3. Spatial-temporal distribution of DIN/DIP in XMB by OLCI

For each season, a representative cloud-free OLCI image was
selected, and AutoGluon-DIN/DIP models were applied to retrieve the
spatial distribution of DIN and DIP in XMB (Fig. 5 and Fig. 6). Overall,
both nutrients exhibited similar spatial patterns throughout the year,

1.2 . -
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Fig. 5. AutoGluon-DIN model retrieved DIN distribution over XMB by OLCI images acquired in a) 2022.01.02; b) 2022.4.12; ¢) 2022.7.21; d) 2022.11.19. The mean
and standard deviation for each image are shown in the grey box; the same applies to the figure below (units: mg L™1).

with higher concentrations frequently observed in the inner bay areas
(western and northern XMB), while lower levels were typically found in
the open sea (Luo et al., 2022). Notably, the highest nutrient levels
consistently occurred in estuarine zones, primarily due to substantial
nutrient inputs from the discharge of the Jiulong River. Additionally, the
distinct geomorphological and hydrodynamic characteristics of estu-
aries promote nutrient retention, thereby contributing to elevated
nutrient concentrations in these areas (Ma et al., 2020).

Seasonal variation in DIN revealed a distinct peak in April (boreal
spring), with a mean concentration of 0.53 mg L™} in XMB, followed by
January (boreal winter, 0.48 mg L™!) and November (boreal autumn,
0.26 mg L™1). The lowest nutrient level was observed in July (boreal
summer), averaging at 0.23 mg L™1. DIP exhibited a similar seasonal
pattern, although its spring mean value (0.028 mg L™!) was slightly
lower than its winter mean (0.042 mg L™1). This pattern aligns well with
established expectations and is supported by buoy data (Fig. 4).

3.4. Evaluation of AutoGluon-transfer models

The MSI to OLCI pr(2) transfer models were evaluated with the

Transfer-Tuning dataset (Fig. 7). Overall, the scatter points are closely
distributed to the 1:1 line, indicating an exemplary mapping of MSI
prc(2) to the OLCI bands using AutoGluon-transfer. The MAPDs for the
MSI-converted pr.(4) are generally below 5 % in the visible bands and
under 10 % in the NIR bands. The elevated MAPD in the NIR is primarily
due to the stronger atmospheric effects and low signal levels, which are
dominated by aerosol contributions, making accurate prediction more
challenging in nearshore waters (Wang, 2002, 2005).

Overall, the AutoGluon-transfer models offered a robust approach
for capturing the complex relationships between p,.(1) measurements at
MSI and OLCI bands. Although AutoGluon-transfer exhibited compara-
tively lower performance in the NIR bands, this has a minimal impact on
nutrient retrievals. As discussed in Sections 4.2 and 4.3, and Table 4, the
models mainly rely on the “Image acquisition date” and the
“0re(490)219 a5 key predictors. As a result, deviations in the converted
pre(NIR) do not significantly affect the accuracy of DIN/DIP retrievals.

3.5. High-spatial-resolution mapping of DIN/DIP from MSI

By utilizing AutoGluon-transfer, the AutoGluon-DIN/DIP models,
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Fig. 7. The density scatter plots between OLCI-measured p,.(1) and the MSI-converted p,.(1) using AutoGluon-transfer for the Transfer-Tuning dataset (n = 108,957).
The color bar represents the normalized density of samples, and the dotted line denotes the 1:1 line.

originally developed for OLCI data, can be applied to MSI p,.(1) mea-
surements, enabling the generation of high-spatial-resolution (10 m)
nutrient maps in XMB. Fig. 8 presents the DIN and DIP distribution maps
generated from MSI and OLCI imagery acquired on Oct. 21, 2019
(Transfer-Val dataset). The 10 m-resolution DIN and DIP maps derived
from MSI are presented in Fig. 8(a) and Fig. 8(c), respectively, while
their 300 m-resolution counterparts from OLCI are shown in Fig. 8(b)
and Fig. 8(d). Notably, this MSI image was not included in the devel-
opment of AutoGluon-transfer (see Section 2.3). Thus, the results shown
in Fig. 8 serve as an independent evaluation of the effectiveness of
combining AutoGluon-transfer with AutoGluon-DIN/DIP to generate
nutrient maps from MSI data.

