
Remote Sensing of Environment 265 (2021) 112633

0034-4257/© 2021 Elsevier Inc. All rights reserved.

Atmospheric correction over coastal waters with aerosol properties 
constrained by multi-pixel observations 

Junwei Wang a, Zhongping Lee b,*, Daosheng Wang a, Shaoling Shang a, Jianwei Wei b,c, 
Alex Gilerson d 

a State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China 
b School for the Environment, University of Massachusetts Boston, Boston, MA 02125, USA 
c NOAA Center for Satellite Applications and Research, 5830 University Research Ct., College Park, MD 20740, USA 
d Optical Remote Sensing Laboratory, The City College of the City University of New York, New York, NY, 10031, USA   

A R T I C L E  I N F O   

Edited by: Dr. Menghua Wang.  

Keywords: 
Ocean color remote sensing 
Atmospheric correction 
Multi-pixel observations 
Landsat-8 OLI 

A B S T R A C T   

We propose an innovative multi-pixel atmospheric correction approach (MPACA) to process high-spatial- 
resolution satellite measurements over coastal waters based on a revised POLYMER model. MPACA assumes 
the aerosol type to be uniform within a relatively small region, while the aerosol load and water properties are 
allowed to vary. Landsat-8 OLI images over six coastal locations with various turbidities were utilized to evaluate 
the performance of MPACA. The retrieved remote sensing reflectance (Rrs(λ)) by MPACA is validated with in situ 
matchups obtained from two sources: ship-based field campaigns and the AERONET-OC networks. It is found 
that, at each of OLI’s four visible bands, MPACA provided accurate Rrs(λ) products over such coastal environ
ments, with the Root Mean Square Difference (RMSD) and Mean Absolute Percentage Difference (MAPD) less 
than 0.0006 sr− 1 and 16.2%, respectively. In contrast, the Rrs(λ) values retrieved with NASA’s SeaDAS (v7.5), 
where each pixel was treated independently, showed RMSD and MAPD as ~0.0018 sr− 1 and ~38.8%, respec
tively. Acolite-DSF, which assumed some spatial dependency, obtained MAPD almost two times that of SeaDAS 
for each visible band. Further, it appears that Acolite-EXP did not perform well for this evaluation dataset, where 
RMSD is ~0.0062 sr− 1 and MAPD is ~228.2%. These results suggest that MPACA is a promising scheme for 
atmospheric correction in coastal waters, especially for measurements from multi-band satellites that have a high 
spatial resolution along with at least two bands in the NIR or SWIR domain.   

1. Introduction 

In recent years, high-spatial-resolution (HSR) sensors, airborne and 
spaceborne, have been frequently used to observe coastal and inland 
aquatic environments. These sensors include NASA Earth Observing-1 
(EO-1) Hyperion satellite launched in 2000 (Brando and Dekker, 
2003; Lee et al., 2007; Zhu and Yu, 2012), WorldView series in mid- 
2000 (Doxani et al., 2012; Lee et al., 2012; Reshitnyk et al., 2014), 
the Operational Land Imager (OLI) onboard the latest Landsat-8 in 2013 
(De Keukelaere et al., 2018; Franz et al., 2015a; Pacheco et al., 2015; 
Vanhellemont and Ruddick, 2015), and the Multi-spectral Instrument 
(MSI) onboard Sentinel-2 (S2) in 2015 and 2017, respectively (Pahlevan 
et al., 2017b; Toming et al., 2016). Measurements from these sensors, 
with high spatial resolution, have greatly improved the observations of 
biogeochemical properties in coastal waters and inland lakes, where the 

occurrence of red tides or harmful algae blooms is becoming more 
frequent in recent decades (Lim and Choi, 2015; Cracknell et al., 2001; 
Doxani et al., 2012; Pahlevan et al., 2019; Toming et al., 2016). 

For satellite measurements over aquatic environments, the total 
radiance at the top-of-atmosphere (Lt) is the sum of the radiance from 
the atmosphere (Lpath), sea surface reflectance, and that coming out of a 
water body, with the last commonly termed as water-leaving radiance 
(Lw). Lw contains information through the scattering and absorption 
processes induced by various constituents within water, but it only 
makes about ~20% of Lt over turbid coastal waters (IOCCG, 2010). 
Therefore, an essential step in the ocean (water) color remote sensing is 
to retrieve Lw from Lt as accurately as possible, a procedure referred to as 
atmospheric correction (AC), and many AC algorithms have been pro
posed since the 1970s. Commonly, the overall scheme of ACs is to 
adequately estimate the signal of each non-water component 

* Corresponding author. 
E-mail address: ZhongPing.Lee@umb.edu (Z. Lee).  

Contents lists available at ScienceDirect 

Remote Sensing of Environment 

journal homepage: www.elsevier.com/locate/rse 

https://doi.org/10.1016/j.rse.2021.112633 
Received 9 October 2020; Received in revised form 26 July 2021; Accepted 31 July 2021   

mailto:ZhongPing.Lee@umb.edu
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2021.112633
https://doi.org/10.1016/j.rse.2021.112633
https://doi.org/10.1016/j.rse.2021.112633
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2021.112633&domain=pdf


Remote Sensing of Environment 265 (2021) 112633

2

contributing to Lt. Among them, the most critical step is to evaluate both 
aerosol density (indicated by the aerosol optical depth at a reference 
wavelength-AOD(λ0)) and type (indicated by the single scattering al
bedo ω0) for each pixel independently. After performing Rayleigh 
correction (Gordon and Wang, 1992; Wang, 2002, 2005) on Lt, AOD(λ0) 
and ω0 are determined using information in the near-infrared (NIR) 
band, where pre-developed look-up tables (LUTs) (Ahmad et al., 2010; 
Gordon and Wang, 1994) and a “black pixel” assumption in the NIR 
bands (for oceanic and most coastal waters) are implemented (Ahn et al., 
2012; Gordon, 1997; Gordon and Wang, 1994). The atmospheric con
tributions in the visible bands are further estimated; subsequently, Lw in 
this spectral domain is calculated by subtracting off the atmospheric 
contributions from Lt. As highlighted in the report (IOCCG, 2010) 
distributed by the International Ocean Color Coordinating Group 
(IOCCG), the above AC schemes can derive accurate aquatic reflectance 
over the open ocean, but still contain large uncertainties in turbid 
coastal and inland waters due to strong particle backscattering in the 
NIR bands (IOCCG, 2010; Pahlevan et al., 2020). For non-zero NIR water 
reflectance in turbid coastal waters, Bailey et al. (2010) used an iterative 
approach based on the retrieved chlorophyll-a concentration (Chl-a) to 
estimate Lw(NIR). But it is found that such an approach is not applicable 
in turbid waters (Dogliotti et al., 2016). Moore et al. (1999) developed a 
bright-pixel atmospheric correction algorithm (BPAC) for MERIS data 
over turbid waters. They estimated the contributions of sediments to 
Rrs(NIR) iteratively, with relationships between the inherent optical 
properties (IOPs) and suspended particulate matter (SPM) developed for 
the Humber estuary, UK. Some researchers have found that BPAC gave 
negative reflectance in the blue bands due to an overestimation of 
Rrs(NIR), which suggested that the IOP models of BPAC might not be 
suitable for other coastal waters (Bi et al., 2018; Lavender et al., 2005; 
Majozi et al., 2014). 

