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A B S T R A C T   

Ultraviolet (UV) radiation has a profound impact on marine life, but historically and even currently, most ocean color satellites cannot provide radiance mea
surements in the UV, and thus UV penetration, in the global ocean. We develop a system (termed as UVISRdl) in this study, based on deep learning, to estimate remote 
sensing reflectance (Rrs) at 360, 380, and 400 nm (collectively termed as near-blue UV bands, nbUV) from Rrs in the visible bands that are obtained by ocean color 
satellites. This system is tested using both synthetic and field-measured data that cover a wide range and large number of values, with the resulted coefficient of 
determination close to 1.0 and bias close to 0 between UVISRdl estimated and known Rrs(nbUV). These results indicate excellent predictability of Rrs(nbUV) from 
Rrs(visible) via UVISRdl. The system was further applied to VIIRS (the Visible Infrared Imaging Radiometer Suite) data with the estimated Rrs(nbUV) evaluated using 
matchup field measurements, and obtained a mean absolute relative difference (MARD) at 360 nm of ~14% for oceanic waters and ~ 50% for coastal waters. These 
results are equivalent to those reported in the literature for satellite Rrs(visible) in oceanic and coastal waters. Examples of the global distribution of Rrs(nbUV), and 
subsequently the diffuse attenuation coefficient at the nbUV bands (Kd(nbUV)), are generated after applying UVISRdl to Rrs(visible) from the VIIRS data. The system 
lays the groundwork to generate decade-long Rrs(nbUV) and Kd(nbUV) from satellite ocean color data, which will be useful and important for both ocean color 
remote sensing and biogeochemical studies.   

1. Introduction 

Ultraviolet (UV) radiation is part of solar energy, which plays com
plex roles in biogeochemical processes on land and in ocean (Cullen and 
Neale, 1994; Smith et al., 1992; Zepp et al., 2007). For instance, high 
doses of UV can inhibit the growth of plants and phytoplankton, while 
low doses under some conditions can be a useful energy source for 
phytoplankton photosynthesis (Gao et al., 2012). In addition, phyto
plankton may develop mycosporine-like amino acids (MAAs) in 
response to UV radiation; these MAAs are strongly UV absorbing, 
functioning as a “shield” to protect photosynthesis pigments (Moisan 
and Mitchell, 2001; Morrison and Nelson, 2004). Further, dissolved 
organic matter (DOM) has a high absorption capacity for UV radiation 
and undergoes photochemical conversion under sunlight, indicating 
that DOM is very sensitive to sunlight in the UV domain (Piccini et al., 
2009; Zepp et al., 2007). UV radiation may also impact the diel vertical 
movement of zooplankton (Rose et al., 2012). In the atmosphere, since 
the most absorbing aerosol species contribute absorption in the shorter 

(UV–visible) wavelengths (Kahn et al., 2016), research on UV radiation 
will also help improve atmospheric correction (Frouin et al., 2019). As 
indicated in Werdell et al. (2018), the future use of hyperspectral 
spectrometer from UV (~350 nm) to near-infrared (~900 nm) will 
improve the accuracy in ocean color remote sensing. All these suggest 
the necessity to map UV penetration in the global ocean. 

The distribution of underwater UV radiation depends on two factors: 
UV intensity at the sea surface and the diffuse attenuation coefficients 
for downwelling irradiance (Kd; m− 1) at these UV wavelengths. The first 
factor is governed by ozone and atmospheric properties, which can now 
be well estimated using satellite measurements (Herman and Celarier, 
1997; Kuchinke et al., 2004; Smyth, 2011b; Vasilkov et al., 2001). Kd is 
an apparent optical property of the ocean; although there are many field 
measurements (Conde et al., 2000; Dupouy et al., 2018; Overmans and 
Agustí, 2019; Tedetti and Sempéré, 2006) and more than four decades of 
Kd(visible) from ocean color satellites, there is no standard global 
Kd(UV) product distributed by the remote sensing agencies. This is in 
part because the shortest wavelength of the past and most of the present- 
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day ocean color satellites is ~410 nm. Thus, there are no global mea
surements of oceanic optical properties in the UV domain by satellites. 
Two decades ago, Vasilkov et al. (2001) presented a preliminary oceanic 
distribution of UV radiation in the 280–320 nm range based on TOMS 
(the Total Ozone Mapping Spectrometer) and SeaWiFS (the Sea-viewing 
Wide Field-of-view Sensor) products, but the empirical coefficients for 
the Kd(UV) model were not derived from globally inclusive measure
ments. Thus its applicability to the global ocean is unknown. In short, 
the penetration of UV radiation in the global ocean is still far from 
known, nor the impact of UV radiation on marine life on a basin scale. 
Only some recent ocean color satellite sensors and the planned PACE 
(Plankton, Aerosol, Cloud and ocean Ecosystem, US) include bands in 
the UV domain. For instance, the OLCI (Ocean and Land Colour In
strument, Europe) on Sentinel 3 has a band at 400 nm, SGLI (Second 
Generation Global Imager, Japan) has one at 380 nm, HY1C (HaiYang- 
1C, China) has one at 355 nm, and PACE will have hyperspectral mea
surements starting from 350 nm. 

The model to estimate Kd(UV) used in Vasilkov et al. (2001) is based 
on the “Case 1” concept (Morel, 1988). The authors evaluated Kd at 313, 
320, 340, and 380 nm with 15 measurements from the CalCOFI cruises 
and obtained an uncertainty of ~20%. Similarly, to fill the information 
gap of Kd in the UV domain, based on ~50–100 measurements made in 
the Mediterranean Sea and Atlantic Ocean, Smyth (2011b) proposed 
empirical relationships to estimate Kd at 305, 325, 340, and 380 nm 
using the total absorption coefficient at 443 nm (a(443), m− 1). Because 
Kd is dominated by the absorption coefficient (Gordon, 1989a), these 
approaches require the absorption coefficient of colored dissolved 
organic matter (CDOM) to co-vary with the concentration of chlorophyll 
(Chl), but such a correlation is not always strong even for oceanic waters 
(Kahru and Mitchell, 1998; Lee and Hu, 2006). As pointed out by Smyth 
(2011b), the correlation is actually weak between a(443) and Kd(305). 
This may not be a surprise, as very different relationships have been 
found between Kd(310) and Kd(465) for different waters (Højerslev and 
Aas, 1991), and significantly different Kd(UV) exists between waters of 
the Mediterranean Sea and South Pacific for the same Chl (Morel et al., 
2007). Thus, the applicability of such empirical schemes in the global 
ocean is limited, although global Chl, a(443), and Kd(490) are 
adequately available from satellite ocean color measurements. 

