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Abstract Spectral remote-sensing reflectance (Rrs, sr21) is the key for ocean color retrieval of water
bio-optical properties. Since Rrs from in situ and satellite systems are subject to errors or artifacts,
assessment of the quality of Rrs data is critical. From a large collection of high quality in situ hyperspectral
Rrs data sets, we developed a novel quality assurance (QA) system that can be used to objectively evaluate
the quality of an individual Rrs spectrum. This QA scheme consists of a unique Rrs spectral reference and a
score metric. The reference system includes Rrs spectra of 23 optical water types ranging from purple blue
to yellow waters, with an upper and a lower bound defined for each water type. The scoring system is to
compare any target Rrs spectrum with the reference and a score between 0 and 1 will be assigned to the
target spectrum, with 1 for perfect Rrs spectrum and 0 for unusable Rrs spectrum. The effectiveness of this
QA system is evaluated with both synthetic and in situ Rrs spectra and it is found to be robust. Further
testing is performed with the NOMAD data set as well as with satellite Rrs over coastal and oceanic waters,
where questionable or likely erroneous Rrs spectra are shown to be well identifiable with this QA system.
Our results suggest that applications of this QA system to in situ data sets can improve the development
and validation of bio-optical algorithms and its application to ocean color satellite data can improve the
short-term and long-term products by objectively excluding questionable Rrs data.

1. Introduction

Remote-sensing reflectance (Rrs, units: sr21) is defined as the ratio of water-leaving radiance (Lw, units: mW
cm22 sr21 nm21) to downwelling irradiance just above the surface (Es, units: mW cm22 nm21). Rrs is a critical
optical property for deriving water’s optical and biogeochemical properties that include chlorophyll a con-
centration [O’Reilly et al., 1998], colored dissolved organic material (CDOM) absorption coefficient and partic-
ulate backscattering coefficient [IOCCG, 2006; Lee et al., 2002; Mannino et al., 2008; Wei and Lee, 2015], etc.
Reliable retrieval and appropriate interpretation of these properties, to the first order, demand accurate Rrs

data.

Rrs cannot be directly measured in the field or obtained remotely, rather derived from two properties (Lw

and Es) obtained independently. Errors in Rrs data from field measurements can be related to instrument
platforms, strategies of deployment, data processing as well as the ambient environments [Bailey et al.,
2008; Hooker et al., 2002; Mueller et al., 2003; Toole et al., 2000; Zibordi et al., 2002]. The in-water approach
measures the in-water downwelling irradiance (Ed, units: mW cm22 nm21) and upwelling radiance (Lu, units:
mW cm22 sr21 nm21) separately, and then the in-water radiance is propagated to right above the water sur-
face to obtain the water-leaving radiance. The known sources of measurement uncertainty could originate
from instrument calibrations [Bailey et al., 2008; Wei et al., 2012], instrument self-shading effect [Gordon and
Ding, 1992], wave-focusing effects [Wei et al., 2014; Zibordi et al., 2004], propagation of Lu(z) to Lw [Wei et al.,
2015], and reflection or shading noise from the ship hull. On the other hand, Rrs data from the above-water
approach are likely subject to uncertainties due to sea surface reflection [Lee et al., 2010a; Mobley, 1999],
bidirectional reflectance distribution function (BRDF) [Lee et al., 2011; Morel and Gentili, 1996; Voss and Morel,
2005], sky cloudiness, sun glints, and white caps [Gordon and Wang, 1994a]. The skylight-blocked approach
(SBA) [Lee et al., 2013; Tanaka and Sasaki, 2006] can directly measure Lw (then Rrs), but to some degree it is
also subject to self-shading error. In addition to these systematic errors, there are likely unidentified errors
and uncertainties or artifacts during field observations resulted from uncontrollable field environment.
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Obtaining accurate Rrs spectra from space is even more challenging. The quality of Rrs spectra derived from a
satellite ocean color sensor is significantly impacted by the efficacy of atmospheric corrections [Gordon and
Wang, 1994b; IOCCG, 2010]. For example, at the top of atmosphere (TOA) about 90% of the total radiance
received by a satellite sensor is contributed from the atmosphere. Small errors in the atmospheric correction
will result in large errors in the derived Rrs. In coastal regions, atmospheric correction of satellite ocean color
images is a daunting task because of the complex atmospheric and water properties [IOCCG, 2010].

Methods to quality control (QC) Rrs data are diverse and system dependent [Bailey and Werdell, 2006;
McClain et al., 1992; Ruddick et al., 2005; Werdell and Bailey, 2005; Zibordi et al., 2009b]. The in situ Rrs meas-
urements usually go through certain QC steps during data conversion (e.g., absolute calibration) and subse-
quent data postprocessing (e.g., tilt filtering and data binning); these processes are often embedded in the
processing software provided by the instrument manufacturers. The difficulty is, however, that environmen-
tal disturbance to the measurements and artifacts cannot be fully accounted for in these postprocessing
steps. When compiling the NASA bio-Optical Marine Algorithm Dataset (NOMAD), Werdell and Bailey [2005]
defined and utilized rejection criteria to eliminate abnormal and spurious data. For instance, the observed
spectral surface irradiances were compared with modeled clear sky values, and those stations were consid-
ered questionable and discarded when the in situ value exceeded the modeled value by more than 33%.
Ruddick et al. [2005] discussed the QC of above-water Rrs measurements at near-infrared (NIR) bands based
on the spectral similarity in the NIR domain. Their method is more applicable to coastal turbid waters and
does not provide further information on the quality of Rrs spectra in the visible domain. In processing the
AERONET-OC data, Zibordi et al. [2009b] proposed a three-level scheme for the normalized water-leaving
radiance (Lwn, units: mW cm22 sr21 nm21) with thresholds including, e.g., Lwn(k)>20.01 mW cm22 nm21

sr21 to ensure an exclusion of large negative values; Lwn(412)< Lwn(443) as commonly met in coastal waters
and Lwn(1020)< 0.1 mW cm22 nm21 sr21 to exclude reflecting obstacles along the optical path between the
instrument and the water surface; and then inspection of the spectral consistency using statistical methods
[D’Alimonte and Zibordi, 2006]. A QC procedure was also developed for satellite ocean color data [McClain
et al., 1992]. This method consists of a system of processing flags for Level-2 products. A total of 31 flags are
currently employed and applied pixel by pixel, including ATMFAIL, STRAYLIGHT, HIGLINT, COASTZ, etc. [Rob-
inson et al., 2003]. These flags use predetermined thresholds. For example, the glint flag is activated when
the normalized sun glint reflectance is found exceeding 0.005. Pixels with stray light contamination from
adjacent, bright sources such as coasts and clouds are flagged in Level-2 products and masked in Level-3
products. Further, to validate satellite Rrs against in situ data, Bailey and Werdell [2006] introduced a scheme
by considering the spatial uncertainty, coincidence determination, viewing and solar zenith angles, and sta-
tistical confidence of the mean pixel values. To reduce the Rrs errors from satellite sensor digitization noise,
Hu et al. [2005] recommended the median Rrs values over a box of 3 3 3 pixels be obtained to reduce
uncertainties in satellite ocean color products.