In view of the issues associated with NIR bands, researchers have 
extended the “black pixel” assumption to SWIR bands (Vanhellemont 
and Ruddick, 2015; Wang and Shi, 2007). However, a lack of SWIR 
bands (e.g., MEdium Resolution Imaging Spectrometer-MERIS, Sea- 
Viewing Wide Field-of-View Sensor-SeaWiFS, and some sensors on small 
satellites) or low signal-to-noise ratio (SNR) in the SWIR bands (e.g., 
Landsat-8 OLI) (Cao et al., 2018b; Li et al., 2017) has limited the utili
zation of this strategy for accurately characterizing aerosol properties. 

Separately, there are also several practices of atmospheric correction 
based on machine learning to process satellite measurements over 
complex atmospheric-coastal environments (Brajard et al., 2008; 
Doerffer and Schiller, 2007; Fan et al., 2017; Fan et al., 2020). For 
example, recently, Fan et al. (2017, 2020) developed a new system, 
Ocean Color – Simultaneous Marine and Aerosol Retrieval Tool (OC- 
SMART), to derive bio-optical parameters from Lt obtained by ocean 
color satellites (e.g., SeaWiFS, Visible Infrared Imaging Radiometer- 
VIIRS, Landsat-8, etc.). OC-SMART, as a data analysis platform, 
applied multilayer neural networks to directly estimate Rrs and AOD 
from Rayleigh-corrected radiance (Lrc) in the visible-NIR spectral 
domain, and it was indicated that OC-SMART is applicable from clear 
waters to highly turbid waters (Fan et al., 2017; Fan et al., 2020). 
However, the application of such empirical schemes requires the tar
geted area at the time of observation to have similar atmospheric and 
oceanic characteristics as those covered by the training data, an un
known prerequisite. 

In the above AC systems, a key aspect is to treat each pixel within an 
image independently; therefore, the spatial relationship of aerosol 
properties among neighboring pixels is ignored. Hu et al. (2000) 
demonstrated that the spatial variation of atmospheric properties (in 
particular the aerosol types) is far weaker than that of water properties. 
Thus the aerosol properties over clear waters could be applied to nearby 
turbid waters for the derivation of Lw for the latter. We may extend this 
principle to HSR data, as the swath of an HSR image is usually 10’s-100’s 
km or narrower, and the spatial resolution ranges from submeter to 10’s 
of meters, so that the pixel-to-pixel variation of atmospheric properties 

is even less compared to that presented in Hu et al. (2000). Further, 
computing technology has significantly advanced in recent decades, 
where processing multiple pixels simultaneously within an ocean color 
image is no longer an insurmountable computational burden. In this 
paper, we thus present an innovative AC scheme (Multi-Pixel Atmo
spheric Correction Algorithm, MPACA) to process HSR image data, 
where the atmospheric properties of each pixel within a scene are con
strained using measurements from multiple pixels, while the water 
properties of each pixel remain varying independently. As a demon
stration, MPACA was applied to Landsat-8 OLI measurements of six 
coastal locations with different turbidities. We evaluated the algorithm 
performance through comparison with in situ measurements. We also 
compared the performance with other conventional AC approaches 
adopted in SeaDAS (Bailey et al., 2010) and the Acolite modules (Van
hellemont and Ruddick, 2015, 2018). 

2. Atmospheric correction approaches 

2.1. Brief summary of a few existing atmospheric correction approaches 
for OLI data 

The total reflectance at top-of-atmosphere (ρt) over water, defined as 
πLt/(cos(θs) F0), can be expressed as (Gordon and Wang, 1994; Steinmetz 
et al., 2011): 

ρt(λ) = tg(λ)
[
ρr(λ)+ ρa(λ)+ ρra(λ)+ ts(λ)T(λ)ρsg + ts(λ)tv(λ)πRrs(λ)

]
(1)  

Here F0 is the extraterrestrial solar irradiance (Thuillier et al., 1998), tg 
the gas transmittance, ρr the Rayleigh reflectance, ρa the aerosol 
reflectance, ρra the molecule-aerosol coupled reflectance, ρsg the sun 
glint reflectance, T the direct transmittance, and Rrs the remote-sensing 
reflectance of the water body (including bottom contributions of opti
cally shallow waters). ts and tv are the diffuse atmospheric transmittance 
at the solar zenith angle (θs) and sensor viewing angle (θv), respectively. 
As it is Rrs that contains information of constituents in water, the ulti
mate goal of an AC algorithm is to obtain Rrs (or normalized water- 
leaving radiance Lwn) as accurately as possible. IOCCG Report #10 
(2010) has detailed descriptions of various AC algorithms developed in 
the past decades. A few revisions or variations are adapted for pro
cessing Landsat-8 OLI measurements, which are briefly described below. 

2.1.1. NASA standard approach 
The NASA standard approach is part of the SeaDAS data processing 

system (v7.5) (Franz et al., 2015b). Specifically, the transmittance of the 
gaseous layer is expressed as a product of the optical depth of the at
mospheric gas (e.g., the ozone-O3, nitrogen dioxide-NO2 (Ahmad et al., 
2007), or water vapor-H2O (Chou, 1981), etc.). Rayleigh and aerosol 
reflectance are stored in LUTs in advance (Ahmad et al., 2010; Wang, 
2002, 2005). The contribution of sun glint is determined by environ
mental conditions (Wang and Bailey, 2001). As described above, the 
estimation of aerosol reflectance is based on Gordon and Wang (1994) 
approach, which uses a pair of bands in the NIR or SWIR bands. For 
Landsat-8 OLI image over coastal waters, the choice of band combina
tion is one NIR band (865 nm) and one SWIR band (1609 nm) (Franz 
et al., 2015a; Pahlevan et al., 2017b), which takes advantage of the 
strong water absorption at the SWIR wavelength (Vanhellemont and 
Ruddick, 2015; Wang and Shi, 2007). Meanwhile, to loosen up the re
striction of the “black pixel” assumption, an iterative bio-optical 
modeling scheme is utilized to estimate Rrs at the NIR band (Bailey 
et al., 2010), then the aerosol reflectance at the NIR band is estimated 
after removing Rrs(NIR). This algorithm requires the relationships be
tween Rrs(NIR) and Chl-a to be valid and high accuracy in estimating 
Chl-a. 

2.1.2. Acolite-EXP approach 
Acolite is a publicly available AC processing package, which is 
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specifically developed for processing high-spatial-resolution measure
ments (e.g., Landsat-8 OLI and Sentinel-2 MSI) (Vanhellemont and 
Ruddick, 2014). The EXP scheme uses two SWIR-bands based expo
nential extrapolation (EXP) method (v20210114.0) to determine aerosol 
reflectance (Vanhellemont and Ruddick, 2015), with Rrs considered 
negligible at the two SWIR bands (1609 nm and 2202 nm). Then the 
aerosol reflectance at the visible spectral domain is extrapolated by an 
exponential spectrum from the two SWIR wavelengths. Due to low signal 
and low SNR at these two SWIR bands for Landsat-8 OLI, it may produce 
noisy Rrs outputs for various pixels (Pahlevan et al., 2017a; Werdell 
et al., 2010). 

2.1.3. Acolite-DSF approach 
The dark spectrum fitting (DSF) scheme (Vanhellemont, 2020; 

Vanhellemont and Ruddick, 2018) of Acolite (v20210114.0) is an 
image-based approach, which estimates the atmospheric path reflec
tance (ρpath) within a targeted (sub)scene based on two assumptions. 
First, it is assumed that ρpath remains the same spatially in a certain study 
area; second, the study area contains pixels with Rrs being zero at least 
for one of the bands, where ρpath can be estimated. Based on these two 
assumptions, the atmospheric path reflectance is estimated from mul
tiple dark targets in the (sub)scene. These dark targets are selected 
accordingly to the lowest values of ρt after the correction of gas and air- 
water interface reflectance (Gordon et al., 1988) in all bands. 