In a separate empirical approach, Fichot et al. (2008) developed al
gorithms to estimate Kd of 320, 340, and 380 nm based on the SeaWiFS 
bands after principal component analysis, with the 335 data points used 
for the algorithm development covering waters from the Gulf of Mexico 
to many other coastal regions around North America. This algorithm 
was later refined to improve the estimates of inshore waters (Cao et al., 
2014). While promising results were reported (Cao et al., 2014; Fichot 
et al., 2008), basin-scale UV penetration, which is of the most signifi
cance, remains unknown. 

Another approach to obtain Kd(UV) is to extrapolate the inherent 
optical properties (IOPs) obtained in the visible bands to UV and then 
estimate Kd(UV) through models developed based on the radiative 
transfer equation (Lee et al., 2005). This approach requires a priori in
formation of the relationships of component IOPs in the UV to the visible 
domain, which could be weak. For instance, the existence of MAAs may 
contribute significantly to the phytoplankton absorption coefficient 
(aph) in the short UV wavelengths, while MAAs may have very low or no 
absorption in the visible domain (Moisan and Mitchell, 2001; Shick and 
Dunlap, 2002); thus, there is no clear indication of MAAs’ existence from 
aph in the visible. Also, the approach will require a robust estimate of the 
spectral shape parameter (Sg; nm− 1) of CDOM absorption coefficient (ag) 
(Swan et al., 2013; Twardowski et al., 2004), as ag could be significantly 
higher in the UV domain (Mannino et al., 2008; Morel and Gentili, 2009) 
and Sg may also vary with spectral range (Twardowski et al., 2004). All 
estimates of these components will bring various levels of uncertainty to 
Kd(UV). 

Given the issues mentioned above, we present a scheme centered on 
deep learning to estimate remote sensing reflectance (Rrs; sr− 1) in the 

near-blue UV domain (nbUV hereafter) from Rrs in the visible 
(~410–700 nm), with nbUV specifically for 360, 380, and 400 nm. The 
reason for the shortest wavelength as 360 nm is in part because UV 
radiation for wavelengths shorter than ~350 nm is extremely low 
(Vantrepotte and Mélin, 2006); in part because there is no clear rela
tionship between aph(λ < 350 nm) and aph(visible) (Dupouy et al., 1997; 
Morrison and Nelson, 2004; Sathyendranath et al., 1987), where the 
contribution from MAAs could play a significant role for the short UV 
wavelengths (Moisan and Mitchell, 2001; Shick and Dunlap, 2002); and 
because more advanced ocean color satellites start measurements 
around 350 nm. However, these factors do not forbid the development of 
systems from estimating Rrs for wavelengths shorter than 360 nm after a 
better understanding of the relationships between IOPs of wavelengths 
shorter than 360 nm and those in the visible bands. 

It is certainly possible to develop a deep-learning-based system to 
estimate Kd(nbUV) from Kd(visible), as Kd(visible) can be adequately 
calculated from Rrs(visible) (Lee et al., 2013; Lee et al., 2005). We 
decided not to take this approach here because Rrs is the core input to 
estimate water properties and because Rrs(nbUV) can also be applied in 
some atmospheric correction algorithms (He et al., 2012; Wang, 2007). 
In addition, Rrs(nbUV) can be used to improve the inversion of aph and ag 
in ocean color remote sensing (Wei and Lee, 2015; Wei et al., 2016). 
Furthermore, as an additional option for cross-validation, Rrs(nbUV) in 
oceanic waters obtained from MODIS (the Moderate Resolution Imaging 
Spectroradiometer) and/or VIIRS (the Visible Infrared Imaging Radi
ometer Suite) can be used to compared with those from OLCI, SGLI, and/ 
or HY1C. 

The paper is organized as follows. In Section 2, we describe the 
overall deep-learning architecture for estimating Rrs(nbUV), and the 
data used to train and evaluate the system. In Section 3, results and 
evaluations are presented. In Section 4, we show applications of this 
system in the global ocean. In Section 5, we summarize our main find
ings and present future perspectives. 

2. Data and methods 

2.1. A deep-learning system for Rrs(nbUV): UVISRdl 

For easy data processing, especially because of nonlinear relation
ships of Rrs between different wavelengths, we take an approach 

Fig. 1. Schematic chart of the deep-learning-based system for estimating 
Rrs(nbUV) using Rrs(visible): UVISRdl. 
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centered on deep learning for estimating Rrs(nbUV) from Rrs(visible). 
Fig. 1 presents a schematic concept of this system, termed UVISRdl. 

Like all deep-learning systems, UVISRdl is composed of one input 
layer, various hidden layers associated with many numbers of neurons, 
and one output layer. A key component of any deep-learning system is 
the neural network model, and such models have been developed in the 
past decade (Abadi et al., 2016; Géron, 2019; Ketkar, 2017; Steiner 
et al., 2019; Swami and Jain, 2011). Here, based on data characteristics, 
we selected the Keras model (Chollet) for UVISRdl. Keras is a deep- 
learning Application Programming Interface written in Python; it is 
publicly available and running on top of the machine-learning platform 
TensorFlow (Ketkar, 2017). The number of hidden layers and the 
number of neurons of each layer were determined following the concept 
of minimum loss (Géron, 2019), a common approach for developing a 
deep-learning system. Eventually, a system of four hidden layers, with 
300 neurons for Layer-1, 75 for Layer-2, 38 for Layer-3, and 18 for Layer- 
4, is found to provide the best performance for UVISRdl. 

For the training of UVISRdl, we employed the Rectified Linear Unit 
(ReLu) function for the activation function of each layer (Krizhevsky 
et al., 2012), which can largely avoid gradient explosion and gradient 
disappearance (He et al., 2015). The optimization function of the 
training used is the Adam algorithm (Kingma and Ba, 2014). The setting 
of the learning rate usually involves an adjustment process, in which the 
highest possible learning rate is manually selected (Zeiler, 2012). As a 
result, a learning rate of 2 × 10− 5 is used in this study. Training of 
UVISRdl was eventually achieved when the loss function converges and 
the iteration stops. 

To avoid any interference between the nbUV wavelengths, a separate 
UVISRdl was trained specifically for each of the three nbUV bands in this 
effort. Further, given different spectral band settings of satellite ocean 
color sensors, separate UVISRdl was developed for each specific satellite 
of interest. 