A common practice to evaluate the accuracy of the Rrs data obtained from remote-sensing platforms is to
compare Rrs data with in situ measurements wavelength-by-wavelength. Statistical measures (e.g., R2 and
relative error, etc.) are often obtained as an indicator of the accuracy of the Rrs data obtained remotely.
Such an approach characterizes the overall quality of the remotely obtained Rrs data and provides an indica-
tion of the systematic performance of the instrument and data-processing system for each spectral band
[Bailey and Werdell, 2006; Zibordi et al., 2009a]. This way of evaluation treats the Rrs property similarly as
those of biogeochemical properties such as the chlorophyll a concentration, and considers Rrs at each wave-
length as an independent property. Such scatter-plots or linear regressions wavelength by wavelength can-
not tell the quality of each Rrs spectrum, however. Note that for remote-sensing inversions [IOCCG, 2000,
2006], it seldom uses Rrs at one band to derive in-water properties, rather it uses multiple bands or the
entire Rrs spectrum. Therefore, it is important and imperative to measure objectively the quality of each Rrs

spectrum obtained from any platforms.

In this study, a novel system is developed for objective quality assurance (QA) of an individual Rrs spectrum.
Based on in situ Rrs data obtained from coastal waters and clear oceanic waters, we define the domain of
variability of the spectral shapes and amplitudes of Rrs spectra in different water types using a unique opti-
cal water type classification scheme. A score metric ranging from 0 (lowest quality) to 1 (highest quality) is
further devised to measure the quality of any target Rrs spectrum. Examples of applications of this QA sys-
tem to synthetic, in situ, and satellite data are also presented.
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2. Development of the QA system

2.1. In Situ Measurements
In situ hyperspectral Rrs spectra were collected from a wide range of marine environments, with chlorophyll
a concentration ([CHL], units: mg m23) varying from as low as 0.02 mg m23 in the subtropical gyres to tens
of mg m23 in the coastal regions (Figure 1). The data were retrieved by above-water approach, SBA [Lee
et al., 2013] and depth-profiling approach, with a wavelength range of 400–800 nm and 10 nm resolution.
In total, there are 958 Rrs spectra adopted in subsequent analyses. The Rrs data from the three approaches
account for about 83%, 11%, and 6%, respectively, of the whole data sets. The aggregate data of these mea-
sured hyperspectral Rrs spectra are illustrated in Figure 2. In this study, Rrs of nine visible wavelengths (412,
443, 488, 510, 531, 547, 555, 667, and 678 nm) are extracted from the hyperspectral database, and are
referred to as the ‘‘reference’’ data hereafter. It is noted that many of these wavelengths are already incorpo-
rated in heritage and currently operational ocean color satellite sensors including the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), Moderate-resolution Imaging Spectroradiometer (MODIS), Medium Resolu-
tion Imaging Spectrometer (MERIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Landsat 8.
2.1.1. Rrs Data From Above-Water Approach
The primary data for this Rrs database were obtained from the Gulf of Mexico, Adriatic Sea, South China Sea, North
Pacific Gyre, Mississippi River plume, Yangtze River plume, as well as optically shallow waters in the West Florida

Shelf and around Key West (Florida) (Fig-
ure 1). The range of [CHL] is from 0.02 to
80 mg m23; the range of suspended sed-
iment matter is from the sensors’ lower
detection limit up to �100 g m23; the
range of bottom depth is from �1 m to
>1000 m with substrates of seagrass,
sand, and coral reef. The instruments
used are all calibrated commercial radio-
meters from ultraviolet bands to near-
infrared bands including Spectrix (400–
850 nm), GER (350–1050 nm), and RAM-
SES (320–950 nm) and have a fine pixel
dispersion of �2–3 nm with half-value-
bandwidth of �1–1.5 nm. The data-
processing scheme follows the NASA
ocean optics protocol [Mueller et al., 2003]
and the spectral optimization scheme of
Lee et al. [2010a] for refinement.

Figure 1. Locations of field observation of remote-sensing reflectance.

Figure 2. Spectra of remote-sensing reflectance used in this study.
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2.1.2. Rrs Data From Floating Instrument With the SBA
Another source of hyperspectral Rrs was obtained from a floating system incorporating the SBA [Lee et al.,
2013] in coastal waters including Massachusetts Bay, northern Gulf of Mexico, and the Caribbean Sea (south
of Puerto Rico) (Figure 1). The SBA system, as its name implies, consists of a hyperspectral radiometric profil-
er (350–800 nm, Satlantic Inc., Halifax, Canada) and a skylight-blocking apparatus attached to the radiance
sensor. It is thus able to directly measure Lw in a continuous manner and provides a time series of Rrs and
allows a reliable evaluation of the Rrs uncertainty. The time series measurements of Rrs spectra were further
inspected based on the Rrs data at a single band of 698 nm following the procedure of Wei et al. [2015].
Basically, a density function was first determined for the Rrs(698) time series, and those deviating by 630%
from the first mode of the density function were then removed. This procedure can effectively eliminate
those data potentially contaminated by sea surface reflected light when the cone is suspended above the
surface and/or immersion of the radiance sensor head within the water at high seas. After filtering, the
median Rrs spectrum is derived for the remaining Rrs data and considered as true Rrs for that water body.
For the waters encountered and the spectral range (400–700 nm) considered, the instrument self-shading
error is found quite small (less than 5%) based on Gordon and Ding [1992].
2.1.3. Rrs Data From Hyperspectral Profiler
A third source of hyperspectral Rrs data was retrieved from the North Pacific Gyre and the South Pacific Gyre
using a free-fall hyperspectral profiler (HyperPro, Satlantic Inc., Halifax, Canada). The data-processing proce-
dure follows the NASA ocean optics protocols [Mueller et al., 2003]. Specifically, the depth profiles of upwell-
ing radiance are propagated to right above the water surface to derive the water-leaving radiance Lw, using
the determined diffuse attenuation coefficient for upwelling radiance, and the upwelling radiance transmit-
tance [Austin, 1974; Wei et al., 2015]. Then the mean remote-sensing reflectance is derived as the ratio of Lw

to Es. Because of extreme clarity, the self-shading effect of this system for the 400–700 nm range is negligi-
ble in these waters.