To account for the potential spatial variability of atmospheric 
properties over a large area, an OLI image is divided into several tiles 
with a size of about 6 km × 6 km. For each separate tile, based on the 
assumption of ρpath being constant, the water reflectance of each tile can 
be estimated by removing a spatially uniform ρpath. Finally, the param
eters of the entire image are composed of the retrieved parameters from 
different tiles, where linear interpolation is employed to smooth adja
cent tiles. 

The above-mentioned AC algorithms for processing Landsat-8 OLI 
images, except Acolite-DSF, are all based on the strategy of treating each 
pixel in an image independently. Therefore, no considerations of spatial 
relationships in either atmosphere or ocean are taken during the AC 
procedure. When processing SeaWiFS data, Hu et al. (2000) showed that 
the aerosol type does not change significantly even in the 100–1000 km 
scale; therefore, aerosol properties derived in offshore clear waters could 
be applied to the adjacent turbid area. Acolite-DSF assumes homoge
neous ρpath for each tile within an OLI image, which is more stringent 
than assuming the aerosol type being uniform. 

2.2. Atmospheric correction using multiple pixels in an image (MPACA) 

2.2.1. Overview of the concept and assumptions 
Unlike the conventional AC algorithms, this multi-pixel atmospheric 

correction approach utilizes the spatial relationship of aerosol properties 
from different pixels within one image in the AC process. The overall 
flowchart of MPACA is presented in Fig. 1. In particular, MPACA in its 
present form is designed to process turbid coastal waters for remote 
sensing measurements having at least two NIR or SWIR bands. 
Conceptually, MPACA is based on the assumption that the aerosol type 
does not change spatially for a small area (Gordon and Morel, 1983; Hu 
et al., 2000). Mathematically, MPACA is the same as the recent AC al
gorithm, which simultaneously solves both atmospheric and water 
properties (Two-angle Atmospheric Correction Algorithm, TAACA) from 
two sun-sensor geometries on the same day through spectral optimiza
tion (Wang et al., 2020). However, rather than using two geometries of 
the same pixel, MPACA uses two adjacent pixels within an HSR image to 
separate ρpath from Rrs. The two adjacent pixels are determined by 
pairing a pixel (i.e., the target pixel) with another pixel (called the 
reference or contrast pixel) containing different water properties, 
whereas the atmospheric properties of both pixels are considered similar 
or highly related in order to constrain the mathematical solutions. 
Further, as in TAACA, the atmospheric contributions are modeled 
following POLYMER (Steinmetz et al., 2011), which adopted a poly
nomial function to simulate the atmospheric reflectance, rather than 
using LUTs adopted by the traditional AC approach to determine aerosol 
reflectance (Gordon, 1994; Gordon and Wang, 1994; Vanhellemont and 
Ruddick, 2018). 

Mathematically, following Wang et al. (2020), ρt of the target pixel 
(represented as #1) and the reference pixel (represented as #2) can be 
expressed as: 

ρmod
t,1 (λ) = tg,1(λ)

[
c0,1 + c1,1(400/λ)m

+ c2(400/λ)4
+ ts,1(λ)tv,1(λ)πRrs,1(λ)

]

(2a) 

ρmod
t,2 (λ) = tg,2(λ)

[
c0,2 + c1,2(400/λ)m

+ c2(400/λ)4
+ ts,2(λ)tv,2(λ)πRrs,2(λ)

]

(2b) 

In this expression, c0 represents the contribution of sun glint and thin 
clouds. c1(400/λ)m represents the contribution of aerosol scattering with 
parameter m characterizing the spectral variation of aerosol reflectance 
(with a default value as 1 (Steinmetz et al., 2011)). c2(400/λ)4 represents 
the sum of Rayleigh contribution and Rayleigh-aerosol coupled contri
butions (Wang et al., 2020). It should be noted that the sun glint 
contribution has a weak wavelength dependency and that c1 and c2 

Fig. 1. Flowchart of MPACA to retrieve Rrs(λ) from Landsat-8 OLI total reflectance at top-of-atmosphere.  
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implicitly compensated for its component during the optimization pro
cess. Further, we excluded the OLI images with strong sun glint. 

The Rayleigh contribution is determined by three factors: atmo
spheric pressure, observational geometry, and ocean surface wind speed 
(Gordon et al., 1988; Gordon and Wang, 1992; Wang, 2005). For small 
areas considered in this study, the atmospheric pressure, wind speed, 
and the observation geometries corresponding to each pair of target and 
reference pixels are nearly identical. For instance, statistically, the dif
ference in solar zenith angle and sensor viewing angle of each pair in this 
study is no more than 0.02o. Therefore, it is valid to assume parameter c2 
the same for the two pixels of each pair (see Section 2.2.2 for details). 

As in TAACA (Wang et al., 2020), Rrs is calculated using an IOP-based 
remote-sensing reflectance model (Rrs_IOPs) (Lee et al., 1999) with three 
variables (P, G, X) representing the absorption coefficient of phyto
plankton (aph(440)), the absorption coefficient of detritus and gelbstoff 
(adg(440)), and the backscattering coefficient of particles (bbp(440)), all 
at 440 nm, respectively. This model has shown success in a wide range of 
applications covering oceanic, coastal and optically shallow waters (e.g., 
Ali et al., 2021; Dekker et al., 2011; Hu et al., 2006; Wei et al., 2020). 

The required ts and tv for both pixels, which is related to aerosol type, 
AOD, Rayleigh optical depth (τr), and observational geometry, can be 
calculated with SeaDAS (v7.5) when processing a Landsat-8 OLI image. 
Since OLI has only one NIR band, as adopted in SeaDAS, a band in the 
SWIR domain is used for the derivation of AOD(865). To take advantage 
of decades of progress in ocean color remote sensing, MPACA uses the 
SeaDAS framework to process HSR data, where AOD(865), and then ts 
and tv, can also be retrieved for sensors with two NIR bands and no SWIR 
bands (e.g., SeaWiFS), although there could be different levels of un
certainties in the retrieved AOD(865). 

In the TAACA system developed for processing VIIRS data over 
coastal waters, the value of m is treated as a variable to account for 
strongly absorbing aerosols over coastal regions. Here in MPACA, the 
value of m is fixed as 1.8, as it is the commonly encountered value for 
coastal waters (Wang et al., 2020). There are two reasons for adopting a 
fixed m value for processing Landsat-8 OLI: 1) To reduce the number of 
variables—The number of bands in the visible-NIR domain for Landsat-8 
OLI is less than that for VIIRS, resulting in fewer equations from Landsat- 
8 OLI measurements; and 2) The shortest wavelength is 443 nm for 
Landsat-8 OLI, but a robust numerical resolution of m requires the 
availability of shorter blue bands, such as the 411 nm band of VIIRS. In 
the future, if a sensor has more bands in the blue wavelengths, a variable 
m could be adopted when there are strongly absorbing aerosols. 