2.2. Data 

For all neural networks or deep-learning schemes, a large and in
clusive dataset is crucial for its training. Here, we use numerically syn
thesized data to develop UVISRdl, which is further evaluated using both 
synthesized and field-measured data. 

2.2.1. Training data 
Following IOCCG Report #5 (IOCCG-OCAG, 2003; IOCCG, 2006), 

we synthesized a large (200,000 sets) dataset containing a wide range of 
IOPs in the 350–800 nm range (5-nm resolution), which were then fed 
into a model for Rrs (Lee et al., 2004) to generate 200,000 Rrs spectra. As 
most of the specifics for this synthesizing method are available in the 
literature (IOCCG-OCAG, 2003; IOCCG, 2006), we provide only some of 
the components and synthesizing steps in Appendix A for reference. A 
few key features are summarized below:  

(1) For the IOPs spectra, while the contributions of pure seawater 
(Lee et al., 2015a; Mason et al., 2016; Zhang and Hu, 2009a) are 
considered constants, the absorption and backscattering contri
butions from phytoplankton pigments, CDOM, and detrital- 
sediments are considered variables. These component IOPs, 
except for the spectrum of aph, can be expressed as a simple 
function (exponential or power-law) of wavelength (Bricaud 
et al., 1981; Gordon and Morel, 1983). Therefore, to best main
tain the natural variation of bulk IOPs, aph spectra were not 
modeled mathematically; instead, they were selected from 
>4000 aph spectra stored in the SeaBASS (the Sea-viewing Wide 
Field-of-view Sensor Bio-Optical Archive and Storage System) 
and our own collections. To ensure coverage from oligotrophic 
oceanic waters to coastal/inland eutrophic waters, we set 
aph(440) to a range of 0.001–20.0 m− 1. Therefore, a wide range of 

aph(λ), in both magnitude and spectral shapes, were utilized in 
data synthesizing.  

(2) As described in Appendix A and IOCCG Report #5 (IOCCG-OCAG, 
2003; IOCCG, 2006), for each aph(440) value, constrained 
random parameters were used to model the contributions of other 
component IOPs. In this way, it better mimics the variabilities of 
these components in natural environments while reducing likely 
unrealistic combinations, such as very low aph(440) with an 
extremely high absorption by CDOM. 

Fig. 2a shows examples of the synthesized Rrs spectra. The dataset of 
200,000 IOPs-Rrs is divided randomly by an 8:2 ratio, with 160,000 for 
the training of UVISRdl and 40,000 for the evaluation of UVISRdl. Table 1 
provides an overall picture of the data range used for the evaluation. 
Visible bands used are 410, 440, 490, 550, and 670 nm for VIIRS, 410, 
440, 490, 510, 555, and 670 nm for SeaWiFS, and 410, 440, 490, 530, 
550, and 670 nm for MODIS. The spectral bands of these satellite sensors 
have a bandwidth of 10–20 nm, and the band centers are not exactly 
those specified here. Thus, to apply the trained UVISRdl for Rrs products 
from satellites, Rrs of the satellite bands were calculated for the 200,000 
sets of hyperspectral Rrs after applying each satellite sensor’s band- 
specific response functions. Subsequently, for example, nonlinear 
empirical conversions were developed to transfer VIIRS Rrs of band 411 
nm to Rrs(410), which was also done for the other bands. Therefore, for 
each satellite, the same UVISRdl can be applied to both field and satellite 
Rrs. 

2.2.2. Validation data 
In addition to the above-mentioned synthesized data for the valida

tion of UVISRdl, a wide range of field-measured Rrs are also used to test 
the performance of UVISRdl. Fig. 2b shows examples of measured Rrs 
spectra (from a total of 202), which cover waters from oceanic to turbid 
coastal regions. Details of the method for these measurements can be 
found in Wei and Lee (2015), where the skylight-blocked approach 
(SBA) (Lee et al., 2013; Tanaka et al., 2006) was followed to obtain field 
Rrs. The uncertainty of SBA-measured Rrs is generally <5% in oceanic 
waters, and ~ 10% in turbid, highly productive waters at the blue bands 
(Lin et al., 2020). While the SBA measurements mostly cover coastal 
waters, the hyperspectral (344–749 nm, ~0.5-nm resolution) Rrs data 
measured at the Marine Optical Buoy (MOBY) (Clark et al., 1997), a 
typical oligotrophic site, were also accessed (from the NOAA Coastal
Watch, https://www.star.nesdis.noaa.gov/socd/moby/filtered_spec/) 
to evaluate UVISRdl. The quality of the MOBY data is classified into four 
classes: bad and cloudy, suspicious, bad, and good. In this study, we used 
6184 Rrs spectra with the highest quality. 

2.3. Accuracy assessment 

In addition to the coefficient of determination (R2) in linear regres
sion analysis, the accuracy of the resulted Rrs(nbUV) is assessed with the 
following statistical measures: root-mean-square difference (RMSD), 
mean absolute relative difference (MARD), and bias. They are defined as 
follows: 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Xest,i − Xmea,i

)2

N

√

, (1)  

MARD =
1
N
∑N

i=1

⃒
⃒Xest,i − Xmea,i

⃒
⃒

Xmea,i
, (2)  

bias =
1
N
∑N

i=1

(
Xest,i − Xmea,i

)
, (3)  

where Xest,i and Xmea,i are predicted and known (synthesis, or in situ) 
values of Rrs(nbUV), respectively, and N is the number of sample pairs. 
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3. Results of Rrs(nbUV) from UVISRdl 

3.1. Synthetic data 

Rrs(nbUV) from UVISRdl is first evaluated using the 40,000 synthetic 
data, with results for VIIRS spectral settings showing in Fig. 3(a–c) as 
examples. Similar results were obtained for SeaWiFS and MODIS, with 
statistical measures given in Table 2. Generally, for these synthesized 
data, the values of R2 for the three wavelengths and three satellites are 
all close to 1.0, with values of RMSD and bias close to 0 and values of 
MARD under ~0.3%. These results indicate extremely high accuracy in 

predicting Rrs(nbUV) from Rrs data in five or six visible bands. This is due 
to the fact that Rrs is determined by the total absorption and backscat
tering coefficients. Because the spectral variations of CDOM absorption 
and particle backscattering are highly spectrally related, and because 
the spectral shapes of phytoplankton absorption show general patterns 
at least in the 350–700 nm domain, thus Rrs(visible) has some spectral 
“messages” or connections with Rrs at 360, 380, and 400 nm, although 
such spectral connections are likely more complex than that can be 
explained by simple nonlinear functions. This spectral interconnection 
was demonstrated in Lee et al. (2014) and Sun et al. (2015), where Rrs 
spectrum in the 400–800 nm with a resolution of 5 nm could be well 
constructed from Rrs measured at 15 bands in this spectral domain. Also, 
decades ago Austin and Petzold (1990) showed Kd(visible) could be 
estimated to some degree from using Kd(490) alone. 