2.2. Clustering of Optical Water Types
The reference Rrs spectra were first normalized by their respective root of sum of squares (RSS),

nRrsðkÞ5
RrsðkÞXN

i51

RrsðkiÞ2
" #1=2

(1)

where the index N represents the total number of wavelengths, varying from 1 to 9 and ki corresponds to
the wavelengths of 412, 443, 488, 510, 531, 547, 555, 667, and 678 nm. The nRrs spectra vary over the range
between 0 and 1, while it retains the ‘‘shapes’’ pertaining to the original Rrs spectra, i.e., the band ratios of
nRrs(k) remain the same as Rrs(k).

The number of data clusters k was evaluated using the gap method [Tibshirani et al., 2001]. The gap value is
defined as:

GAPnðkÞ5E�n log ðWkÞ½ �2log ðWkÞ (2)

where n is the sample size, k is the number of clusters being evaluated, and Wk is the pooled within-cluster
dispersion measurement, with

Wk5
Xk

r51

1
2nr

Dr (3)

where nr is the number of data points in cluster r, and Dr is the sum of the pair-wise distances for all points
in cluster r. The expected value En*[log(Wk)] is determined by Monte Carlo sampling from a reference distri-
bution, and log(Wk) is computed from the sample data. According to the gap method, the optimum cluster
number of the nRrs data is determined as 23. Interestingly, this number is nearly the same as that of Forel-
Ule water type classes developed 100 years ago [Arnone et al., 2004].

The unsupervised method, K-means clustering technique, was further used to group the nRrs spectra.
K-means clustering, or Lloyd’s algorithm [Lloyd, 1982], is an iterative, data-partitioning algorithm that assigns
n observations to exactly one of k clusters defined by the centroids, where k is chosen before the algorithm
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starts (as shown above, k 5 23). We note that the cosine distance was used in the clustering, which is one
minus the cosine of the angle between the nRrs spectrum x (a reference) and c (a target),

dðx; cÞ512
xc0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xx0ð Þ cc0ð Þ
p (4)

Each centroid is the mean of the nRrs spectra in that cluster, after normalizing those points to unit Euclidean
length. The error function to be minimized is the total within-cluster sum of squares.

The nRrs spectra as clustered into the 23 optical water types are illustrated in Figure 3, with the centroids of
nRrs spectra highlighted for each water type. Within each water type, the nRrs spectra are very similar to
each other and tightly distributed about the centroids. The centroid nRrs spectra of the 23 water types are
illustrated in Figure 4 (with values tabulated in Table 1). These ‘‘mean’’ reference spectra represent a large

Figure 3. Clustering of 23 optical water types. The gray-black curves represent the normalized Rrs spectra classified into each water type.
The mean Rrs spectra are highlight in red, with the error bars characterizing the maximum and minimum values. And in each water type,
the total numbers of available Rrs spectra are also given.
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range of waters with [CHL] varying
from 0.02 mg m23 to tens mg m23.
Corresponding to Figure 3, the upper
limits and lower limits of all nRrs spec-
tra at discrete bands have been identi-
fied for each water type and are
tabulated in appendix (see Appendix A
Tables A1 and A2). The identified nRrs

mean spectra, together with the upper
boundary spectra and lower boundary
spectra form the core of the QA system
and will be used in the following sec-
tions to perform the QA of an individu-
al Rrs spectrum.

It is necessary to emphasize that the
above clustering procedure is focused
on the spectral shapes, and is distinct
from other exercises of optical water
type clustering which often used the
Euclidean distance of Rrs spectra [Le
et al., 2011; M�elin and Vantrepotte,
2015; Moore et al., 2009, 2001]. The

Euclidean distance, including transformed and weighted forms such as Mahalanobis and likelihood distan-
ces, is inherently insensitive to the shapes of the spectral pattern [Sohn et al., 1999].

2.3. Water Type Matchup and Comparison
To evaluate or quantitatively measure the data quality of a target reflectance spectrum, R�rs, a four-step pro-
cedure is developed:

Step 1 is to match up R�rs(k0) with nRrs(k) with regard to the wavelengths. If R�rs has more spectral bands than
that of nRrs, we will only choose the same wavelengths with nRrs for further analysis. If R�rs has fewer

Figure 4. Mean normalized remote-sensing reflectance spectra characteristics of
23 water types.

Table 1. Mean Normalized Remote-Sensing Reflectance Spectra (nRrs) for the 23 Optical Water Types

Water Type

Wavelength (nm)

CHL (mg m23)a412 443 488 510 531 547 555 667 678

1 0.738 0.535 0.335 0.169 0.112 0.084 0.072 0.007 0.007 0.06
2 0.677 0.534 0.394 0.225 0.156 0.120 0.104 0.011 0.010 0.10
3 0.608 0.521 0.436 0.280 0.204 0.161 0.140 0.016 0.017 0.16
4 0.510 0.478 0.462 0.348 0.279 0.230 0.206 0.029 0.031 0.35
5 0.430 0.436 0.472 0.386 0.326 0.278 0.253 0.038 0.041 0.52
6 0.363 0.387 0.458 0.408 0.368 0.328 0.304 0.042 0.047 0.76
7 0.309 0.355 0.451 0.419 0.392 0.356 0.335 0.048 0.052 0.94
8 0.276 0.315 0.415 0.415 0.414 0.394 0.378 0.062 0.067 1.51
9 0.349 0.335 0.391 0.386 0.387 0.382 0.378 0.090 0.118 1.63
10 0.228 0.275 0.383 0.407 0.430 0.427 0.420 0.079 0.082 2.35
11 0.291 0.276 0.342 0.367 0.401 0.424 0.437 0.129 0.181 3.28
12 0.187 0.241 0.342 0.382 0.427 0.450 0.461 0.147 0.151 3.80
13 0.173 0.220 0.342 0.393 0.447 0.462 0.464 0.093 0.096 4.61
14 0.188 0.235 0.319 0.363 0.412 0.445 0.463 0.215 0.214 4.77
15 0.143 0.191 0.306 0.365 0.434 0.472 0.492 0.170 0.180 6.57
16 0.181 0.200 0.261 0.307 0.365 0.410 0.437 0.359 0.374 7.25
17 0.174 0.203 0.283 0.334 0.399 0.446 0.472 0.272 0.280 7.07
18 0.142 0.169 0.279 0.349 0.439 0.498 0.525 0.121 0.131 10.41
19 0.050 0.126 0.219 0.277 0.340 0.392 0.423 0.452 0.449 10.81
20 0.117 0.153 0.258 0.324 0.412 0.477 0.515 0.243 0.259 12.28
21 0.163 0.175 0.249 0.308 0.400 0.490 0.544 0.190 0.217 16.08
22 0.111 0.135 0.226 0.292 0.385 0.463 0.511 0.310 0.329 17.57
23 0.145 0.133 0.176 0.215 0.286 0.423 0.548 0.341 0.449 34.59

aMedian chlorophyll a concentration.
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wavelengths than the nRrs spectra (i.e., N(k0)< 9), a subset of nRrs(k0) and associated upper boundary spectra
nRrs

U(k0) and lower boundary spectra nRrs
L(k0) will be extracted first for k0.