There are still eleven variables (c0,1, c0,2, c1,1, c1,2, c2, P1, G1, X1, P2, 
G2, X2) for Eqs. (2a)–(2b), a further reduction of variables is required to 
obtain robust solutions for Landsat-8 OLI measurements when radio
metric information in the 400–900 nm domain only is considered 
available. Since the distances between the target and reference pixels are 
relatively short, we may assume that the parameters c0,1 and c0,2 are also 
the same (then replaced as c0 in the following). While the aerosol type 
and observational geometry for each pair of pixels are considered uni
form, we allow variation in aerosol contributions between the two 
pixels. Since parameter c1 is related to the aerosol optical depth at a 
reference wavelength (e.g., AOD(865)), we use the AOD(865) products 
to scale parameters c1,1 and c1,2, and they are expressed as: 

c1,1 = p×AOD(865)1 (3a) 
c1,2 = p×AOD(865)2 (3b)  

where AOD(865)1 and AOD(865)2 are AOD(865) values for pixels #1 
and #2, which are available from SeaDAS (v7.5) for a Landsat-8 OLI 
image. In short, if there are spatial variations in AOD(865), which will 
be reflected in the derived c1 value. Thus, compared to Acolite-DSF, 
MPACA allows some spatially varying aerosol contributions within a 
Landsat-8 OLI image, although the aerosol type is assumed the same for 
the entire (sub)scene. 

After the above considerations, the number of variables for Eqs. (2a)– 

(2b) dropped to nine (c0, p, c2, P1, G1, X1, P2, G2, X2). Because the two 
pixels have different water properties and these variables impact an ρt 
spectrum differently, it is possible to solve these variables numerically 
by combining Eq. (2a) and Eq. (2b), similar to the spectral optimization 
scheme in TAACA. Fig. 2 shows examples of ρt spectra from a target pixel 
and a reference pixel, where large variations are present in the green- 
NIR wavelengths. We adopt a cost function err similar to that in Wang 
et al. (2020) to quantify the difference between the two sets of modeled- 
and measured- ρt spectra: 

err =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑865

443
(ρmea

t,1 − ρmod
t,1 )

2

5 +

∑865

443
(ρmea

t,2 − ρmod
t,2 )

2

5

√

(
∑865

443
ρmea

t,1

)/

5 +

(
∑865

443
ρmea

t,2

)/

5
(4)  

where ρt
mea and ρt

mod refer to satellite measured and modeled ρt spectra, 
respectively. After values of c0, p and c2 are derived from spectral 
optimization, Rrs for the target pixel is calculated from Eq. (2a): 

Rrs,1(λ) =
ρt,1(λ)

/
tg,1(λ) −

[
c0 + p × AOD(865)1 × (400/λ)1.8

+ c2(400/λ)4
]

ts,1(λ)tv,1(λ)
(5)  

2.2.2. Detailed steps 
The ultimate objective of MPACA is to accurately determine the at

mospheric properties (c0, p, c2) of each target pixel within a Landsat-8 
OLI image; then, Rrs of this pixel can be calculated from Eq. (5). Dur
ing this process, as described above, a reference pixel (pixel #2) is 
required to constrain the atmospheric properties. For this reference 
pixel, it is necessary that 1) its distance from the target pixel should be 
small to ensure the assumption of the same aerosol type can be better 
satisfied; and 2) it needs to have different water properties from the 
target pixel, as the two equations would otherwise become one, pre
venting a robust mathematical solution. A process to select a suitable 
reference pixel is developed, which is described below. 

1) An initial assessment of water optical properties before the sophis
ticated atmospheric correction was carried out. We adopt the black 
pixel index (BPI) (Wang et al., 2019) to classify the optical properties 
of a water pixel: 

BPI =
|ρrc(655) − ρrc(561) |
ρrc(655) − ρrc(865)

(6) 

Fig. 2. The top-of-atmosphere reflectance ρt of a target pixel and a reference 
pixel from a Landsat-8 OLI image. 
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where ρrc is the Rayleigh-corrected reflectance. Based on BPI values, 
pixels are classified as “turbid” and “clear” waters. Through statistical 
analysis (see Fig. 3b), it is found that a value of BPI = 1.0 works well as 
the threshold, and less than 1.0 are classified as turbid waters.  

2) After many trial-and-error experiments, it is found that as long as the 
BPI value of any pixel differs by an absolute value of 0.3 or larger 
from the BPI of the target pixel, this pixel can be considered to have 
different water properties. This will then form a pool of pixels having 
different water properties from that of the target pixel.  

3) From the above pixel pool, 10 pixels with the shortest distance from 
the target pixel are then selected as the reference pixels (or pixel #2). 
Statistically, the average distance between the target pixel and the 
reference pixel is about 500 m. 

4) Each of the 10 pixels is paired with the target pixel and then pro
cessed by the spectral optimization described above, resulting in ten 
sets of solutions for parameters c0, p, c2. The median values among 
the ten sets are selected as the final results for the target pixel, and 
then Rrs for the target pixel is calculated from Eq. (5). 

For the optimization procedure, the MATLAB solver fmincon is 
employed to search for the minimum for Eq. (4). The optimization op
tions include the maximum iterations as 100 and tolerance of 1 × 10− 5. 
The constraints for the optimization procedure are given in Table 1. The 
initial values for each unknown parameter are randomly chosen within 
the range of constraints. 

3. Data 

3.1. Satellite data and study areas 

While MPACA is not tailored to a specific satellite sensor, we here use 
coastal measurements from Landsat-8 OLI to demonstrate its perfor
mance and applicability. Landsat-8 OLI has a spatial resolution of 30 m 
and five spectral bands in the 400–900 nm domain (centered at 443, 
482, 561, 655, and 865 nm) (Franz et al., 2015a). Various studies have 
shown Landsat-8 OLI measurements as a valuable source to monitor 
water constituents in coastal and inland waters (Kuhn et al., 2019; 
Pahlevan et al., 2019; Vanhellemont and Ruddick, 2015; Wei et al., 
2018). 

For this study, the regions of Landsat-8 OLI measurements shown in 
Fig. 4 include Boston Harbor and Massachusetts Bay, Chesapeake Bay, 
Belgian coastal waters, and Long Island Sound.  

a) Boston Harbor and Massachusetts Bay (BH-MB) are located on the 
east coast of the United States. They are strongly impacted by winds, 

hydrological environment, and other factors similar to other com
mon semi-enclosed bays. Compared to Massachusetts Bay, the mean 
annual concentration of SPM over Boston Harbor varies from 3 to 8 
mg L− 1 (Taylor, 2016), which represents relatively turbid waters.  

b) The Chesapeake Bay (CB), alongside its tidal tributaries, is the largest 
estuary near Maryland and Virginia. The waters in the Chesapeake 
Bay are likewise impacted by tides, horizontal gradients driven by 
estuarine circulation, and freshwater contribution from rivers, which 
result in highly variable distributions of SPM, dissolved organic 
matter, and primary productivity (Cao et al., 2018a; Harding, 2015).  

c) The Belgian coastal waters, located in the southern North Sea with a 
depth of about 10 m in the nearshore region, are characterized by the 
occurrence of a coastal turbidity maximum (Fettweis et al., 2016; 
Fettweis et al., 2006). The concentration of SPM at the surface 
fluctuates from 20 to 250 mg L− 1. The port of Zeebrugge is situated in 
the maximum turbidity zone, where the water close to Zeebrugge is 
impacted by maintenance dredging work.  

d) Long Island Sound (LIS) is an elongated tidal estuary of the Atlantic 
Ocean, located in the north of Long Island, New York. The water 
optical properties around the AERONET-OC site LISCO are charac
terized by Chl-a ~ 5 mg m− 3 and ~ 2 mg L− 1 of SPM (Hlaing et al., 
2010). 

3.2. In situ data acquisition and match up 

To validate the performance of MPACA for Landsat-8 OLI images, in 
situ measurements were assembled from multiple field campaigns 
(2013–2017) and four AERONET-OC sites (2013–2016). Six field cam
paigns were conducted over BH-MB and CB. Four AERONET-OC sites 
include COVE_SEAPRISM (SEAPRISM), Thornton_CPower (CPower), 
Zeebrugge_MOW1 (MOW1), and Long Island Sound Coastal Observatory 
(LISCO). The locations of in situ measurement stations are shown in 
Fig. 4, and the details of in situ measurements are briefly described 
below. 