We would like to emphasize that the relationships between 
Rrs(nbUV) and Rrs(visible) of the synthesized dataset are complex and 
nonlinear, as presented in Fig. 4. As a validation of the synthesized data, 
Fig. 4 also includes Rrs from field measurements (both SBA and MOBY), 
which shows that field data are well within the envelope of the syn
thesized Rrs. This comparison suggests that the synthesized dataset is 
inclusive, although some combinations of IOPs potentially may not exist 
or are extremely rare in natural aquatic environments. The two clusters 
between Rrs(nbUV) and Rrs(440) represent the impact of the two driving 
component IOPs on Rrs spectral shapes in the nbUV: aph and ag. Specif
ically, for the ~350–440 nm range, ag increases exponentially with the 
decrease of wavelength, but aph generally decreases with the decrease of 
wavelength. Thus, for waters having higher contributions from ag than 
from aph, a(360) will be significantly higher for the same a(440). 

Fig. 2. Examples of Rrs spectra used in this study: (a) synthesized Rrs spectra for the development and validation of UVISRdl, and (b) measured Rrs spectra to 
evaluate UVISRdl. 

Table 1 
Range of remote sensing reflectance (taking Rrs(555) as an example) used for 
evaluation of UVISRdl.. CV is the ratio of standard deviation to the mean.  

Data Data 
sources 
(Data 
number) 

Band Min 
(sr− 1) 

Max 
(sr− 1) 

Mean 
(sr− 1) 

CV 

Training 
data 

Synthetic 
data 
(160,000) 

Rrs(555) 7.7 ×
10− 4 

0.091 0.016 0.85 

Validation 
data 

Synthetic 
data 
(40,000) 

7.8 ×
10− 4 

0.089 0.019 0.84 

SBA data 
(202) 

1.1 ×
10− 3 

0.020 0.0048 0.84 

MOBY 
(6184) 

8.1 ×
10− 4 

3.3*10− 3 0.0013 0.086  

Fig. 3. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the synthetic dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400).  
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Consequently, Rrs(360) will be lower for the same Rrs(440). This contrast 
represents a common situation in coastal waters (depth < 1000 m), 
which will be shown later. 

Because Rrs(360) does not co-vary with Rrs(440), these patterns show 
that uncertainty will be large if Rrs(440) alone is used to predict 
Rrs(nbUV); and this uncertainty would increase if the gap between the 
target and reference wavelengths becomes wider. However, as shown 
earlier, the R2 values are close to 1.0 when Rrs(visible) was fed into a 
deep-learning system to obtain Rrs(nbUV), indicating that nonlinear 
connections exist between Rrs(nbUV) and Rrs(visible) and that deep 
learning has the capability to capture such relationships, although not in 
an explicit way. 

It is also interesting that although VIIRS has no band around 
510–530 nm compared to SeaWiFS and MODIS, the statistical measures 
for the predicted Rrs(nbUV) from VIIRS Rrs(visible) are similar to that of 
the two earlier sensors. This result suggests that the band around 

510–530 nm is not critical for estimating Rrs(nbUV) from Rrs(visible), at 
least for the data tested here. 

3.2. Field-measured data 

We further evaluated UVISRdl using field-measured data, with Fig. 5 
(a–c) showing the results for SBA measurements and Fig. 6(a–c) for 
MOBY measurements, with the VIIRS spectral bands as examples. Per
formances of the two datasets for MODIS and SeaWiFS bands are 
included in Table 2. Similar to the performance of the synthetic dataset, 
for SBA measurements, the R2 values for the three Rrs(nbUV) and three 
satellites are ~0.99, with RMSD and bias close to 0. The MARD values 
are ~2%, ~4%, and ~ 10% for 400, 380, and 360 nm, respectively, 
much higher than those of the synthesized data. The higher MARD 
values are not surprising for the following reasons: 1) the measured Rrs is 
never error-free; 2) the uncertainty in field measured Rrs is always 

Table 2 
Statistical measures of UVISRdl after being applied to both synthetic and field measured datasets.  

(Data Number) Sensor Band RMSD (sr− 1) MARD bias (sr− 1) MAURD R2 

(a): Synthetic dataset 
Synthetic data 

(40,000) 
SeaWiFS 360 1.1 × 10− 4 2.3 × 10− 3 2.3 × 10− 6 0.023 >0.99 

380 5.7 × 10− 5 1.7 × 10− 3 3.8 × 10− 7 0.015 >0.99 
400 1.2 × 10− 5 7.6 × 10− 4 1.2 × 10− 6 0.0075 >0.99 

MODIS 360 1.1 × 10− 4 2.6 × 10− 3 − 2.2 × 10− 7 0.026 >0.99 
380 5.3 × 10− 5 1.4 × 10− 3 − 3.8 × 10− 7 0.015 >0.99 
400 1.2 × 10− 5 3.7 × 10− 4 4.0 × 10− 7 0.0038 >0.99 

VIIRS 360 1.0*10− 4 2.5 × 10− 3 5.0 × 10− 6 0.024 >0.99 
380 5.9 × 10− 5 1.5 × 10− 3 − 1.3 × 10− 6 0.015 >0.99 
400 1.4 × 10− 5 6.2 × 10− 4 1.4 × 10− 6 0.006 >0.99   

(Data number) Sensor Band RMSD (sr− 1) MARD bias (sr− 1) MAURD R2 

(b): Field dataset 
SBA data 

(202) 
SeaWiFS 360 3.4 × 10− 4 0.098 1.1 × 10− 4 0.094 >0.98 

380 2.2 × 10− 4 0.041 − 1.8 × 10− 5 0.041 >0.99 
400 8.6 × 10− 5 0.015 2.8 × 10− 5 0.015 >0.99 

MODIS 360 3.3 × 10− 4 0.085 7.7 × 10− 5 0.082 >0.98 
380 2.1 × 10− 4 0.045 − 8.7 × 10− 6 0.045 >0.99 
400 8.8 × 10− 5 0.020 − 5.8 × 10− 5 0.020 >0.99 