Overall, the spatial distribution patterns of DIN and DIP derived from
MSI agree very well with those from OLCI (Fig. 8). This agreement is
further confirmed by density scatter plots between MSI- and OCLI-

derived nutrients, where most data points are closely aligned along
the 1:1 line (Fig. 9). The R? values were 0.58 for DIN and 0.49 for DIP,
with RMSDs of 0.06 mg L™! and 0.005 mg L%, respectively. Note that
MSI-derived DIN/DIP products (10 m spatial resolution) were first
resampled to 300 m using linear interpolation to match OLCI mea-
surements. Additionally, pixels with p..(865) greater than 0.2 were
masked to mitigate the impact of thin cloud contamination. Both MAPDs
were below 20 %. These results are very promising for XMB, considering
the wide dynamic range of DIN and DIP, and demonstrate that the
proposed framework can effectively generate reasonable and high-
spatial-resolution nutrient maps from MSI data in this region.
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4. Discussions
4.1. Model inter-comparisons

We evaluated the effectiveness of several widely used machine
learning models for DIN prediction using the nutrient development
dataset (Table 3). These models include AutoGluon (FErickson et al.,
2020), Random Forest (Belgiu and Dragut, 2016), K-Nearest Neighbors

Table 3
Performance of different machine learning models in predicting DIN using the
Nutrient-Tuning dataset.

Model name Nutrient-Tuning dataset

R? RMSD MAPD (%)
AutoGluon 0.81 0.11 19.7
Random Forest 0.80 0.11 20.3
Decision Tree 0.66 0.15 22.2
Gradient Boosting 0.65 0.15 31.4
MLP 0.58 0.17 33.6
KNN 0.55 0.17 30.0

SVR 0.49 0.18 31.0

(KNN) (Peterson, 2009), Gradient Boosting (Friedman, 2002), Decision
Tree (Song and Ying, 2015), Support Vector Regression (SVR) (Smola
and Scholkopf, 2004), and Multi-Layer Perceptron (MLP) (Rumelhart
etal., 1986). To ensure a fair comparison, all models used the same input
features as AutoGluon-DIN/DIP (see Section 2.4), with default param-
eter settings from the scikit-learn Python package. Since AutoGluon can
automatically process the “image acquisition date” feature, we manually
converted this variable into year, month, day, and day of the week as the
inputs for the remaining models. In addition, all input variables were
standardized using Z-score normalization to ensure that temporal fea-
tures and p,.(1) values were on a comparable scale.

Table 3 summarizes the retrieval statistics for DIN across all models,
with AutoGluon outperforming the others by achieving the highest R? of
0.81 and the lowest RMSD of 0.11 mg L™!. For the remaining machine
learning models, Random Forest performed relatively well, with an R? of
0.80 and an RMSD of 0.11 mg L™}, followed by Decision Tree and
Gradient Boosting. MLP, KNN, and SVR exhibited relatively larger un-
certainties, with MLP showing a particularly high MAPD of 33.6 %.

The performance of machine learning models is heavily influenced
by parameter tuning during the model development phase. The overall
outstanding performance of AutoGluon could be attributed to its ability
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to automatically optimize hyperparameters, enhance model stability,
and improve generalization (Erickson et al., 2020). The performance of
all these models in retrieving DIP was generally consistent with their
results for DIN prediction (results not shown), further confirming that
AutoGluon is the most effective approach for retrieving both DIN and
DIP in this study.

4.2. Sensitivity analysis of the input features

To examine the influence of the input features on AutoGluon-DIN/
DIP, we computed their feature importance scores (see Table 4),
which were automatically generated by AutoGluon to highlight the
relative contribution of each feature to model performance. Thus, these
scores provide valuable insights into the key factors that drive the model
outcomes. The importance scores were computed using permutation
importance, which measures the drop in model accuracy when a specific
feature is randomly shuffled (Altmann et al., 2010). A higher score in-
dicates a stronger influence on the prediction, whereas a negative score
suggests that removing the feature may improve model performance. As
shown in Table 4, all features had positive importance scores, indicating
that each input variable contributed constructively to the model’s pre-
dictive accuracy.