Step 2 is the normalization of R�rs spectra following equation (1). For the case of N(k0)< 9, the new nRrs(k0)
spectra will be rescaled through the normalization procedure of equation (1) so that the RSS of nRrs(k’) is
equal to one. Further, the new upper and lower boundary spectra nRrs

U(k’) and nRrs
L(k0) will also be rescaled

by the newly rescaled nRrs(k0) spectra as below,

nRrs
UðkÞ5 nRrs

UðkÞ
XN

i51

nRrsðkiÞ2
" #1=2

nRrs
LðkÞ5 nRrs

LðkÞ
XN

i51

nRrsðkiÞ2
" #1=2

(5)

Step 3 is to assign a water type to the target spectrum by comparing it with the reference nRrs spectra. The
spectral similarity between the target spectrum nR�rs and reference spectra nRrs are estimated using a spec-
tral angle mapper (SAM) [Kruse et al., 1993],

cos a5

XN

i51

nR�rs � nRrs

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i51

nR�rsðkiÞ
� �2XN

i51

nRrsðkiÞ
� �2

s (6)

where a is the angle formed between the reference spectrum nRrs and the normalized target spectrum nR�rs.
As a spectral classifier, SAM is able to determine the spectral similarity by treating them as vectors in a space
with dimensionality equal to the number of bands, N. The water type of the target spectrum nR�rs is identi-
fied as the one with the largest cosine values (equivalent to the smallest angles).

Step 4 is the computation of QA scores by comparing the target spectrum nR�rs with the upper and lower
boundaries (nRrs

U and nRrs
L) of the corresponding water type. The number of wavelengths where nR�rs falling

within the boundaries is counted, and used to derive the total score (Ctot) for the nR�rs spectrum,

Ctot5
Cðk1Þ1Cðk2Þ1 � � �1CðkNÞ

N
(7)

where Ci is the wavelength-specific score, with N the total number of wavelengths for both R�rs and Rref
rs . At

wavelength ki, for example, if nRrs*(ki) is found beyond either the upper (nRrs
U(ki)) or lower (nRrs

L(ki)) bound-
ary of nRrs, a score of 0 will be assigned to this wavelength, i.e., C(ki) 5 0; otherwise, C(ki) 5 1. As suggested
by equation (7), the total score Ctot will vary within the range of [0, 1]. A higher score indicates higher data
quality.

To account for the measurement uncertainty and possible data-processing errors and likely insufficient data
coverage, the original upper boundary and lower boundary are slightly modified by 60.5%, nRrs

U 5 nRrs
U 3

(1 1 0.005) and nRrs
L 5 nRrs

L 3 (1 2 0.005), respectively. Note that this added range of 0.5% is one order of
magnitude smaller than the projected accuracy for radiance measurement [Hooker et al., 1992].

3. Evaluation of the QA System

3.1. Synthesized Rrs Spectra
3.1.1. Measurement-Error-Free Data
The Rrs spectra were synthesized with a database of inherent optical properties (IOP) presented in the Inter-
national Ocean Color Coordinating Group report [IOCCG, 2006]. The synthetic IOP data cover a wide range
of aquatic environments and have been extensively used for model development and validation [Chen
et al., 2015; Salama and Stein, 2009; Wang et al., 2005; Wei and Lee, 2013, 2015; Wei et al., 2016]. The remote-
sensing reflectance was simulated by Hydrolight 5.1 [Mobley and Sundman, 2008]. The inelastic scattering

Journal of Geophysical Research: Oceans 10.1002/2016JC012126

WEI ET AL. QUALITY ASSURANCE OF RRS SPECTRA 8195



including Raman scattering and fluorescence was invoked and included in the model runs. For chlorophyll
fluorescence, a fluorescence efficiency of 0.02 was adopted by default in Hydrolight. The chlorophyll a spe-
cific absorption spectra a�ph(k) were derived as the ratio of aph(k)/[CHL]. Clear skies were assumed with the
solar zenith angles at 308. Sea surface roughness was relatively mild with wind speed of 5 m/s. The scatter-
ing phase function of particles was assumed to follow Fournier-Forand model, with changing backscattering
ratios. The water absorption coefficient from 400 to 550 nm was adopted from Lee et al. [2015]; while the
measurements by Pope and Fry [1997] were used for the other wavelengths. The scattering coefficients of
pure seawater were provided by Morel [1974].

The data quality of simulated Rrs spectra at nine wavelengths (412, 443, 488, 510, 531, 547, 555, 667, and
678 nm) is assessed with the-above designed score metric model. As shown in Figure 5a, 65% of the spectra
are identified with the highest quality with scores of 1. Another 18% of the spectra are scored as 8/9, mean-
ing the individual Rrs spectrum at one wavelength has gone beyond the domain defined by our metrics.
There are another 10% of the Rrs data found out of the range at two wavelengths. Figure 5b further charac-
terizes the statistics of simulated Rrs spectra in terms of the two spectral ratios, Rrs(412)/Rrs(443) and
Rrs(488)/Rrs(547). The IOCCG data represent a large range of waters varying from water types 1 to 23. And
the relatively low QA scores (in this case, scores �0.5) are found with the spectra in extremely turbid waters
and a few others in relatively clear oceanic waters. These low-score data points can be partly explained by
the limited number of reference spectra used in particular water types in the model development, such as
water types of 17, 19, 21, and 23 (Figure 3).
3.1.2. Error-Disturbed Data
Since the errors in Rrs data are hardly predictable, we only discussed two simple cases for assessment of the
performance of the QA system. First, we synthesized random-error-disturbed Rrs spectra. The wavelengths
were randomly chosen from the nine wavelengths of 412, 443, 488, 510, 531, 547, 555, 667, and 678 nm.
Then the percentage errors were randomly set to d 5 5%, 10%, 20%, 30%, or 40%, which are assumed spec-
trally the same for all chosen wavelengths. So the error-disturbed spectra R�rs at wavelengths ki was repre-
sented as Rrs(ki)* 5 Rrs(ki) 3 (1 1 d). The data quality of R�rs was then examined with the score metric model
and is illustrated in Figure 6a. When the Rrs spectra are only subjected to small errors (5%, in this case), very
high scores (�8/9) are found for 90% of the spectra; 70% of the Rrs spectra have found with the highest
scores of 1. As expected, with the increasingly larger errors being added more Rrs spectra show low scores.
It is also noted that a small portion of Rrs spectra are found assigned to the highest scores of 1 even though
the percentage errors are as high as up to 30% and 40%; this reflects the rare situation where the Rrs spec-
trum is subjected to same percentage errors at all nine wavelengths.