VIIRS 360 3.5 × 10− 4 0.095 1.2 × 10− 5 0.091 >0.98 
380 2.1 × 10− 4 0.041 − 1.5 × 10− 5 0.042 >0.99 
400 8.3 × 10− 5 0.015 − 4.7 × 10− 5 0.015 >0.99 

MOBY data 
(6184) 

SeaWiFS 360 1.1 × 10− 3 0.076 9.0 × 10− 4 0.072 >0.88 
380 6.1 × 10− 4 0.038 4.6 × 10− 4 0.037 >0.96 
400 1.8 × 10− 4 0.011 5.7 × 10− 5 0.011 >0.99 

MODIS 360 1.2 × 10− 3 0.083 9.9 × 10− 4 0.078 >0.87 
380 5.6 × 10− 4 0.035 4.1 × 10− 4 0.034 >0.95 
400 1.9 × 10− 4 0.012 9.4 × 10− 5 0.012 >0.99 

VIIRS 360 1.2 × 10− 3 0.085 1.0 × 10− 3 0.081 >0.87 
380 6.0 × 10− 4 0.038 4.3 × 10− 4 0.037 >0.95 
400 1.9 × 10− 4 0.011 7.8 × 10− 5 0.011 >0.99  

Fig. 4. Relationship between Rrs(nbUV) and Rrs(440) of both synthetic and measured (SBA and MOBY) datasets: (a) Rrs(360) vs Rrs(440), (b) Rrs(380) vs Rrs(440), and 
(c) Rrs(400) vs Rrs(440). 
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around a few percent even under the best arrangement with SBA (Lin 
et al., 2020) and can be around 10% in the blue for highly absorbing 
waters (Lin et al., 2020); and 3) likely insufficient representation of 
natural Rrs in the synthesized data for the training of UVISRdl, which 
could be refined in the future after obtaining more high-quality mea
surements of Rrs(UV–visible) in broad aquatic environments. The less 
than 10% MARD and close to 0 bias indicate highly reliable Rrs(nbUV) 
predicted by UVISRdl from Rrs(visible). 

Excellent results are also found with MOBY-measured Rrs (see 
Fig. 6a–c), where the RMSD and bias are close to 0, and the MARD values 
are less than ~9% for the estimated Rrs(nbUV) by UVISRdl. The R2 value 
(0.88) for Rrs(360) is slightly lower than that of the SBA dataset, which is 
in part due to the much narrower range (~0.005–0.020 sr− 1) of Rrs(360) 
from a single site. On the other hand, it also indicates potentially larger 
uncertainties for wavelengths deeper in the UV domain, especially, as 
shown below, if MAAs are present. Note that a result of ~9% MARD for 
Rrs(360) is close to the highest accuracy that can be achieved in field 
measurements (Lin et al., 2020; Zibordi and Talone, 2020). 

3.3. Potential impact of absorption by MAAs 

As we stated earlier, we set the shortest wavelength for Rrs(nbUV) at 
360 nm, in part because that the absorption coefficient of MAAs in the 
300–350 nm range can be significantly higher (for instance, up to a 
factor of ~4) than that at 440 nm (see Fig. 1B in Moisan and Mitchell, 
2001). In particular, because MAAs have no or low contributions to aph 
in the visible, there is no clear relationship between aph(visible) and 
aph(300–350). On the other hand, MAAs may exist in many phyto
plankton groups, particularly in dinoflagellates L. polyedra and Phaeo
cystis Antarctica (Moisan and Mitchell, 2001; Vernet and Whitehead, 
1996). Thus, the spectral information of aph in the visible is insufficient 
to accurately predict aph in the 300–350 nm domain due to the 

potentially existence of MAAs. Consequently, errors in the estimated 
aph(300–350) will be propagated to the estimated total absorption and 
then Rrs(300–350). The empirical algorithms to estimate Kd in the 
wavelengths of ~320 nm using Rrs in the visible bands developed earlier 
(Fichot et al., 2008; Smyth, 2011a; Vasilkov et al., 2001) likely did not 
encounter waters having strong MAAs, or the data used were dominated 
by strong absorption due to CDOM. Because Kd is primarily determined 
by the absorption coefficient, such empirical algorithms for the estimate 
of Kd(300–350) could result in larger uncertainties than those for 
wavelengths in the nbUV when MAAs are present. 

For the aph spectra used in our data synthesizing, very few spectra 
show contributions of MAAs at 360 nm, where the aph(360)/aph(440) 
ratio is 0.66 ± 0.35, although it is in a range of 0.15–3.82. On the other 
hand, the ratio of ag(360)/ag(440) is ~3.3 for an ag slope of 0.015 nm− 1. 
That means for a situation aph(440) = ag(440), MAAs contribute to the 
most ~50% to a(360) when aph(360)/aph(440) is also around 3.0. For 
most situations where aph(360)/aph(440) is less than 1.0, the value of a 
(360) is dominated by that from ag(360); thus, it is feasible to reasonably 
predict a(360) from a(visible), and then Rrs(360) from Rrs(visible). As 
would be expected, there could be larger uncertainties in the estimated 
Rrs(360) if there are strong contributions from MAAs while the contri
bution of ag is secondary. 

4. Application to ocean color satellites 

4.1. Global Rrs(nbUV) from VIIRS 

With the developed and validated UVISRdl, it is possible to generate 
global Rrs(nbUV) from past and current ocean color satellite measure
ments. For example, Fig. 7 shows global distributions of Rrs(nbUV) 
predicted from VIIRS. Note that both NOAA CoastWatch (https://coast 
watch.noaa.gov/cw/index.html) and NASA OBPG (https://oceancolor. 

Fig. 5. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the measured SBA dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400).  

Fig. 6. Comparison between Rrs(nbUV) and UVISRdl-predicted Rrs(nbUV) of the measured MOBY dataset: (a) Rrs(360), (b) Rrs(380), and (c) Rrs(400).  
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gsfc.nasa.gov/) can provide consistent VIIRS ocean color products, but 
for easier spatial matchup with the products from SeaWiFS and MODIS, 
seasonal composites of Rrs(visible) from NASA OBPG were acquired and 
utilized here. 

Not surprisingly, Rrs(nbUV) is very high in the open ocean, especially 
in the ocean gyres, a result of significantly low CDOM and phyto
plankton in the oligotrophic ocean (Hu et al., 2012; Siegel et al., 2005). 
The predicted Rrs(nbUV) in the South Pacific Gyre (the star in Fig. 7b) is 
~0.022 sr− 1, which is consistent with that reported in Tedetti et al. 
(2010), although the years of measurements are different. 