The “Image acquisition date” is the most influential, underscoring
the model’s sensitivity to temporal changes and seasonal patterns.
Several factors likely contribute to these: In boreal spring, cooler tem-
peratures combined with increased rainfall in XMB lead to reduced
marine biological activity and a substantial influx of terrestrial runoff
into coastal waters, resulting in elevated DIN and DIP levels (Ma et al.,
2020). During the dry season in boreal autumn, decreased rainfall shifts
the primary nutrient sources to domestic sewage and industrial waste-
water. These sources, typically characterized by high turbidity and
significant amounts of dissolved organic matter and suspended solids,
contribute to higher nutrient levels (Liu et al., 2021). In contrast,
warmer SST and increased sunlight in summer drive rapid phyto-
plankton growth, which in turn depletes the available nutrients, leading
to the lowest DIN and DIP levels of the year.

Followed by the “Image acquisition date”, the second most important
feature is the p,(490)°, In general, light at 490 nm penetrates more
deeply into the water column, and the reflectance at 490 nm could carry
more information about in-water constituents among all bands. More-
over, the p(1)"™1° emphasizes the spectral shape rather than the abso-
lute magnitudes, which could also be closely related to the water
constituents. This enables the model to more accurately capture the
optical responses of water constituents to light, thereby enhancing both

Table 4
The feature importance scores of the AutoGluon-DIN/DIP model.

AutoGluon-DIN AutoGluon-DIP

Feature Importance Feature Importance
scores scores
Image acquisition 0.94 Image acquisition 0.73
date ) date :

pr(490)280 0.28 pr(490)ratio 0.19
pre(754)2° 0.09 Pr(665)71° 0.09
Pre(443)1° 0.07 Pre(754)21° 0.08
Prc(665)29° 0.07 Pr(665)7H° 0.08
Prc(709)r200 0.06 pre(443)rati 0.07
Pre(665)1° 0.06 Pre(709)721° 0.07
pre(779)77° 0.05 Pre(779)21° 0.06
Prc(865)r21° 0.05 Pre(754) 0.05
Pre(490) 0.05 Pr(865)12° 0.05
re(560) 0.04 pr(560) 0.05
Pre(754) 0.04 Pre(443) 0.04
prc(443) 0.04 prc(490) 0.04
Pre(709) 0.03 pre(779) 0.03
Prc(865) 0.03 pr(709) 0.03
pre(779) 0.02 Prc(865) 0.02
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retrieval accuracy and model stability. Therefore, we recommend that
future nutrient models prioritize incorporating these two parameters to
improve retrieval accuracy.

4.3. Ablation study: quantifying the influence of input features on model
performance

To further quantify the contribution of each input feature to the
model’s performance, we conducted an ablation study. Specifically, we
removed one input variable group at a time and retained the model, such
as date and ¢(4), which was defined as a group of pr.(1) and p, ()™,
For each modified input set, the model was retrained on the Nutrient-
Train dataset and evaluated on the Nutrient-Tuning dataset. The varia-
tions in the error metrics, such as Rz, RMSD, and MAPD, were used to
evaluate the relative importance of each input feature, with results
summarized in Table 5 and Table 6 for DIN and DIP retrievals,
respectively.

The ablation study reveals that including all features yields the best
model performance. Notably, the image acquisition date contributes
significantly to model accuracy. Removing this feature resulted in the
most significant degradation for both models, with the R and RMSD on
the Nutrient-Tuning dataset dropping from 0.81 to 0.49 for DIN and
from 0.62 to 0.39 for DIP. Correspondingly, MAPD increased markedly
from 19.7 % to 37.8 % for DIN and from 18.4 % to 31.5 %. These results
further confirm the critical role of temporal information in nutrient re-
trievals, as discussed in Section 4.2.

In contrast, removing each (1) had a much smaller impact, espe-
cially for the NIR bands. For instance, excluding ¢(865), ¢(779), ¢(754),
and ¢(709) results in a decrease of 0.02 in R? and almost no change in
MAPD. This is because p,. values in the NIR are generally lower than
those in the visible bands, and primarily represent aerosol signals, with
little to no contribution from water constituent signal. Although their
influence is limited, the NIR bands can still provide useful atmospheric
information to the model, thereby indirectly helping to improve
retrieval accuracy.