3.2.1. Ship-based measurements 
The ship-based measurements contain five field campaigns con

ducted over BH-MB and one field campaign conducted over CB. The 
locations of in situ stations are denoted with red boxes in Figs.4a and 4b. 
During each field campaign over BH-MB, in situ Rrs was measured 
following the skylight-blocked approach (SBA) (Lee et al., 2013). At 
each sampling station, two radiometric properties were measured with 
hyperspectral radiometers (HyperOCR, Satlantic Inc.): water-leaving 
radiance (Lw, W m− 2 nm− 1 sr− 1) and downwelling plane irradiance 
(Ed, W m− 2 nm− 1) in a spectral range from 349.7 to 804.6 nm with 137 
spectral bands. Rrs was obtained following the same protocol as Wei 

Fig. 3. (a) True color image for the port of Zeebrugge and offshore waters situated on the coast of Belgium from Landsat-8 OLI on April 1st, 2014. (b) Histogram 
distribution for the BPI index of water pixels where the label “Total pixels” represents all pixels in the red box of Fig. 3a, and the label “Turbid pixels” and “Clear 
pixels” are, respectively, the turbid and clear water pixels classified based on the BPI value. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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et al. (2018). The data for the field measurements in the Chesapeake Bay 
were downloaded from SeaBASS maintained by the NASA Ocean 
Biology Processing Group (OBPG) (https://seabass.gsfc.nasa.gov/s 
earch/), where the Rrs were calculated from measurements using GER 
1500 spectroradiometer, designed to gather fast spectral measurements 
from ~350 to 1050 nm at ~3 nm resolution. 

The hyperspectral Rrs spectrum from field measurements was spec
trally convoluted to the corresponding Rrs data at the five Landsat-8 OLI 
visible-NIR bands with Landsat-8 OLI’s spectral response function 
(Pahlevan et al., 2014): 

RL8
rs (Bi) =

∫ 900
400 Rrs(λ)RSRi(λ)dλ
∫ 900

400 RSRi(λ)dλ
(7)  

where RSRi represents the response function of band Bi. The full spectra 
RSR of Landsat-8 OLI can be accessed online (Ball_BA_RSR.v1.11). 

3.2.2. AERONET-OC measurements 
We also acquired twenty-two cloud-screened and fully quality- 

controlled Level 2.0 AERONET-OC measurements of normalized 

water-leaving radiance (Lwn) from four AERONET-OC sites at SEAPR
ISM, CPower, MOW1, and LISCO. SEAPRISM, MOW1, and LISCO are 
located in coastal nearshore waters, while CPower is situated further 
offshore in relatively clearer waters (see Figs. 4b–4d, blue dots). 

AERONET-OC is an extended network from AERONET developed by 
the National Aeronautics and Space Administration (NASA) for marine 
applications. By installing the modified sun-photometers on offshore 
platforms worldwide, AERONET-OC provides in situ radiometric mea
surements over a water body (i.e., water-leaving radiance) (Holben 
et al., 1998; Holben et al., 2001; Zibordi et al., 2009). Level 2.0 Quality 
Assured Lwn (mW cm− 2 um− 1 sr− 1) from AERONET-OC was downloaded 
from the AERONET website (http://aeronet.gsfc.nasa.gov/), which was 
further converted to Rrs through the following formula: 

Rrs(λ) =
Lwn(λ)
F0(λ)

(8) 

For SEAPRISM, CPower, and LISCO sites, an f/Q correction of the 
bidirectional effects (Morel et al., 2002) was implemented for the gen
eration of Lwn. For MOW1, however, there was no f/Q correction for Lwn, 
as the Chl-a based f/Q correction scheme is not adequate for this turbid 

Table 1 
Range for both atmospheric and oceanic parameters in the process of MPACA, where Min. and Max. represent the lower and upper boundaries of these parameters, 
respectively.   

c0 p c2 P1 

(m− 1) 
G1 

(m− 1) 
X1 

(m− 1) 
P2 

(m− 1) 
G2 

(m− 1) 
X2 

(m− 1) 

Min. 1 × 10− 7 0.0001 0.0001 0.005 0.002 0.001 0.005 0.002 0.001 
Max. 0.1 1.0 1.5 2.5 3.0 1.0 2.5 3.0 1.0  

Fig. 4. Locations of in situ measurements used in this study. (a) Massachusetts Bay and Boston Harbor; (b) the Chesapeake Bay; (c) Belgian coast and (d) Long Island 
Sound, with the sampling stations collected from six field campaigns (n = 16, red boxes) and four AERONET-OC sites (COVE_SEAPRISM, Thornton_CPower, Zee
brugge MOW1, and LISCO, n = 22, blue dots), with 38 stations in total. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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site (Zibordi et al., 2009). 
Separately, there is a relatively large difference in the center wave

lengths, i.e., 8 to 12 nm, between AERONET-OC (443, 490, 551, and 667 
nm) and Landsat-8 OLI (443, 482, 561, 655 nm), except for the 443 nm 
band. In order to obtain a consistent evaluation, the AERONET-OC Rrs 
bands need to be shifted to the Landsat-8 OLI bands. For this conversion, 
the large (~800) hyperspectral Rrs dataset in Lee et al. (2014) was 
analyzed, and significant linear relationships among three-band pairs of 
Rrs, i.e., 490 nm vs 482 nm, 550 nm vs 560 nm, and 665 nm vs 655 nm, 
were obtained (see Fig. 5). Therefore, these relationships were applied 
to convert the Rrs of AERONET-OC band to Landsat-8 band before the 
evaluation of OLI Rrs. Note that before establishing the above relation
ships, as described above (see Eq. (7)), the hyperspectral Rrs were 
spectrally convoluted to the corresponding Rrs data at the four OLI 
visible bands. 

3.3. Method of evaluation and statistical metrics 

For subsequent analysis, the satellite pixels with substantial cloud 
contamination were identified and discarded. Meanwhile, for the re
trievals (i.e., Rrs(λ), ts(λ), tv(λ), etc.) from SeaDAS, the pixels with low- 
quality retrievals were also removed based on the standard Level-2 
quality flags, which include ATMFAIL (Atmospheric correction fail
ure), LAND (land pixel), CLDICE (Probable cloud or ice contamination), 
HILT (very high or saturated observed radiance) and HIGLINT (Strong 
sun glint contamination). 

To minimize the effects of temporal and spatial mismatches between 
the satellite and in situ data for ship-based measurements, we adopt a 
time constraint of ±1.5 h to create in situ and satellite matchups. As a 
result, sixteen sampling stations were matched between Landsat-8 OLI 
and in situ ship-based measurements, with thirteen stations in BH-MB 
(Fig. 4a, red boxes) and three stations in CB (Fig. 4b, red boxes). The 
Landsat-8 images used for this comparison are listed in Table S1 of the 
Supplementary Information available online. For each matching field 
station for all four AC algorithms analyzed here, we also excluded data 
where the coefficient of variation (CV) within a 3 × 3 box of the OLI 
image surrounding the location of in situ stations is greater than 0.15. 