Expectedly, Rrs(nbUV) is significantly lower in coastal waters, but 

even for Rrs(360), it is higher than zero in many coastal regions (see 
Fig. 8 for example). Such distributions suggest caution in assuming 
Rrs(nbUV) as zero in the process of atmospheric correction (He et al., 
2012), where other approaches (Wang and Jiang, 2018; Wei et al., 2020) 
could be used for the estimation of Rrs in the blue bands. 

4.2. Evaluation of VIIRS Rrs(nbUV) with in situ measurements 

We further compared Rrs(nbUV) from VIIRS with matchup in situ 
measurements (82 matchups for SBA, and 730 for MOBY) to assess the 
quality of Rrs(nbUV) estimated from satellite data. The SBA 

Fig. 7. Global distribution of seasonal composite Rrs(nbUV) for the period of October to December 2012 obtained from VIIRS: (a) Rrs(360), (b) Rrs(380) (white star 
showing measurements during November 2004), (c) Rrs(400), and (d) Rrs(410). 

Fig. 8. Same as Fig. 7, except for showing Rrs(360) of three coastal regions.  
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measurements were obtained mainly in coastal regions (see Fig. 9 for 
locations of measurements) in the period of 2012–2019, with matchup 
limited to within ±5 h and 3 × 3 VIIRS pixels between satellite and in 
situ measurements (Werdell and Bailey, 2005). Figs. 10 and 11(a–f) 
present scatterplots between predicted and measured Rrs(nbUV) for vi
sual comparison, with statistical measures presented in Table 3. In view 
that neither in situ nor satellite Rrs(nbUV) can be considered as “truth,” 
the mean absolute unbiased relative difference (MAURD) is calculated to 
check consistency between the two determinations. 

MAURD =
1
N
∑N

1

⃒
⃒
⃒
⃒
Data1 − Data2

Data1 + Data2

⃒
⃒
⃒
⃒× 2 (4)  

where Data1 and Data2 represent data from two independent de
terminations, respectively. 

Overall, for these Rrs(nbUV) the MAURD values are between 0.31 (at 
400 nm) and 0.40 (at 360 nm) for the SBA matchups, with biases of 
~0.0002–0.0005 sr− 1. For the MOBY matchups, the MAURD values are 
around 0.12, with biases of ~0.00023–0.0012 sr− 1. Unsurprisingly, 
these measures are worse than those when evaluating Rrs(nbUV) using 
field-measured data, as there are other uncertainties and/or errors 
contributing to these differences, which include not-exact spatial-tem
poral matchup and uncertainties in atmospheric correction, especially in 
coastal waters (IOCCG, 2010; Wang, 2007). For these likely error 
sources related to satellite data, Figs. 10 and 11(d–f) include compari
sons of the blue bands (410, 440, and 490 nm), where the MAURD 
values are ~0.21–0.29 and RMSD is ~0.0012 sr− 1 for the SBA matchups, 
which are just slightly better than those of Rrs(nbUV). Note that there are 
a few stations where VIIRS Rrs(410, 440, 490) are much lower than the 
in situ Rrs measured by the SBA. As Rrs(nbUV) is estimated based on the 
values in the visible bands, such lower values from VIIRS will lead to 
lower values of Rrs(nbUV), which then contributes to higher MAURD at 
the nbUV bands, especially in the coastal waters. For the MOBY 
matchups, a fixed location of oceanic waters, the MAURD values at the 
blue bands (410–490 nm) are just slightly better than those at the nbUV 
bands (360–400 nm), with the RMSD values around 0.0022 sr− 1 for the 
wavelengths of 360–410 nm. The low R2 value for these matchups 

results from the narrow dynamic range of the Rrs values, where the water 
properties of such a system do not vary significantly. Overall, because of 
the difficulties and uncertainties in spatial-temporal matching as well as 
atmospheric correction and these performance measures being similar 
to those reported in the literature when evaluating Rrs from ocean color 
satellites (Antoine et al., 2008; Mélin et al., 2016; Zibordi et al., 2009), 
these results indicate satisfactory Rrs(nbUV) from VIIRS, although it is 
certainly necessary to carry out more evaluations in the future. 

4.3. Kd(nbUV) from ocean color satellites 

After obtaining Rrs(nbUV) from VIIRS, it is then possible to estimate 
Kd(nbUV) semi-analytically following Lee et al. (2005). The total ab
sorption (a) and backscattering (bb) coefficients at the nbUV-visible 
bands will be derived first from Rrs(nbUV-Visible) using a semi- 
analytical algorithm (Lee et al., 2002; Wang et al., 2009; Werdell 
et al., 2013). Since Kd is a function of a and bb (Gordon, 1989b; Lee et al., 
2005; Lee et al., 2013), it is then straightforward to calculate Kd(nbUV) 
when a(nbUV) and bb(nbUV) are known. As an example, Fig. 12 shows 
global distributions of Kd(360) and Kd(380) (with the Sun at zenith) 
derived from VIIRS for seasonal composite of October to December 
2012. At the center of the South Pacific Gyre, Kd(360) is ~0.031 m− 1, 
and Kd(380) is around ~0.025 m− 1 during this period, which show 
general consistency with those reported previously (Morel et al., 2007), 
although the field measurements were taken in Nov. 2004. As stated 
earlier, there are other algorithms developed to estimate Kd in the UV 
domain using Rrs in the visible (Fichot et al., 2008; Smyth, 2011a; 
Vasilkov et al., 2001). It is thus important to evaluate the performances 
of these algorithms for the global ocean, which is out of the scope of this 
effort. 

4.4. Further implications for the “Case 1” approach in oceanic waters 

As aforementioned in the introduction, the earlier approaches 
(Højerslev and Aas, 1991; Smyth, 2011b; Tedetti et al., 2010; Vasilkov 
et al., 2005) estimated Kd(nbUV) using Chl or Kd (or a) at one visible 

Fig. 9. Locations of matchup field measurements (SBA and MOBY) to evaluate Rrs(nbUV) from VIIRS.  
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band as the input, which is based on the “Case 1” concept proposed by 
Morel and Prieur (1977) decades ago, where the inherent (sometime 
even the apparent) optical properties could be estimated using Chl alone 
(Morel, 1988; Morel and Maritorena, 2001). However, as shown in 
Højerslev and Aas (1991) and Morel et al. (2007) for various oceanic 
waters, significantly different relationships between Kd(UV) and 

Kd(visible) or between Kd(UV) and Chl exist; thus, such a scheme to 
predict Kd(UV) from one variable runs into difficulties for the global 
ocean. To highlight this difficulty, Fig. 13 shows scatterplots between 
Kd(360), Kd(380) and Kd(490), respectively, where the R2 values are 
~0.8 even for the waters with bottom depth deeper than 1000 m. For Rrs 
of global oceans, the R2 values are ~0.89 between Rrs(360), Rrs(380) and 

Fig. 10. Comparison between VIIRS and field measurements SBA Rrs: (a) Rrs(360), (b) Rrs(380), (c) Rrs(400), (d) Rrs(410), (e) Rrs(440), and (f) Rrs(490).  

