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ARTICLE INFO ABSTRACT

Editor: Menghua Wang Due to its ability to provide day-and-night profiling and high depth resolution, ocean lidar has become an

important tool for marine remote sensing. However, a lidar system provides time-based measurements of

Keywords: backscattered photons, where the distance (or depth for vertical profiling) is a product of light speed in water and
8’:3“ remote sensing the time photons pass. When there are significant contributions of multiple scattering in the backscattered signals
ldar

of ocean lidar, the perceived depth of these measured photons will be deeper than the real depth. Therefore, if
the objective of a lidar system is to sense the vertical profile of particles, the present time-based depth profile will
not match the real depth profile of particles in the water column. To address this discrepancy, we carried out
semi-analytical Monte Carlo simulations for a wide range of water properties (represented by scattering coef-
ficient, b), focusing on Case-1 water, with platforms including spaceborne, airborne, shipborne, and underwater.
In the simulation process, it is assumed that the water column is vertically homogeneous, and the influence of sea
surface fluctuations is ignored. Based on the simulated data, relationships between the discrepancy and b, as well
as the radius of the received footprint on the water surface (ry), are established. Sensitivity analysis indicates that
the discrepancy is more sensitive to b than to r,. Further, the impact of the absorption coefficient, scattering phase
function, rough sea surface, and vertically non-uniform inherent optical properties on this discrepancy is dis-
cussed. Our results not only highlight the significance of considering multiple scattering, particularly for airborne
and spaceborne platforms, in sensing the vertical profiles of particles but also provide guidance for interpreting

Monte Carlo
Multiple scattering

backscattered signals in ocean lidar applications.

1. Introduction

The ocean plays an indispensable role in the global ecosystem, not
only regulating climate and maintaining biodiversity but also a crucial
part in global biogeochemical processes such as the carbon and mercury
cycles (Mason and Sheu, 2002). Therefore, ocean observation data is
essential for conducting marine research and predicting ocean changes
(Adkins, 2013; Barry et al., 2011; Mason and Sheu, 2002; Regnier et al.,
2022). Due to their wide coverage, long-term data acquisition capabil-
ities and high spatial resolution, satellite remote sensing technologies
have been widely employed in marine scientific research (Amani et al.,
2022; Rani et al., 2021). Over the past few decades, passive ocean color
remote sensing has been employed to derive a variety of ocean param-
eters, such as chlorophyll-a concentration (Chl) and particulate matter,
by measuring the water-leaving radiance, providing a sustained synoptic
view of the distribution of the bio-optical properties of oceanic waters
and biogeochemical parameters (Blondeau-Patissier et al., 2014; Hu,
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2009). However, passive ocean color remote sensing lacks profiling
capabilities and is constrained by solar illumination, making observa-
tions impossible in conditions such as the absence of sunlight or low sun
angles (Collister et al., 2024; Joint et al., 2000).

To achieve three-dimensional (3D) ocean observations, active lidar
technology has been proposed. It can obtain day-and-night profile in-
formation of water parameters by detecting the backscattered signal
generated by the interaction between laser beams and molecules/par-
ticles in the upper water column (Churnside and Shaw, 2020; Jamet
et al., 2019). With advances in laser technology, ocean lidar has been
applied to various subjects, including optical properties of water
(Collister et al., 2018; Shangguan et al., 2024a; Yuan et al., 2022), ocean
temperature and salinity (Bao et al., 2022; Gao et al., 2006; Moisan
et al., 2024; Spence et al., 2024; Wang et al., 2023; Yang and Shangguan,
2023; Yu et al., 2014), oil spills (Li et al., 2016; Li et al., 2014; Samberg,
2005; Shangguan et al., 2023c), internal waves (Churnside et al., 2012;
Magalhaes et al., 2013), fish schools (Churnside and Hunter, 1996;
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Churnside et al., 2017), underwater topography (Hickman and Hogg,
1969; Shangguan et al., 2023a; Steinvall et al., 1993), and underwater
targets (Maccarone et al., 2023; Shangguan et al., 2024b). To expand the
detection range, shipborne (Trees, 2014), airborne (Mullen et al., 1995),
and even spaceborne lidars (Abdallah et al., 2012; Chen et al., 2019a)
have been proposed. Additionally, to effectively avoid interference at
the air-sea interface, underwater single-photon lidar has recently been
introduced for ocean observation (Shangguan et al., 2024c; Shangguan
et al., 2023b).