Unlike the random errors considered above, the Rrs spectra measured from space and in situ are often sub-
ject to spectrally dependent errors [Bailey and Werdell, 2006; Hooker et al., 2002; Hu et al., 2013; Voss et al.,
2010; Zibordi et al., 2009a]. In blue oceanic waters, for example, the percentage errors of Rrs are more

Figure 5. (a) Frequency distribution of the scores assigned to the simulated Rrs data. The scores are given in fractional numbers with the
numerators referring to the numbers of good-quality wavebands. (b) Ratio distribution of Rrs(412)/Rrs(443) against Rrs(488)/Rrs(547). The cor-
responding 23 water types are denoted in colors and the spectra identified with low QA scores (�0.5) are denoted with cross symbols in
black.
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significant in longer wavelengths because of their extremely small reflectance values [Hu et al., 2013]. Like-
wise, the percentage errors of Rrs spectra in green waters tend to be larger at shorter wavelengths. We syn-
thesized new Rrs spectra with spectrally related errors. For the data belonging to water types 1–7, a
relatively smaller error (5%, 10%, 15%, 20%, or 30%) and a larger error (correspondingly, 15%, 30%, 50%,
75%, or 100%) are universally added to the shorter wavelengths (412, 443, 488, 510, and 530 nm) and lon-
ger wavelengths (547, 555, 667, and 678 nm), separately. For other water types, we added a relatively larger
error to the shorter wavelengths (412, 443, and 488 nm), a relatively small error to the intermediate wave-
lengths (510, 531, and 547 nm), and relatively large but different error to the longer wavelengths (555, 667,
and 678 nm). Figure 6b illustrates the frequency distribution of the scores for the blue waters (in this case,
water types 1–7), which has shown an increasing number of low-score spectra identified with increasing
errors being added to Rrs spectra. Figure 6c describes the data quality for the green and yellow waters; the
same conclusion can also be reached. In particular, the last group of frequency distribution in Figure 6c
mimics the satellite ocean color in coastal waters when the absorbing aerosols are present. For such cases,
the model of score metrics works effectively in identifying them by finding low scores.

3.2. Satellite Measured Rrs Spectra
The MODIS Aqua ocean color images were selected and retrieved from NASA ocean color data archive,
which were calibrated and processed by Ocean Biology Processing Group (OBPG) with the latest processing
(R2014). The Rrs spectra at six wavelengths of 412, 443, 488, 531, 547, and 667 nm were further obtained on

Figure 6. Frequency distribution of the scores for simulated error-disturbed Rrs spectra. (a) Same errors are added to randomly selected
wavelengths. (b) Blue water Rrs spectra with different errors added to shorter wavelengths (412, 443, 488, 510, and 530 nm) and longer
wavelengths (547, 555, 667, and 678 nm), separately; each pair of errors are denoted in the format of fractions in the plot. (c) Similar to
(b) but for green and yellow water Rrs spectra; three errors are added to shorter wavelengths (412, 443, and 488 nm), intermediate
wavelengths (510, 531, and 547 nm) and longer wavelengths (555, 667, and 678 nm), separately.
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a per-pixel basis. Quality of the Rrs spectrum of each pixel was then quantified by the score metrics, and
examples are provided below.
3.2.1. Level-2 Ocean Color on the U.S. East Coasts
An ocean color image collected over the northeastern U.S. coasts on 15 September 2015 was retrieved from
OBPG, and the sky was clear. As would be expected, the distribution of the QA scores reveals that the quali-
ty of Rrs data is very much location dependent (Figure 7a). The offshore waters in the Mid-Atlantic Bight and
Southern Atlantic Bight are generally characterized by high QA scores, except for those near the shorelines.
From the New York Bight, Gulf of Maine to St. Lawrence River and further north, however, the Rrs QA scores
are generally lower than 0.5, suggesting questionable Rrs data for at least half of the evaluated spectral
bands. In particular, the water masses in the center of the Gulf of Maine are of very low QA scores (less than
0.3), indicating highly questionable Rrs data for this ocean color image. Indeed, these low-score pixels are
generally flagged in Level-2 ocean color products. For this particular image, the flags of ‘‘production failure
(PRODFAIL)’’ are generally evoked and assigned to the pixels in the vast majority of the waters within the
Gulf of Maine.

On the same day, Rrs was measured with the SBA system in the southwest of Gulf of Maine to validate the
satellite ocean color data (Figure 7a). Comparison of the matchup data indicates that the MODIS Aqua Rrs

spectrum (which has a QA score of 0.5) deviates from in situ matchup Rrs spectrum (which has a QA score of 1)
increasingly from 488 nm toward 412 nm (Figure 7b). This finding confirms and validates the low QA score
of the satellite Rrs spectrum. Note that the MODIS Aqua Rrs has apparently been underestimated at the
shorter wavelengths, with negative values found at 412 nm, but is fairly reasonable at green and red bands.
Such discrepancies suggest a failure of atmosphere correction for these measurements. The Gulf of Maine is
generally clear and not subject to significant contribution of suspended sediments. A likely cause for the
failure of atmospheric correction is the frequent occurrence of absorbing aerosols in the New England
region [Sierau et al., 2006].

It is interesting, and surprising, that the distribution of the QA score of this MODIS Aqua image is found
related to the mesoscale eddy systems of the Gulf Stream: the clear blue waters in the Sargasso Sea are
observed with relatively lower QA scores (<0.7), with extremely low QA score pixels (<0.1) found for a large

Figure 7. Quality evaluation of the MODISA ocean color data in US East Coasts and Mid-Atlantic Bight. (a) Scores of the satellite ocean col-
or data (September 2015, A2015258180000.L2_LAC). (b) Comparison of the satellite and in situ ocean color matchup in Massachusetts Bay
(in situ station is indicated by a ‘‘�’’ symbol in Figure 7a; position: 42.40498N, 270.54698W; sampling time: 17:07 UTC). (c) MODISA mea-
sured ‘‘bad’’ Rrs spectra at the low-score pixels (indicated by ‘‘•’’ in Figure 7a).
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water mass stretching northeastward in the east of North Carolina (Figure 7a). These pixels are flagged in
the Level-2 products as perturbation of moderate glints. We retrieved and plotted the Rrs spectra from this
region and presented Figure 7c, and found that the Rrs spectra at shorter wavelengths are generally under-
estimated, likely a result of overcorrection of the atmospheric contributions due to glint effects.

Another MODIS Aqua ocean color image was obtained for east U.S coastal and offshore waters on 11
December 2015. The QA score map is shown in Figure 8a. The score distribution has shown very good data
quality for most of the pixels in this scene. The coastal waters in west of the Atlantic Ocean are generally
assigned to very high scores (>0.9), including lower Chesapeake Bay. In situ Rrs spectrum was obtained on
the same day at a deep water location (off South Carolina) using the SBA system. A comparison of satellite
Rrs with in situ Rrs confirms the good quality of the satellite data for this pixel (Figure 8b).