In addition, although removing certain features, such as ¢(490),
slightly improved the DIN model’s performance, it generally reduced the
accuracy of the DIP model, suggesting that the gain in DIN may be due to
overfitting. As discussed in Section 4.2, the p,(490)7° is an important
predictor. In the perturbation-based approach described in Section 4.2,
this feature is retained but perturbed with random noise, which reduces
its individual contribution while preserving its correlations and joint

Table 5
Ablation study evaluating the influence of input features on DIN model
performance.

Input features Nutrient-Train dataset Nutrient-Tuning dataset

removed R®  RMSD MAPD R?  RMSD MAPD
(%) (%)
None 0.86 0.10 9.0 0.81 0.11 19.7
Image acquisition 0.85 0.13 18.4 0.49 0.19 37.8
date
¢(865) 0.86 0.11 10.9 0.81 0.11 18.3
@(779) 0.86 0.11 11.1 0.80 0.12 18.8
9(754) 0.88 0.10 9.5 0.81 0.11 17.7
¢(709) 0.85 0.11 10.0 0.80 0.11 18.2
@(665) 0.86 0.11 10.4 0.80 0.11 18.2
Prc(560) 0.87 0.10 10.1 0.81 0.11 18.3
©(490) 0.89 0.10 9.9 0.81 0.11 18.8
©(443) 0.85 0.11 10.7 0.80 0.12 19.1
»(865), 9(779) 0.83 0.11 11.3 0.80 0.12 18.4
@(865), 9(779), 0.84 0.11 11.4 0.80 0.12 19.0
@(754)
9(865), p(779), 0.86 0.11 10.7 0.81 0.11 19.1

¢(754), 9(709)

Note: For convenience, we define a feature group ¢(1) at wavelength 4 as: ¢(A) =
{prc(A), pr(1)4°}.
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Table 6
DIP Ablation study evaluating the influence of input features on DIP model
performance.

Input features Nutrient-Train dataset Nutrient-Tuning dataset

removed R  RMSD MAPD R RMSD MAPD
(%) (%)
None 0.83  0.010 75 062 0.012 18.4
Image acquisition 0.80 0.012 16.2 0.39 0.015 31.5
date
9(865) 0.82  0.010 8.3 062 0.012 17.2
@(779) 0.84  0.010 8.0 062  0.012 17.5
0(754) 0.81  0.010 8.6 062 0.012 18.3
9(709) 0.81  0.010 9.3 062 0.012 18.4
9(665) 0.80  0.011 8.4 061  0.012 17.5
re(560) 0.83  0.010 8.7 061 0.012 18.0
©(490) 0.80  0.011 100 062 0012 196
0(443) 0.82  0.010 9.5 062 0.012 186
#(865), p(779) 0.80  0.010 8.6 063  0.012 18.1
#(865), 9(779), 0.82  0.010 8.9 062 0.012 19.4
@(754)
#(865), 9(779), 076  0.011 102 061 0012 20.0

9(754), ¢(709)

effects with other features. In contrast, the ablation study removes the
feature entirely, disrupting these synergistic relationships. This disrup-
tion is particularly evident for the DIP model (Table 6), where removing
®(490) increased the MAPD from 18.4 % to 19.6 % in the Nutrient-
Tuning dataset. This sensitivity suggests that DIP predictions depend
more heavily on the combined information provided by ¢(490) and
other spectral features, and that eliminating it weakens the model’s
ability to capture these interdependencies. Therefore, using the full set
of input features is considered the optimal strategy to balance model
accuracy and generalization capability.