For ocean lidar system, detection depth is a crucial metric. Experi-
mental studies indicate that the maximum detection depth of ICESat-2
can reach up to ~40 m (Parrish et al., 2019). Furthermore, dual-
wavelength airborne ocean lidar has demonstrated a detection depth
of around 100 m (Li et al., 2020). In contrast, shipborne photon-
counting ocean lidar has shown a detection depth of 80 m (50 m) in
clear (turbid) waters (Shen et al., 2022), while underwater lidar has
been validated to reach up to 105 m (Shangguan et al., 2023b).

However, the depth information (termed as time-based depth pro-
file) provided by a lidar system is based on the time that photons pass,
which does not necessarily match the real depth profile. This discrep-
ancy becomes significant when the backscattered signal contains sub-
stantial multiple-scattering contributions. For instance, studies have
shown that there could be an overestimation of cloud optical thickness
by up to 40 % if multiple scattering is ignored when lidar is used to
detect ice clouds (Hogan, 2006). Although this phenomenon has been
widely studied in the fields of cloud-profiling lidar and radar, it has
received little attention in the field of ocean lidar (Mclean et al., 1998;
Zege et al., 2003).

To get an in-depth understanding of this issue, this study carries out
an analysis of the discrepancies between the time-based and real depth
profiles caused by multiple scattering in ocean lidar. Although several
methods, including the quasi-single small-angle approximation analytic
methods (Kopilevich and Surkov, 2008), lidar equations considering
beam spreading and pulse stretching (Mclean et al., 1998; Zege et al.,
2003), and the Monte Carlo (MC) model, are widely used for simulating
ocean lidar backscattered signals due to their accuracy and flexibility in
handling complex scattering processes in water, this study employs the
semi-analytical MC model. This model, which has been extensively
applied and experimentally validated in ocean lidar signal simulations
(Bissonnette et al., 2005; Chen et al., 2019b; Chen et al., 2023; D’ali-
monte et al., 2024; Liu et al., 2019a), is adopted here for its efficiency in
recording both time-based and actual depth profiles.

Moreover, since both the time-based and the real depth profiles can
be described by the attenuation coefficient and its corresponding
detection depth, the discrepancy between them is quantified using the
ratios of these attenuation coefficients (K,/K,) and depths (25/z4). Here,
K; and K, are the attenuation coefficients of the time-based and real
depth profiles, respectively, while 2% and z4 represent the detection
depths of the real and time-based depth profiles, respectively. Further-
more, for Case-1 water, assuming a vertically homogeneous water col-
umn and neglecting the influence of sea surface fluctuations,
relationships are established between the ratio K,/K; and both scattering
coefficient (b) and the radius of the receiver footprint on the water
surface (ry), as well as between the ratio 2%/z4 and both b and .

The structure of this article is as follows: first, the semi-analytical MC
simulation, which simultaneously records time-based and real depth
profiles, is introduced, with analysis focusing on six types of oceanic
lidar systems from two spaceborne, two airborne, one shipborne, and
one underwater platform. Subsequently, statistical model for K,/K; and
2%/z4 in relation to the b and r; are established for Case-1 water,
assuming a vertically homogeneous column and ignoring sea surface
fluctuations. The sensitivity analysis of K,/K; and z8/z4 to b and r; is
subsequently conducted. Moreover, the impacts of the absorption coef-
ficient (a), scattering phase function (SPF), rough sea surface, and
vertically non-uniform inherent optical properties (IOPs) on the dis-
crepancies are further discussed. Finally, conclusions are presented.
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2. Monte Carlo simulation
2.1. Semi-analytic Monte Carlo simulation