Fig. 11. Comparison between VIIRS and field measurements MOBY Rrs: (a) Rrs(360), (b) Rrs(380), (c) Rrs(400), (d) Rrs(410), (e) Rrs(440), and (f) Rrs(490).  
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Remote Sensing of Environment 253 (2021) 112228

10

Rrs(440) obtained from the VIIRS (see Fig. 14). These patterns clearly 
indicate that not all Rrs(nbUV) or Kd(nbUV) of oceanic waters can be 
accurately predicted from Rrs(440) or Kd(490), respectively. This further 
echoes that oceanic waters are not necessarily “Case 1” (IOCCG, 2000; 
Lee and Hu, 2006); thus, a scheme to estimate Rrs or Kd in the UV domain 
based on the “Case 1” assumption may result in large uncertainties. 

4.5. Consistency of Rrs(UV) among SeaWIFS, MODIS, and VIIRS 

Following the same deep-learning approach, UVISRdl systems were 
developed for the spectral bands of SeaWiFS and MODIS (which is 
certainly also possible for other satellites after adjusting UVISRdl 
accordingly). It is then interesting to see if the Rrs(nbUV) products from 
these satellites are consistent. Observations by SeaWiFS and MODIS 
(Aqua) are overlapped between 2002 and 2010; observations by MODIS 
(Aqua) and VIIRS (SNPP) are overlapped from 2012 onward. We thus 
picked October to December in 2005 to compare SeaWIFS and MODIS 
and used October to December in 2012 to compare MODIS and VIIRS. 
The unbiased relative difference (URD) of Rrs(nbUV) between two sat
ellite sensors is calculated to evaluate the consistency, with URD defined 
as: 

URD =
Sensor2 − MODIS
Sensor2 + MODIS

× 2, (5)  

where Sensor2 is either for SeaWiFS or VIIRS. 
Fig. 15(a, c, e) shows the global distributions of URD calculated 

between MODIS and VIIRS Rrs(nbUV); Fig. 15(b, d, f) shows the histo
grams of URD at each nbUV band; and Fig. 16a presents scatterplots of 
Rrs(nbUV) between VIIRS and MODIS at 360 nm. We can see that 
Rrs(nbUV) from the two pairs of sensors agree with each other very well, 
where the URD values are generally around 0 in the tropical and sub
tropical regions, but higher near the polar regions and many coastal 
areas (e.g., west coast of India). This higher value reflects the strong 
spatial variation of coastal water properties and different spatial and 

Table 3 
Statistical measures between matchup VIIRS and measured Rrs. N is the number 
of matchup measurements.  

Field 
data 

Band N RMSD 
(sr− 1) 

MARD bias (sr− 1) MAURD R2 

SBA 360 82 0.0016 0.48 0.0005 0.40 0.74 
380 0.0015 0.39 0.0004 0.34 0.77 
400 0.0013 0.33 0.0002 0.31 0.80 
410 0.0012 0.30 0.0002 0.29 0.82 
440 0.0011 0.23 − 0.00008 0.25 0.82 
490 0.0013 0.18 − 0.0004 0.21 0.80 

MOBY 360 730 0.0023 0.14 1.2 × 10− 3 0.13 0.25 
380 0.0022 0.13 9.2 × 10− 4 0.12 0.26 
400 0.0019 0.12 2.3 × 10− 4 0.12 0.23 
410 0.0017 0.11 − 3.2 ×

10− 5 
0.11 0.22 

440 0.0013 0.11 − 4.2 ×
10− 4 

0.11 0.17 

490 0.00082 0.11 − 3.9 ×
10− 4 

0.12 0.06  

Fig. 12. Global distribution of seasonal composite Kd(nbUV) for the period of October to December 2012 obtained from VIIRS: (a) Kd(360), and (b) Kd(380).  

Fig. 13. Relationships between Kd(nbUV) and Kd(490) of global waters obtained from VIIRS: (a) Kd(360) vs Kd(490), and (b) Kd(380) vs Kd(490). Color dots are for 
bottom depth > 1000 m, and gray dots, for bottom depth < 1000 m. The R2 values are for the data with depth > 1000 m. 
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Fig. 14. Same as Fig. 13, except between Rrs(nbUV) and Rrs(440): (a) Rrs(360) vs Rrs(440), and (b) Rrs(380) vs Rrs(440). Color dots are for data with bottom depth >
1000 m, and gray points for data with bottom depth < 1000 m. 

Fig. 15. Global distribution (left) and histogram (right) of URD(nbUV) between MODIS and VIIRS for seasonal data of October–December 2012: (a) 360 nm, (b) 380 
nm, and (c) 400 nm. 
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temporal coverages of these satellite sensors. The average URD(360) is 
− 0.017, with R2 value as 0.95, and the slope is close to 1.0 in the linear 
regression (see Fig. 16a). These measures are similar to those at 440 nm 
(see Fig. 16b), both being independent measurements. Furthermore, 
Fig. 16c and d compare the Rrs(360) and Rrs(440) between SeaWiFS and 
MODIS, demonstrating similar statistical measures at 360 nm and 440 
nm, which is parallel to the comparison between MODIS and VIIRS. 
These evaluations indicate highly consistent Rrs(nbUV) among these 
satellite ocean color measurements, as long as Rrs(visible) is consistent 
among them. 