On the other hand, low-score pixels are also easily found along the edges of cloud patches (the clouds are
masked out and shown in white, north of 288N in the image). Most of these pixels at the edges are flagged
as ‘‘product failure (PRODFAIL)’’ in the Level-2 products. According to the QA score distribution, however,
the pixels with a distance more than a few pixels away from the cloud edges still show very low QA scores
(<0.5). Figure 8c shows the Rrs spectra of these pixels, where the Rrs values at the blue wavelengths are
obviously underestimated while Rrs(670) is likely overestimated.
3.2.2. Level-3 Ocean Color Data in Global Oceans
As examples, the QA metrics was also applied to global Level-3 MODISA daily (A2002188_L3m_9km) and
monthly Rrs data (A20021822002212_L3m_9km) (Figure 9). Note all questionable pixels as flagged in Level-
2 products have been removed before the Level-3 composites. As a result, the percentage of pixels with
high scores in the Level-3 Rrs images is generally very high. Further, the frequency of high-score pixels in
monthly product is slightly higher than that of daily product (for brevity, the figures are not shown here),
which is a result of the Level-3 data binning procedure.

The satellite Rrs measurements in the majority of global oceans have QA scores close to 1, with the highest
scores generally found in the center of the subtropical gyres. Not only the deep oceans but most coastal
waters retained high QA scores for these Level-3 products. Exceptions do exist, however. Relatively lower
QA scores (<0.6) are found in the Mediterranean Sea and in the equatorial upwelling regions in west of

Figure 8. Quality evaluation of the MODISA ocean color data in US East Coasts and the Northwest Atlantic Ocean. (a) Scores of the satellite
ocean color data (11 December 2015, A2015345180500.L2_LAC). (b) Comparison of the satellite ocean color and in situ data measured at a
station indicated by ‘‘�’’ symbol in Figure 8a (Station number: 20; position: 32.49448N, 277.85818W; sampling time: 17:04 UTC). (c) MODISA
measured ‘‘bad’’ Rrs spectra from the pixels indicated by ‘‘•’’ in Figure 8a.
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Africa (see Figure 9). Surprisingly, the extremely clear oceanic waters in the North Atlantic Gyre (NAG) do
not show high QA scores either. It should be emphasized this phenomenon of low-score Level-3 Rrs data in
NAG and the equatorial upwelling region in west of Africa persists almost throughout the year (for brevity,
the figures for other months are omitted here). This low score could be due to underrepresentation of Rrs of
NAG in the reference database, where the spectral shapes of these Rrs might be different from that of other
oligotrophic waters because of likely impacts of the Saharan dusts [e.g., Claustre et al., 2002]. It is necessary
to carry out detailed in situ measurements over this region to pinpoint the exact reasons of the low QA
scores of these clear waters.

3.3. In Situ Measured Rrs Spectra
The NOMAD data set was compiled from a large online data depository SeaBASS [Werdell and Bailey, 2005],
and is a widely used for bio-optical model development and validations [Hu et al., 2012; O’Reilly et al., 1998;
Szeto et al., 2011]. Currently the database consists of more than 4000 measurements. For testing and appli-
cation purposes, we only chose the Rrs spectra with available measurements at wavelengths of 412, 443,
488, 555, and 667 nm, and obtained a total of 2358 Rrs spectra (Figure 10). Among these spectra, about one-
third was measured in clear oceanic waters with [CHL]< 0.25 mg m23; the rest were from turbid coastal
waters. Two-thirds of the spectra were measured by the in-water approach, the rest was obtained from the
above-water approach. After applying the QA system to these selected Rrs, we found low-quality Rrs spectra

Figure 9. Scores of the MODISA Rrs data in global oceans. (a) Level-3 daily data (A2002188_L3m_9km). (b) Level-3 monthly data
(A20021822002212_L3m_9km) for July 2002.
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accidentally included in the NOMAD
data set. For illustration, a few ques-
tionable Rrs spectra (QA scores< 0.5)
are highlighted in Figure 10. In addi-
tion, we found that the QA scores are
not dependent on instruments or
[CHL], and Rrs with low QA appeared in
every ocean basins (For brevity, the
distribution map is not shown).

The inclusion of low-quality Rrs data in
NOMAD may impact the related ocean
color algorithm development and sub-
sequent model validations. For exam-
ple, if we only use the Rrs spectra
with the highest scores (QA score 5 1)
for the development of [CHL] algo-
rithm, the coefficients of the new algo-
rithm (here, called OC3m-QA) will be
quite different than the original OC3m
algorithm, with improved model accu-
racy (see Figure 11).

4. Discussion

4.1. Characteristics of the New Water Type Classification
The score metrics developed in this study relies on cosine-based classification scheme, which groups the Rrs

spectra with similar spectral shapes. This optical classification is distinctive from other practices [Le et al.,
2011; M�elin and Vantrepotte, 2015; Moore et al., 2009, 2001]. The spectral angle mapper [Kruse et al., 1993] is
widely used in land remote-sensing community and its extension to ocean color application deserves more

discussion.

First, it suppresses the disturbances of
absolute amplitudes of Rrs spectra to
the clustering, and only takes in
account the spectral shapes of Rrs. A
direct consequence is that only the
waters with similar ‘‘water color’’ can
be grouped together. For example, the
blue water is by no accident combined
with green or yellow color waters
because of their contrasting Rrs spec-
tral shapes (Figure 3).

Second, the normalization in equation
(1) basically rescales the Rrs spectra to
the domain of (0,1), rendering the nRrs

spectra comparable with respect to
their ‘‘amplitudes.’’ Moreover, the nor-
malization retains the same spectral
ratios for nRrs with the corresponding
Rrs spectra, while at the same time has
constrained the clustered nRrs spectra
within a very narrow range. To illus-
trate, the coefficient of variation (CV)
of nRrs and Rrs is compared for each

Figure 10. Rrs spectra extracted from NOMAD database for QA testing (n 5 2358).
The spectra highlighted with symbols (circles, diamonds, square, and triangles)
exemplify the bad Rrs spectra present in NOMAD.

Figure 11. Comparison of estimated [CHL] with in situ measured [CHL]. The origi-
nal (not quality controlled) data are compared to OC3m modeled data (in green
open circles). The quality controlled data (in pink dots, with the highest scores)
are compared to OC3m-QA estimated data. OC3m-QA has new model coefficients
developed from these highest-score data (N51059, excluding those from the Arc-
tic and Southern Oceans) only. The OC3m-QA has the new model coefficients as
0.2053, 22.0159, 1.1159, 21.3885, and 0.5474.
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water type in Table 2. The CV’s of nRrs spectra are much smaller than the CV’s of the corresponding Rrs spec-
tra in the visible domain. In blue waters, such a tendency is more evident at short wavelengths because of
higher Rrs values in this spectral domain. In contrast, it is more obvious at longer wavelengths in the green
or yellowish waters.