For matchups between AERONET-OC and Landsat-8 OLI, the allowed 
maximum time difference between Landsat-8 OLI overpass and the 
measurement time of AERONET-OC data was also set to ±1.5 h. When 
more than one AERONET-OC measurement satisfied this criterion, the 
AERONET-OC measurements were linearly interpolated to the corre
sponding satellite overpass time based on the measurement time of 
AERONET-OC data. Finally, we obtained a total of twenty-two matchups 
between Landsat-8 OLI and in situ data for the four AERONET-OC sites 
(Fig. 4b–d, blue dots). Information of aerosol optical depth, solar zenith 
angle (SZA), and wind speed (m s− 1) for each matchup is also available. 
The Landsat-8 OLI images for this comparison are listed in Table S2 of 
the Supplementary Information available online. For the satellite im
ages, the median Rrs values within a box of 7 × 7 pixels centered on the 
AERONET-OC station were used for the evaluations to exclude addi
tional noise resulting from the station or its shadow. 

To quantitively measure the performance of each AC approach, we 
calculated the coefficient of determination (R2), the Mean Absolute 
Percentage Difference (MAPD), bias and the Root Mean Square Differ
ence (RMSD) between the results from atmospherically corrected OLI 
image (Qsat) and in situ measured Rrs (Qmea), 

MAPD =
1
N
×

∑N

i=1

⃒
⃒
⃒
⃒
Qsat,i − Qmea,i

Qmea,i

⃒
⃒
⃒
⃒× 100% (9a) 

Bias =
1
N
×

∑N

i=1

(
Qsat,i − Qmea,i

)
(9b) 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
×
∑N

i=1

(
Qsat,i − Qmea,i

)2

√
√
√
√ (9c)  

where Qsat,i and Qmea,i refer to satellite products and in situ measure
ments, respectively, and N the number of data pairs. 

4. Results and discussions 

4.1. Evaluation of existing AC algorithms with in situ measurements 

We first evaluated the performance of a few widely used AC algo
rithms with all matchup measurements. Fig. 6 shows a comparison be
tween in situ Rrs and Landsat-8 OLI Rrs (bands 443–655 nm) retrieved by 
SeaDAS (blue), Acolite-DSF (yellow), and Acolite-EXP (red), respec
tively, for all the matchup sampling stations (N = 38), with detailed 
statistical evaluations presented in Table 2. Generally, among the three 
AC approaches, the Rrs retrieved by SeaDAS (Rrs

SeaDAS) matched best 
with in situ Rrs (Rrs

insitu), where the R2 value of each band for all the 
evaluation data is above 0.91 (Table 2), with RMSD value varying from 
0.0010 sr− 1 (655 nm) to 0.0018 sr− 1 (482 nm), and MAPD from 13.8% 
(561 nm) to 38.8% (443 nm) (see Table 2). The retrieved Rrs

SeaDAS shows 
better accuracy at 561 and 655 nm, with RMSD of 0.0017 sr− 1 and 
0.0010 sr− 1, and MAPD of 13.8% and 25.6%, respectively. The larger 
deviations of Rrs

SeaDAS at 443 nm and 482 nm happened at the 
AERONET-OC site MOW1, where Rrs(443) was in a range of 
0.010–0.015 sr− 1, indicating challenges in processing turbid waters. 
There are a few negative Rrs

SeaDAS values at 443 nm for stations located 
in Boston Harbor, which may be resulted from the impact of absorbing 
aerosols as reported before (Bailey and Werdell, 2006; Hlaing et al., 
2013; Hu et al., 2019), with these pixels flagged by the l2_flag 
“ABSAER”. 

For this dataset, the R2 value for the retrieved Rrs(λ) by Acolite-DSF is 
comparable with that of SeaDAS Rrs(λ) at the four visible bands, but the 
MAPD of the retrieved Rrs from DSF (Rrs

DSF) at each band is about two 
times that of Rrs

SeaDAS. The larger deviation over MB-BH could be that 
the ρpath is not completely uniform over certain tiles. The specific reasons 
for these results need to be further analyzed, which is beyond the scope 
of this study. 

In contrast, Acolite-EXP exhibits less satisfactory results, especially 
in the blue bands (see Fig. 6). The Acolite-EXP generally overestimates 
Rrs(λ) at all the visible bands, especially for Rrs(443) (in a range of 

Fig. 5. Scatterplot comparisons between Rrs(490) and Rrs(482), Rrs(550) and Rrs(560), and Rrs(665) and Rrs(655) for in situ hyperspectral Rrs dataset in Lee et al. 
(2014). Rrs of Landsat-8 OLI bands were spectrally convoluted with OLI’s band response functions. 
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~0.002–0.015 sr− 1), where the RMSD and MAPD values are as high as 
228% and 0.0062 sr− 1, respectively (see Fig. 6 and Table 2). This kind of 
overestimation was also reported in Vanhellemont (2019) and Xu et al. 
(2020). 

The contrasting performance among SeaDAS, Acolite-DSF and 
Acolite-EXP is further manifested by comparing the overall shapes and 
ranges between in situ Rrs and satellite-retrieved Rrs spectra for the six 
locations (see Fig. 7). Separately, the Rrs spectra from SeaDAS show 
similar spectral shapes and ranges compared to Rrs from in situ mea
surements for the six locations. Except for MB, the spectral shapes of the 
retrieved Rrs by Acolite-DSF for the other five locations are also similar 

to that of Rrs
insitu, but the values of the mean Rrs

DSF are much higher than 
that from Rrs

SeaDAS over BH, CB, and LISCO (Figs. 7a, 7e and 7f). In 
contrast, Acolite-DSF shows better performance over MOW1 and CPo
wer compared to SeaDAS, which is also reported in Ilori et al. (2019) and 
Vanhellemont (2020). 

4.2. Evaluation of MPACA with in situ measurements 

Like the above, we evaluated the performance of MPACA using in situ 
measurements, with Fig. 8 showing scatterplots between measured and 
MPACA-retrieved Rrs, and the statistical measures included in Table 2. 

Fig. 6. Scatterplot comparison between Landsat-8 OLI-derived Rrs and in situ Rrs at Landsat-8 each visible band from SeaDAS, Acolite-DSF, and Acolite-EXP. The black 
dash line represents the 1:1 line. The different color solid lines represent the linear regression for different AC algorithms corresponding to all matchups, respectively 
(blue line for SeaDAS, yellow line for Acolite-DSF, and red line for Acolite-EXP). “Field” and “OC” represent the in situ Rrs from the field campaigns (open symbols) 
and AERONET-OC sites (solid symbols), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Statistics for all matchup sampling stations of Rrs at each visible wavelength derived from SeaDAS, Acolite-DSF, Acolite-EXP and MPACA approaches, respectively, for 
Landsat-8 measurements.  