4.4. Advantages of using pr.(2) as model inputs

Different from the conventional approach, we use p,.(1) instead of
R;5(1) as model inputs, as using Ry(4) as input could have several limi-
tations. First, the amount of available training data is significantly
reduced because many R,(1) values are invalid due to atmospheric
correction failures (see Section 2.3) (Wang, 2002, 2005). Second, in
optically complex coastal waters such as XMB, R,5(1) products are often
unreliable due to imperfect atmospheric correction, which introduces
large uncertainties into subsequent retrievals of water-quality parame-
ters (Wang et al., 2022). Lastly, when applying the model to satellite
images, the number of valid pixels is substantially reduced, thus limiting
the interpretation of the spatial-temporal variations of nutrients (Lai
et al., 2022).

Mechanistically, when p,.(4) is used as inputs, the AutoGluon model
inherently incorporates the atmospheric correction process, allowing it
to implicitly capture atmospheric effects through data-driven learning.
This approach relies on a large and diverse dataset to effectively capture
the variability of atmospheric conditions. More importantly, the atmo-
spheric parameters that introduce the greatest uncertainties primarily
affect the NIR spectral domains (Lai et al., 2022), which are not among
the dominant features in the AutoGluon-DIN/DIP models. Therefore,
using prc(4) as the model input could be more suitable for this study.

4.5. Uncertainty analysis of AutoGluon-DIN/DIP models

The uncertainties of AutoGluon-DIN/DIP models could stem from
several factors. First, the nutrient development dataset is heavily
concentrated in the low concentration range, leading to insufficient
training on high nutrient values. Therefore, the retrieved nutrient values
are less accurate at high values than at low ones. As a result, high
nutrient concentrations tend to be underestimated (Fig. 3), despite the
use of a logarithmic transformation of DIN and DIP during the training to
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stabilize the variance and reduce data skewness.

Second, the temporal window for the satellite and in situ matchups
strongly affects the number of usable samples for model training. A
narrow window reduces temporal mismatches but also substantially
limits the amount of training data, which can hinder the development of
a robust retrieval model. In this study, the window was set to within the
same day to balance sample size and temporal consistency (Warren
et al., 2019; Zhu et al., 2024), although notable changes in water con-
ditions may still occur within a single day, particularly those caused by
tidal variations.

4.6. Uncertainty analysis of cross-sensor data fusion

To assess the uncertainty and discrepancy between nutrient maps
derived from the two sensors, we calculated the spatial distribution of
the URPD between MSI- and OLCI-derived DIN products, as well as for
DIP (Fig. 10), based on the retrieval results shown in Fig. 8. Note that
DIN and DIP products from MSI were also resampled to OLCI resolution
using linear interpolation, prior to the calculation of URPD. As high-
lighted by high URPD values, regions with relatively large discrepancies
between OLCI and MSI measurements are primarily encountered in
nearshore areas and the estuarine-ocean convergence zone. Several
factors may contribute to the observed discrepancies. First, the high
spatial heterogeneity of nutrients in these regions leads to differences
between resampled MSI and OLCI data. Second, coastal water pixels are
affected by the land adjacent effect. Third, errors in the MSI-converted
prc(A) could be propagated to the estimated DIN/DIP products,
contributing to the discrepancies in the nutrient maps between OLCI and
MSIL.

Additionally, tidal differences at the time of the two image acquisi-
tions could lead to significant inconsistencies. For example, significant
discrepancies in DIN and DIP are evident between the two sensors at the
junction of the Jiulong River and XMB (southwest on the map, Fig. 10),
as indicated by high URPD values. Although the two images were
captured less than an hour apart, the tide level dropped from —1.8 m at
the time of the OLCI overpass to —2.0 m during the MSI overpass. The
tidal influence on nutrient concentration could be substantial, especially
during low tide or ebb tide when water masses are more dynamic (Wisha
and Maslukah, 2017), as was the case when both images were taken.
Lower tides typically correspond to higher nutrient concentrations in
coastal regions due to increased runoff contributions (Chen et al.,
2013a). Consequently, the MSI-derived nutrient levels, captured during
a lower tide, were higher than those observed in the OLCI products.