4.2. Applications to Satellite Ocean Color Validations
A common practice in evaluating the satellite ocean color data quality is through comparison with in situ
data set; with the latter assumed as the ‘‘ground truth’’ [Bailey and Werdell, 2006] by default. Graphically, the
ocean color data matchups can be illustrated in a manner of scatter-plots. Various error statistics can be
derived for the matchups, such as the relative percentage error (e), unbiased absolute percentage error (d),
and the root-mean-square error (RMSE). These estimators convey important information on the overall qual-
ity of various ocean color observations [IOCCG, 2006; Zibordi et al., 2009a]. However, the practices of scatter-
plots alone do not explicitly convey the quality of an individual Rrs spectrum. The limitation is further illus-
trated in Figure 12 with Rrs spectra. The newly developed QA system complements this common validation
practice in ocean color products, and assesses the data quality for individual Rrs spectra.

The ocean color data measured by different sensors have different number of spectral bands and different
central wavelengths, including MODIS Aqua (412, 443, 488, 531, 547, 667, and 678 nm), SNPP VIIRS (412,
443, 488, 555, and 667 nm), SeaWiFS (412, 443, 488, 510, 531, 555, and 667 nm), MERIS (412, 443, 488, 510,
555, 667, and 678 nm), and Landsat 8 (443, 482, 561, and 655 nm). The QA score system developed here
includes nine spectral bands, which have more bands than any of these satellite ocean color sensors. It is
important to evaluate whether the developed QA system with nine wavelengths can be reliably applied to
Rrs data from sources with lower number of spectral bands. To test this impact, we extracted four subsets of
Rrs data from the reference data set used in section 2, according to different wavelengths of MODIS Aqua,
SeaWiFS, VIIRS and Landsat 8 (for Landsat 8, we assumed 443, 488, 555, and 667 nm as the central wave-
lengths). We first tested the repeatability of identified water types. It is found that the water type clustering
is fairly accurate, even though different spectral bands are employed. The statistics of the scores deter-
mined for every sensor are presented in Figure 13. For each case, about 90% of the evaluation spectra are
assigned to high QA scores of >0.8. The best performance is found with SeaWiFS data, then MODIS Aqua,
VIIRs and Landsat 8 data (Figure 13b). This is probably related to the fact that SeaWiFS has the highest num-
ber of wavelengths, while the simulated Landsat 8 data only have four bands being used in the QA system.
Note that in the comparisons we ignored the potential effects due to the differences in the spectral

Table 2. Coefficient of Variation (%) of the nRrs Spectra and Corresponding Rrs Spectra for Each Water Type

Water Type

nRrs(k) Rrs(k)

412 nm 443 nm 555 nm 667 nm 412 nm 443 nm 555 nm 667 nm

1 3 2 21 86 25 24 13 77
2 3 1 11 43 19 18 18 51
3 4 2 11 55 21 20 20 78
4 6 4 8 34 27 26 25 46
5 7 4 8 38 37 38 44 96
6 8 3 5 20 43 44 44 48
7 8 4 4 29 60 60 60 66
8 9 5 4 21 61 63 63 64
9 9 4 6 29 82 95 91 145
10 13 6 4 25 60 66 64 87
11 11 8 6 16 108 119 103 129
12 13 7 3 14 58 61 58 65
13 18 11 3 25 39 40 39 44
14 13 8 3 11 42 46 39 46
15 18 9 2 10 52 54 48 53
16 15 11 4 6 105 111 108 111
17 14 9 4 7 86 92 84 91
18 22 13 3 24 55 51 41 50
19 21 17 3 5 58 49 47 46
20 25 15 4 10 52 53 44 48
21 23 14 4 13 51 46 40 46
22 28 16 5 8 67 71 74 74
23 20 18 6 7 46 46 32 36
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bandwidth (FWHM) of satellite sensors. Landsat 8 has a much wider bandwidth (15–60 nm) than the other
ocean color satellite sensors (10–20 nm) in the visible domain.

On the other hand, for hyperspectral data, a modification or expansion of this QA system can be readily
applicable.

4.3. Bio-Optical Implications and Significance
The remote-sensing reflectance is probably the most commonly used apparent optical property (AOP) in
ocean color remote sensing. For example, the widely used band ratio [O’Reilly et al., 1998] or band differ-
ence [Hu et al., 2012] algorithms for [CHL] rely on Rrs data at both blue and green wavelengths. Semianalyti-
cal bio-optical algorithms require the Rrs spectrum at more wavelengths as inputs [Ciotti et al., 1999; IOCCG,
2000, 2006; Wei and Lee, 2015]. Thus, the QA of every individual Rrs spectrum is fundamental for accurate
remote sensing of water-column properties. When questionable or erroneous Rrs spectra are involved, the
bio-optical retrievals from the ocean color will mostly likely be undermined. Our preliminary analysis dem-
onstrates the significance of Rrs data quality to estimates of [CHL] (Figures 10 and 11). Errors or uncertainties
of Rrs measurements will propagate to the retrievals of inherent optical retrievals as well [Lee et al., 2010b].

The ‘‘low’’ data quality of MODIS Rrs found in the North Atlantic Gyre and in the Mediterranean Sea (Figure 9)
may be partly related to an insufficient representativeness of Rrs spectra in the database for these waters.
Indeed, the oligotrophic waters in North Atlantic and marginal seas could be optically different than that in
the Pacific or South Atlantic, because the former are likely subject to the impacts of dusts transported from
Sahara in the easterly trades and Asian dusts from the west [Uno et al., 2009]. The absorptive fine mineral
particles present in surface waters can attenuate the blue light, addition to the contribution of

Figure 12. Application and limitation of scatter-plot practice in evaluating the data quality of Rrs spectra. The Rrs
0 spectrum (in green) rep-

resents true values. The Rrs
1 and Rrs

2 spectra refer to two example measurements. The scatter-plot of Figure 12b represents the measure-
ment scenario in Figure 12a, where the Rrs

1 and Rrs
2 spectra retain the same shapes as Rrs

0. Figure 12c represents another situation when
the Rrs

1 and Rrs
2 spectra are erroneously measured (for brevity, we simply switched Rrs values at some bands between Rrs

1 and Rrs
2 spectra).

Interestingly, the resulted new scatter-plot in Figure 12d is exactly the same with Figure 12b, with the same error statistics.
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phytoplankton absorption and CDOM and detritus [Claustre et al., 2002]. On the other hand, the presence of
absorptive particles in the atmosphere poses a challenge to atmospheric correction, resulting in under-
estimated Rrs at blue bands in these waters [Schollaert et al., 2003]. The latter situation could have occurred
in the satellite retrieved ocean color data. A comprehensive investigation with accurate field measurement
of Rrs is required to completely understand the low QA scores of MODIS Rrs in those waters.