Band Scheme N R2 Slopea Inta RMSD 
(sr− 1) 

MAPD 
(%) 

Bias 
(sr− 1) 

443 

SeaDAS 38 0.91 1.24 − 0.0007 0.0014 38.8 0.00006 
Acolite-DSF 38 0.79 0.97 0.0019 0.0024 89.1 0.0018 
Acolite-EXP 38 0.53 1.10 0.0048 0.0062 228.2 0.0052 
MPACA 38 0.98 0.97 0.00004 0.0004 10.2 − 0.00005 

482 

SeaDAS 38 0.95 1.32 − 0.0014 0.0018 23.5 0.0002 
Acolite-DSF 38 0.9 1.07 0.0015 0.0023 54.0 0.0018 
Acolite-EXP 38 0.76 1.26 0.0040 0.0061 146.1 0.0053 
MPACA 38 0.99 0.98 0.00004 0.0005 8.7 − 0.00007 

561 

SeaDAS 38 0.96 1.15 − 0.0013 0.0017 13.8 − 0.0002 
Acolite-DSF 38 0.96 0.87 0.0019 0.0017 26.2 − 0.0008 
Acolite-EXP 38 0.93 1.15 0.0028 0.0046 69.0 0.0040 
MPACA 38 0.99 1.06 − 0.0003 0.0006 6.6 0.0001 

655 

SeaDAS 38 0.96 1.06 − 0.0005 0.0010 25.6 − 0.0003 
Acolite-DSF 38 0.95 0.95 0.0010 0.0012 63.4 0.0008 
Acolite-EXP 38 0.87 1.09 0.0030 0.0037 185.0 0.0033 
MPACA 38 0.98 1.06 − 0.0002 0.0006 16.2 0.00001  

a Slope and Int are the slope and intercept of the fitting line, respectively. 
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Overall, the R2 value is ~0.98 or better for each OLI band. Compared to 
SeaDAS, MPACA reduced the MAPD by a factor of three for the two blue 
bands, from 38.8% to 10.2% at 443 nm, and from 23.5 to 8.7% at 482 
nm (see Table 2). The higher R2, lower RMSD and MAPD values in all the 
OLI bands indicate excellent agreement of Rrs between MPACA retrievals 
and in situ measurements. This agreement is also manifested in Fig. 9, 
where the mean and the range of Rrs spectra from MPACA match very 
well with those from in situ measurements for the six locations, even 
though each location is associated with a different load of water con
stituents and each Landsat-8 OLI image contains different atmospheric 
properties. It is worth noting that the ranges of Rrs at 561 nm and 655 nm 
over the Chesapeake Bay (Fig. 9e) are larger than those of the other five 

regions. The reason is that the in situ Rrs of this region came from two 
regions with relatively different water optical properties, with one in the 
upper section of the bay and the other at the mouth of the bay. 

It is necessary to point out that MPACA, TAACA, and POLYMER 
included an Rrs model with spectral modeling of IOPs in the process, 
which provides additional constraints to Rrs spectrum, therefore, more 
reasonable and accurate Rrs spectra could be expected for such ap
proaches compared to SeaDAS. Because of the spectral optimization, 
however, it takes a much longer time for MPACA to process an image 
than SeaDAS. At present, after retrieving AOD, ts and tv via SeaDAS, it 
takes ~5 h to process an OLI image of a size ~90 km × 40 km with a 
personal computer (Intel(R) Core(TM) i7-10700F CPU @ 2.90 GHz, 

Fig. 7. Qualitative comparison of in situ Rrs measurements against SeaDAS, Acolite-DSF and Acolite-EXP retrieved Rrs for Boston Harbor (a), Massachusetts Bay (b), 
AERONET-OC site “MOW1” (c), AERONET-OC site “CPower” (d), Chesapeake Bay (e) and AERONET-OC site “LISCO” (f). Solid lines are the average reflectance 
spectra for all matchups, while shaded regions are one standard deviation from the average. 

Fig. 8. Same as Fig. 6, but for results of MPACA.  
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Hacker God DDR4 3200 16G RAM and ASUS 1060S 6G graphics card). 
The use of more robust computer configurations or supercomputers 
should be able to improve the computation efficiency of this algorithm. 

4.3. Relationship between the performance of AC algorithms and 
environmental conditions 

Although the above results indicate that MPACA is a promising 
alternative of atmospheric correction for processing HSR data (having at 
least two bands in the NIR or SWIR domain) in coastal regions, there are 
still differences between MPACA retrievals and in situ measurements. To 
see if any specific relationships exist between the remaining un
certainties and environmental parameters, we analyzed the performance 
of MPACA and some other algorithms for a few key environmental 
conditions. 

4.3.1. Performance of MPACA over turbid coastal waters 
As shown in the literature and Fig. 6, it is always a challenge to 

accurately remove atmospheric contributions in turbid coastal waters, 
with errors mainly due to inaccurate estimations of Rrs(NIR) (IOCCG, 
2010). The commonly applied AC algorithms usually extend the “black 
pixel” assumption from NIR to SWIR bands to better ensure negligible 
water-leaving radiance in the measured signal (IOCCG, 2010; Wang and 
Shi, 2007), a strategy applicable only to sensors with two or more 
highly-sensitive SWIR bands. However, MPACA in its design is for sen
sors with limited SWIR bands (need at least two NIR or SWIR bands) 
such that it has a broader range of applicability to satellite measure
ments. Therefore, it is necessary to evaluate the performance of MPACA 
over turbid coastal waters. Fig. 10 shows a subset OLI “true color” RGB 
image of 2014-04-01 over Belgian coastal waters, where high concen
trations of SPM are shown as bright brownish patches. For instance, the 
submerged sand dune and advection of small-scale sediment in and 
around the port of Zeebrugge show high SPM concentration (Fig. 10). 
Because of the high spatial resolution (30 m) of the Landsat-8 OLI image, 
the offshore construction of CPower wind farm, large ships and their 
turbid wakes are also revealed (Fig. 10). The spatial distributions of OLI- 

Fig. 9. Same as Fig. 7, but for results of MPACA.  

Fig. 10. Rayleigh corrected RGB (655, 561 and 482 nm) Landsat-8 OLI image over Belgian coastal waters on April 1st, 2014, showing turbid coastal waters with high 
concentrations of suspended particulate matter (yellow-brown). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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derived Rrs at 443, 482, 561, 655, and 865 nm by MPACA (left column) 
and SeaDAS (right column), respectively, for this subset image, are 
shown in Fig. 11. 

For this turbid environment, we compared Rrs from MPACA and 
SeaDAS (where one SWIR and one NIR bands were used in the atmo
spheric correction process) with that from AERONET-OC measurements, 
with results showing in Figs. 11 and 12. Overall, similar spatial patterns 
of the retrieved Rrs at the five visible-NIR bands are revealed between 
results from MPACA and those from SeaDAS (R2 values generally > 0.82, 
see Fig. 12), although the values of Rrs

MPACA are relatively lower than 
that of Rrs

SeaDAS. Generally, the best agreement between Rrs
MPACA and 

Rrs
SeaDAS is found at 561 nm and 655 nm (Figs. 12c and 12d), while 

Rrs
MPACA(865) is lower by ~40% compared to Rrs

SeaDAS(865) (Fig. 12e). 
To gain more insights into these comparisons, we compared the spectra 
of Rrs

MPACA, Rrs
DSF and Rrs

SeaDAS with the Rrs obtained from the 
AERONET-OC site-MOW1 on 2014-4-1 (Fig. 12f). It is found that, in 
general, they all agree with each other very well in spectral shape, but 
the Rrs values from MPACA are closer (4.5% difference on average) to 
that from in situ measurements, whereas the values from SeaDAS and 
Acolite-DSF are relatively higher (16.3% and 19.8% on average, 
respectively) than in situ values, especially at blue bands. In particular, 
for Rrs(865), the in situ value is about 0.0023 sr− 1, but it is 0.0025 sr− 1 

from SeaDAS, 0.0033 sr− 1 from Acolite-DSF and 0.0022 sr− 1 from 
MPACA. Although they are generally similar (except Acolite-DSF), these 

values suggest that the lower values from MPACA are more consistent 
with those from AERONET-OC measurements, at least for this image. 
These comparisons and evaluations indicate that MPACA can obtain 
valid Rrs over turbid coastal waters for satellites with at least two bands 
in the NIR or SWIR domain. However, similar to the development of all 
algorithms, more evaluations of MPACA are necessary in the future, 
especially over highly turbid waters where likely a more suitable model 
for Rrs and a more accurate algorithm for retrieving AOD might be 
required. 