4.7. Limitations and perspectives

Many studies have shown that SST and SSS can exhibit linear or
nonlinear relationships with DIN and DIP, playing a crucial role in
nutrient retrieval, particularly in coastal waters (Arteaga et al., 2015;
Pan et al., 2018; Sili6-Calzada et al., 2008; Wang et al., 2018). However,
the acquisition of reliable and high-spatial-resolution SST and SSS
products in nearshore and small bay areas remains challenging, partic-
ularly for SSS (Klemas, 2011). For instance, the widely used SST product
from MODIS has a spatial resolution of 1 km but is often contaminated
by cloud cover. Satellite-derived SSS products from passive microwave
radiometers, such as SMOS and SMAP, typically have coarser spatial
resolutions (25-100 km) and are highly susceptible to land-sea
contamination and radio frequency interference, leading to invalid ob-
servations in coastal zones (Kim et al., 2023).

Although some studies have shown that the potential of estimating
SST and SSS using higher spatial resolution ocean color satellite, these
products have not yet been operationally generated and are therefore
not readily available (Chen and Hu, 2017; Kim et al., 2023; Xie et al.,
2024). Thus, further research efforts are required to develop robust al-
gorithms capable of providing high spatial-temporal resolution SSS and
SST products before these variables can be effectively integrated into
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Fig. 10. RGB images of MSI on Oct. 21, 2019, at 02:50:57 UTC (a) and OLCI on Oct. 21, 2019, at 02:18:05 UTC (b), and the spatial distribution of Unbiased Relative
Percentage Difference (URPD) between (c) MSI DIN (retrieved by AutoGluon-DIN and AutoGluon-transfer) and OLCI DIN (retrieved by AutoGluon-DIN) and (d) MSI
DIP (retrieved by AutoGluon-DIN and AutoGluon-transfer) and OLCI DIP (retrieved by AutoGluon-DIP).

nutrient retrieval models. Such advancements are expected to substan-
tially improve the accuracy and applicability of nutrient retrieval.
Additionally, the framework proposed in this study is adaptable for
retrieving SSS and SST when supported by a sufficiently large training
dataset, offering a potential approach for water quality monitoring in
estuaries and bays.

Another important limitation of this study is that the development
dataset primarily consists of samples from XMB and the coastal waters of
Fujian, which may limit the model’s applicability and generalization to
other regions with different optical and biogeochemical conditions.
Expanding the development dataset to better represent diverse water
conditions is crucial for improving the performance and generalizability
of machine learning or neural network-based algorithms. Future work
will focus on expanding the dataset by incorporating globally distrib-
uted open-access data sources and conducting field surveys across varied
coastal environments.

5. Conclusions

This study proposed a novel framework based on AutoGluon to
achieve high spatiotemporal resolution monitoring of DIN and DIP in
XMB, by leveraging the high revisit frequency of OLCI and the high
spatial resolution of MSI. First, DIN/DIP retrieval models (AutoGluon-
DIN/DIP) were developed using OLCI-measured p,.(4), ensuring a large
number of satellite-in situ matchups for model training. Validation re-
sults demonstrated high accuracy of AutoGluon-DIN/DIP, with RMSDs
of 0.11 mg L! for retrieved DIN and 0.012 mg L~ for DIP, and R®
around 0.6 when compared with independent buoy measurements.
Second, we developed cross-sensor data fusion models (AutoGluon-
transfer) to convert MSI-measured pr.(4) into their OLCI equivalents. The
MAPD for the MSI-converted p,.(1) in the visible bands is generally less
than 10 %. Independent validations demonstrate that the implementa-
tion of both AutoGluon-DIN/DIP and AutoGluon-transfer effectively
generates high-spatial-resolution nutrient maps from MSI, yielding
nutrient distribution patterns that are consistent and spatially coherent
with those derived from OLCI.

Despite these promising results, several limitations remain: (1) some
nutrient-related environmental variables, such as SST and SSS, were not
included as model inputs due to limited data quality and spatial
coverage in nearshore area; (2) the performance of AutoGluon-transfer
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in the NIR bands remains suboptimal, although these bands are not
key predictors in AutoGluon-DIN/DIP; and (3) validation of the pro-
posed framework in other nearshore regions may be necessary to
strengthen confidence in its generalizability. Nevertheless, the proposed
AutoGluon-based framework offers a promising and effective approach
for high-resolution, consistent monitoring of DIN and DIP in optically
complex coastal waters using data from multiple sensors, and can be
readily adapted to monitor other water quality parameters.
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