Nevertheless, it is imperative to QC and quality assure an individual Rrs spectrum measured from both in
situ and satellite platforms, in order to produce multisensor optical and biogeochemical products with high
quality.

5. Conclusions

We have developed a QA system to objectively measure the quality of each individual Rrs spectrum. The QA
system is based on classification of Rrs spectral similarity determined by the cosine distance, which is further
measured by the upper and lower boundaries obtained from a wide range of field observations. This scheme
and the spectral constraints together constitute a robust and quantitative QA system. Basically the metric sys-
tem provides information of likely reliability of a target Rrs spectrum. If a score of 0 is reached, it indicates the
target Rrs is highly questionable, although it could be true for that specific environment. The performance of
this QA scheme was tested with synthesized, in situ measured, and satellite obtained Rrs spectra and has
shown great reliability and applicability, where ‘‘bad’’ or highly questionable Rrs spectra were well identified.

The QA metric system does not require a priori knowledge of the optical properties of waters under study,
and it is applicable to multispectral or hyperspectral Rrs data obtained from any platform. Since it is based
on in situ Rrs measurements from a wide range of water types, the innovative QA system can be universally
used for QC of ocean color data from global oceans.

Figure 13. Testing results for the accuracy of score metrics model when applied to satellite ocean color data. (a) MODIS Aqua: 412, 443,
488, 531, 547, and 667 nm; (b) SeaWiFS: 412, 443, 488, 510, 531, 555, and 667 nm; (c) VIIRS: 412, 443, 488, 555, and 667 nm; (d) Landsat
8 (assumed 443, 488, 555, and 667 nm).
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Because all field measurements are discrete, it is likely that the database used here does not cover every
water types and/or there are situations where the range of Rrs variability goes beyond the domains defined
here. Such a limitation can be updated or revised when more high-quality in situ measurements are avail-
able. A MATLABVR script is made available (http://oceanoptics.umb.edu/score_metric/) to facilitate the evalu-
ation and refinement of the score metrics. Nevertheless, this QA scheme provides an easily applicable
system to quantitatively evaluate the quality of individual Rrs spectra.

APPENDIX A

Table A1. Upper Boundary of the Normalized Remote-Sensing Reflectance Spectra for the 23 Water Types

OWT 412 443 488 510 531 54750 555 667 678

1 0.780 0.559 0.367 0.203 0.138 0.109 0.096 0.046 0.047
2 0.711 0.555 0.424 0.254 0.182 0.141 0.126 0.028 0.027
3 0.646 0.540 0.471 0.322 0.243 0.197 0.173 0.067 0.062
4 0.570 0.515 0.528 0.374 0.312 0.265 0.240 0.062 0.062
5 0.478 0.488 0.548 0.418 0.352 0.314 0.301 0.099 0.098
6 0.423 0.416 0.506 0.427 0.390 0.358 0.345 0.065 0.071
7 0.362 0.386 0.485 0.439 0.413 0.378 0.360 0.090 0.096
8 0.328 0.343 0.464 0.449 0.441 0.418 0.412 0.094 0.140
9 0.429 0.369 0.434 0.413 0.412 0.403 0.410 0.166 0.175
10 0.283 0.318 0.471 0.451 0.451 0.454 0.452 0.128 0.125
11 0.360 0.319 0.373 0.400 0.427 0.451 0.477 0.170 0.284
12 0.253 0.287 0.374 0.405 0.439 0.475 0.507 0.183 0.188
13 0.235 0.253 0.392 0.424 0.473 0.486 0.488 0.128 0.134
14 0.263 0.263 0.350 0.382 0.429 0.461 0.507 0.262 0.276
15 0.202 0.219 0.333 0.381 0.448 0.493 0.521 0.203 0.224
16 0.230 0.224 0.296 0.339 0.382 0.432 0.465 0.393 0.419
17 0.232 0.244 0.316 0.355 0.415 0.463 0.503 0.302 0.313
18 0.202 0.204 0.309 0.376 0.455 0.522 0.560 0.163 0.170
19 0.066 0.147 0.236 0.296 0.367 0.415 0.439 0.479 0.493
20 0.159 0.184 0.296 0.356 0.429 0.500 0.571 0.290 0.293
21 0.235 0.237 0.293 0.336 0.443 0.515 0.605 0.241 0.286
22 0.159 0.167 0.251 0.318 0.408 0.482 0.573 0.351 0.383
23 0.180 0.167 0.198 0.233 0.310 0.452 0.578 0.379 0.509

Table A2. Lower Boundary of the Normalized Remote-Sensing Reflectance Spectra for the 23 Water Types

OWT 412 443 488 510 531 547 555 667 678

1 0.709 0.512 0.271 0.119 0.073 0.053 0.044 0.002 0.002
2 0.638 0.509 0.364 0.198 0.132 0.100 0.084 0.003 0.003
3 0.553 0.497 0.412 0.246 0.179 0.140 0.119 0.007 0.007
4 0.436 0.438 0.419 0.310 0.241 0.193 0.169 0.010 0.011
5 0.365 0.390 0.417 0.366 0.287 0.232 0.202 0.016 0.015
6 0.307 0.360 0.405 0.387 0.347 0.297 0.272 0.029 0.028
7 0.251 0.315 0.415 0.403 0.373 0.334 0.306 0.016 0.021
8 0.195 0.266 0.375 0.386 0.390 0.371 0.345 0.023 0.025
9 0.295 0.316 0.367 0.362 0.359 0.352 0.341 0.058 0.066
10 0.131 0.234 0.336 0.381 0.407 0.390 0.376 0.022 0.032
11 0.247 0.240 0.311 0.345 0.366 0.370 0.377 0.085 0.118
12 0.148 0.207 0.302 0.336 0.409 0.425 0.427 0.110 0.115
13 0.092 0.161 0.313 0.375 0.423 0.438 0.436 0.024 0.023
14 0.158 0.200 0.265 0.311 0.382 0.427 0.438 0.154 0.179
15 0.066 0.149 0.273 0.334 0.418 0.455 0.466 0.135 0.143
16 0.156 0.161 0.226 0.282 0.356 0.394 0.417 0.328 0.332
17 0.137 0.176 0.252 0.310 0.388 0.418 0.437 0.244 0.243
18 0.058 0.116 0.249 0.321 0.419 0.480 0.499 0.050 0.054
19 0.032 0.080 0.183 0.246 0.324 0.378 0.411 0.417 0.409
20 0.036 0.096 0.218 0.293 0.395 0.464 0.490 0.204 0.217
21 0.107 0.141 0.199 0.246 0.347 0.464 0.508 0.149 0.171
22 0.073 0.098 0.200 0.249 0.330 0.450 0.485 0.264 0.292
23 0.093 0.095 0.146 0.194 0.265 0.382 0.485 0.301 0.383
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