4.3.2. Sensitivity of MPACA to the accuracy of AOD(865) 
One of the basic assumptions for the proposed MPACA is that the 

aerosol type is uniform in a relatively small region, while the aerosol 
load could vary following AOD(865). For turbid coastal waters, the 
retrieved AOD(865) value from NASA SeaDAS is not error-free (Gordon 
and Wang, 1994; IOCCG, 2010), which will subsequently introduce er
rors in the spatial relationship between the target pixel and reference 
pixel (see Eqs. (3a), (3b)). Further, as ts and tv are weakly dependent on 
AOD (Gordon and Morel, 1983; Ma et al., 2006; Wang, 1999), errors in 
the estimation of AOD(865) will likely be further propagated to the 
retrieval of Rrs. Here, to characterize the potential effect of the accuracy 
of AOD(865) on the retrieval of Rrs by MPACA, for all the evaluation 
stations, sensitivity tests were carried out by adding errors to the values 
of AOD1 (the AOD(865) product of the target pixel) and AOD2 (the AOD 
(865) product of the reference pixel). Note that for these stations, the 
range of retrieved-AOD1 from SeaDAS (with one NIR band and one SWIR 
band) is ~0.02 to ~0.2, a range quite large for valid ocean color remote 
sensing, although the range of ~0.02 to ~0.1 contributes to 79% of all 
the evaluation stations (see Fig. 13a). Separately, Fig. 13b shows a 
scatterplot of AOD1/AOD2 for all the evaluation stations, which in
dicates the spatial variation of aerosol load and potentially variations of 
water optical properties. For these sensitivity tests, ±50% errors (i.e., 
assumed the largest error as 50%) were added to the original AOD1 and 
AOD2 values (eight different combinations). Further, for each combi
nation of AOD1 and AOD2, the corresponding ts and tv of both pixels were 
modeled following Gordon and Morel (1983), which is a function of 
aerosol optical depth, Rayleigh optical depth, single-scattering albedo, 
aerosol phase function, and observational geometry (see Supplementary 
Information for details). 

Fig. 14 shows a comparison of Rrs at all visible bands, for the entire 
evaluation datasets (both field measurements and AERONET-OC), be
tween the MPACA retrievals and in situ measurements after adding 
±50% errors to AOD1 and AOD2, where AOD1,test and AOD2,test refer to 
error-added AOD1 and AOD2, respectively, with detailed statistical 
evaluations for each visible band presented in Table 3. Overall, the R2 

values are all ~0.98 and the slopes of linear regressions all approach the 
1:1 line (slopes vary from 0.97 to 1.03) for these combinations. Further, 
for these cases, the overall RMSD values are less than ~0.007 sr− 1 and 
the overall MAPD values less than 13.0%, comparable to those obtained 
with the original AOD(865) values. The highest MAPD (12.6%) corre
sponds to the case where, at the same time, AOD1,test/AOD1 is 0.5 while 
AOD2,test/AOD2 is 1.5 or AOD1,test/AOD1 is 1.5 while AOD2,test/AOD2 is 
0.5, a situation that is rare to happen. Meanwhile, for each visible band, 
its values of RMSD and MAPD are comparable to that across all the 
spectral bands (see Table 3). These results indicate the negligible impact 
of errors in AOD(865) (at least for errors no more than 50%) on the 
retrieval of Rrs. The reason for such insensitivity is partly due to that 
AOD(865) is simply an initial value used in MPACA to constrain its 
spatial variations, where the final contribution from the aerosol and 
atmospheric path radiance is determined through spectral optimization. 

We further evaluated the spectral similarity between the MPACA- 
retrieved and in situ Rrs spectra using a cosine mapper: 

Fig. 11. The spatial distribution of Rrs(443), Rrs(482), Rrs(561), Rrs(655), and 
Rrs(865) over Belgian coastal waters for Landsat-8 OLI image on April 1st, 2014, 
retrieved by MPACA (left row) and SeaDAS (right row). The red dot is the 
location of the AERONET-OC site-MOW1. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of 
this article.) 
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cos(α) =

∑N

i=1
Rrssat,i Rrsmea,i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Rrssat,i

)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Rrsmea,i

)2

√ (10)  

with α the angle between the in situ Rrs (Rrsmea) and the satellite- 
retrieved Rrs (Rrssat) spectra. The higher the spectral similarity be
tween the two spectra, the smaller the angle α. For each error combi
nation, the α value is close to 0, indicating that the Rrs spectra from 
MPACA with error-added AOD(865) have a very high spectral consis
tency with in situ Rrs. All above evaluations suggest that MPACA can 
tolerate errors in AOD(865) to at least ~50%. 

As described earlier, one of the basic assumptions for the proposed 
MPACA is that the aerosol type is uniform in a relatively small region. 
However, the aerosol type could be different even for small images in 
size like Landsat-8 OLI under the influence of wind, which plays a vital 
role in mixing and advecting aerosol (André and Morel, 1991). For such 
exceptional situations, it might be necessary to evaluate the aerosol 
types in the study area, and a pixel-dependent parameter m might be 
required. More efforts are needed in the future to address measurements 
with significant variations of aerosol types. 

5. Conclusions 

In this effort, we have developed an atmospheric correction 

Fig. 12. (a–e) The comparisons between Rrs at 443, 482, 561, 
655 and 865 nm derived from SeaDAS (x-axis) and MPACA (y- 
axis), respectively, for 2014-04-01 Landsat-8 OLI image over 
Belgian coastal waters. The dashed black line is 1:1 line, and 
the solid red line is the linear regression. The red dots represent 
the Rrs values retrieved by MPACA and SeaDAS for AERONET- 
OC site-Zeebrugge_MOW1 on this day. (f) Rrs spectra of in situ 
measurement (red line), Landsat8 OLI-derived by MPACA 
(green line), SeaDAS (blue line) and Acolite-DSF (yellow line) 
method for AERONET-OC site-Zeebrugge_MOW1 over Belgian 
coastal waters on April 1st, 2014. The NIR spectral region is 
magnified in a small box. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web 
version of this article.)   

Fig. 13. (a) Distributions of SeaDAS (v7.5) retrieved AOD(865) (for pixel #1) from Landsat-8 measurements for all the evaluation stations (N = 38). (b) A scatterplot 
of the ratio between the AOD(865) products of the target pixel (AOD1) and reference pixel (AOD2) for all the evaluation stations. 
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algorithm (MPACA) based on the assumption that the aerosol type is 
uniform within a high-spatial-resolution image but allowing water 
properties to vary freely. The algorithm is evaluated using the Landsat-8 
OLI measurements at six different coastal locations, which include 
turbid waters. It is found that the Rrs estimations from MPACA have 
MAPD of less than 16.2% of in situ measurements, which happened at 
the red band (655 nm), while Rrs obtained by SeaDAS and Acolite show 

MAPD up to 38.8% and 228.2%, respectively, for the same dataset. 
These results indicate that MPACA could generate reliable Rrs for HSR 
satellites like Landsat-8 OLI or Sentinel-2 MSI or some small satellites, 
sensors having two bands in the NIR or SWIR domain, as long as the 
retrieved AOD(NIR) has an uncertainty less than 50% over turbid coastal 
waters. 

Fig. 14. Overall comparison of Rrs at all visible bands (443, 482, 561 and 655 nm) between the retrievals using MPACA and in situ measurements after adding ±50% 
errors to AOD1 and AOD2. The dashed line refers to 1:1 line, and the dark green lines represent the linear regression for all visible bands with the statistical measures 
shown in the scatterplot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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