5. Summary and future perspectives 

To fill the data gap of UV penetration in the global ocean, especially 
for measurements after the launch and operation of modern ocean color 
satellites, a deep-learning-based system (UVISRdl) is developed to esti
mate Rrs at the near-blue UV bands (specifically at 360, 380, and 400 nm 
in this study) with Rrs in the visible (410–670 nm) as the input. We show 
that UVISRdl-estimated Rrs(nbUV) agree very well (<10% difference) 
with those from radiometric measurements, although larger differences 
are found between VIIRS Rrs(nbUV) and matchup in situ data when 
measurements were taken in coastal regions. With estimated Rrs(nbUV) 
and known Rrs(visible) of the global oceans from ocean color satellites, 
Kd(nbUV-visible) of the global oceans can then be calculated semi- 
analytically; thus, penetration of radiation in the nbUV domain in the 
global oceans can be clearly characterized through the combination of 
UV radiation products at the ocean surface. Such information will be 
useful for a broad range of biogeochemical studies. In addition, the 
availability of Rrs(nbUV) can help both atmospheric correction and 

decomposition of the total absorption coefficient into its components. 
This study is an initial step to estimate Rrs(nbUV), using a deep- 

learning scheme, from Rrs at the available visible bands of ocean color 
satellites, where its evaluation is still limited. It is important and 
necessary to evaluate Rrs(nbUV) obtained by UVISRdl, and subsequently 
Kd(nbUV) with more inclusive global measurements to obtain a 
comprehensive characterization and understanding of UVISRdl for ocean 
color satellites. Some current ocean color satellites, e.g., the OLCI, SGLI, 
and HY1C, and other planned future ocean color satellites, e.g., the 
PACE, cover a few bands in the 350–400 nm range. It will thus be 
valuable to evaluate Rrs(nbUV) obtained from UVISRdl by comparing to 
Rrs(nbUV) measured directly by satellites, although both determination 
has its own uncertainties. While Rrs(nbUV) from UVISRdl should not be 
considered as a means to replace Rrs(nbUV) from satellite measurements 
at the nbUV bands, it nevertheless can be an important data source to fill 
the data gaps in the past and present and a data source when atmo
spheric correction runs into difficulties in the nbUV bands. 
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Appendix A 

To train UVISRdl, we created a large synthetic dataset covering wide ranges of inherent optical parameters (IOPs) and remote sensing reflectance 
(Rrs). The generation of this dataset generally follows the IOCCG Report 5 (IOCCG-OCAG, 2003; IOCCG, 2006) for synthesizing wide ranges of IOPs 
spectra, but an analytical model (Lee et al., 2004) was used to calculate Rrs from these IOPs, as generating such a large dataset with the Hydrolight 
software will take too long. However, this Rrs model was developed based on Hydrolight simulations where the accuracy is within ~1% on average, so 
the error of using an analytical formula for Rrs on the deep-learning system of this study is negligible 

Following the description in IOCCG-OCAG (2003), the absorption (a) and backscattering (bb) coefficients, the two key component IOPs for Rrs, are 
modeled as 

a(λ) = aw(λ)+ aph(λ)+ adm(λ)+ ag(λ) (A1a) 
bb(λ) = bbw(λ)+ bbph(λ)+ bbdm(λ) (A1b)  

here subscripts “w, ph, dm, g” represent pure seawater, phytoplankton pigments, detritus and minerals, and gelbstoff (e.g., CDOM), respectively. 
Values of aw(λ) were taken from combinations of the literature. Specifically, aw values of 350–550 nm are from Lee et al. (2015b), 551–725 nm from 

Pope and Fry (1997), 726–800 nm from Smith and Baker (1981). From more than 4000 measured aph(λ) spectra (350–800 nm, 5 nm step), 720 aph(λ) 
spectra were selected with aph(440) in a range of ~0.001–39.0 m− 1, thus covering oceanic waters to waters with phytoplankton blooms. 

Following the practice taken by the IOCCG-OCAG (2003), adm and ag were modeled as 

adm(λ) = adm(440)e− Sdm(λ− 440), (A2a) 
ag(λ) = ag(440)e− Sg(λ− 440), (A2b)  

where the slope parameters Sdm (~0.007–0.015 nm− 1) and Sg (~0.01–0.02 nm− 1) were taken as random values as in IOCCG-OCAG (2003), and 
adm(440) and ag(440) were modeled as 

adm(440) = p1 × aph(440), (A3a) 
ag(440) = p2 × aph(440) (A3b)  

parameters p1 and p2 were controlled random values, generating reasonable adm(440) and ag(440) values for a given aph(440) (IOCCG-OCAG, 2003). 
Values of bbw(λ) were taken from the literature (Zhang and Hu, 2009b). Spectra of bbph were also modeled as in IOCCG-OCAG (2003), where bbph is 

aa 

bbph(λ) = Bph
(
cph(λ) − aph(λ)

)
, (A4a) 

cph(λ) = p3 × cph(550)
(

550
λ

)p4

, (A4b)  

and Bph is the backscattering ratio of phytoplankton and a value of 1% was taken. Parameters p3 and p4 were random values within given ranges as in 
IOCCG-OCAG (2003). Similarly, spectra of bbdm were modeled as 

bbdm(λ) = 0.0183p5 × bdm(550)
(

550
λ

)p6

, (A5)  

with p5 and p6 also random values within given ranges. 
The relationship between rrs and IOPs from Lee et al. (2004) was employed: 

rrs(λ) = gw
bbw(λ)

a(λ) + bb(λ)
+ gp

bbp(λ)
a(λ) + bb(λ)

, (A6a) 

gp(λ) = G0

[

1 − G1exp
(

− G2
bbp(λ)

a(λ) + bb(λ)

)]

, (A6b) 
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here gw is the model parameter related to molecular scattering, and gp is the model parameter related to particle-scattering phase function, and values 
of G0–2 are constants for a given light geometry and particle phase function. Rrs(λ) can be computed from rrs(λ) (Gordon et al., 1988) with a relationship 
as 

Rrs(λ) =
0.52 rrs(λ)

1 − 1.7 rrs(λ)
. (A7) 

In the above system for the calculation of Rrs, aph is a free variable, while parameters p1-p6 are determined randomly in constrained ranges for each 
aph. The generation of these constrained random values followed that in IOCCG-OCAG (2003), and described in Craig et al. (2020). The 720 aph(λ) 
spectra were divided into 12 groups, with each group having its own aph(440) range. These aph(λ) spectra were normalized to its aph(440) to obtain aph 
spectral shapes. Total of 200,000 aph(λ) were then generated by multiplying aph(440) to these spectral shapes, with aph(440) randomly varying in a 
range of 0.001–20.0 m− 1, while the spectral shapes were selected based on the aph(440) value. Subsequently 200,000 groups of hyperspectral a(λ)& 
bb(λ) were generated following Eqs. (A1)–(A5), and then 200,000 hyperspectral Rrs spectra were generated with Eqs. (A6)–(A7), where the resulted 
Rrs(550) is in a range of ~0.0008–0.090 sr− 1. 
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