MC simulation is a statistical method used to model and analyze
complex systems by generating random samples and computing results
based on probabilistic principles. In lidar applications, MC simulations
treat photons as particles and simulate their trajectories through water
media to generate lidar backscattered signals. This approach allows for a
detailed analysis of photon interactions with the water column, which is
crucial for accurately modeling lidar backscattered signals. In ocean
lidar applications, MC has been experimentally validated for simulating
ocean signals (Liao et al., 2023; Liu et al., 2019a; Liu et al., 2019b),
including elastic backscattered signals (Chen et al., 2020; Chen et al.,
2018; Liu et al., 2020), inelastic backscattered signals (Spence et al.,
2023), and polarization backscattered signals (Lin et al., 2023; Wu et al.,
2024). To improve the computational efficiency of traditional MC sim-
ulations, this paper adopts a semi-analytic MC simulation method. In
this approach, the emitted photon is treated as a large photon packet.
During each scattering event, the expected value is computed and
recorded to obtain the lidar backscattered profile. Here, the process of
the semi-analytic MC simulation for simultaneously recording both the
time-based and real depth profiles is briefly introduced. For clarity, a
flowchart of the semi-analytical MC process is shown in Fig. 1, with
detailed steps explained below.

First, initialize the photons with the origin of the coordinate system
at the center of the laser spot incident on the water surface, where the z-
axis points vertically downward and the x and y axes represent the
horizontal coordinates. The initial position of the photons is set to (xo,
¥o, 0), where xy and yo are random values determined by the energy
distribution of the incident laser spot on the water surface, which is
considered uniform. The initial direction of the photons (uyo, Uyo, Uz0) is
determined based on the tilt angle of the lidar, accounting for photon
refraction at the water surface, while the laser beam divergence angle is
used to initialize the position of the photons on the water surface. The
initial weight of the photons, Wy, is set to 1, and a threshold value, Wr,
with a value of 10 is defined for photon extinction.

During photon movement, both the step length and direction of the
photons are determined by the absorption and scattering characteristics

Input parameters
& set threshold

I

‘ Initialize photons

Calculate step & Ko
update photon position&
update photon weight

Yes

Calculate expected
value & record

Update
photon movement direction

End

Fig. 1. Flowchart of MC simulation.
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of the water. The step length (s) refers to the distance traveled by a
photon during each movement, while the direction determines the
specific path of the photon. The s can be expressed as:

s= —In(&)/c, M

where ¢; is a random number uniformly distributed between 0 and 1,
and c is the beam attenuation coefficient of the water. During photon
movement, a portion of the energy is absorbed by the water, resulting in
a decrease in weight. The updated photon weight (Wy) is given by:

Wy = Wy_1-b/c, 2)

where Wy.; is the photon weight from the previous step.

To determine the updated location of the photon, in addition to the
step length, the scattering direction of the photon also needs to be
updated. The scattering direction of the photon is determined by the
azimuth angle (¢) and the scattering angle (6). The expression for ¢ is:

@ = 271&,, 3)

where &5 is a random number uniformly distributed between 0 and 1.
The scattering angle, denoted as 0, is defined as the angle between the
original direction of motion and the new direction after scattering. It

ranges from 0 to 1 and is determined by the SPF j(6). For the discrete
Petzold SPF, in order to determine the scattering angle of the SPF, a
lookup table is established between ¢ and the cumulative distribution
function F(0) based on the SPF (Chen et al., 2023). The corresponding
scattering angle can be obtained through this table. The expression for F
(0) is as follows:
j=i
F(6;) =2 p(6;)sin(6;) Ag; 4
j=1

where j represents the index for discretely tabulated angular data and 6;
is the angle at the index j; A6} is the angular interval between the angles
from (j — 1) toj. In MC simulation, F(0) is a random number ¢ between
0 and 1. Find the index value that satisfies F(6;.1) < & < F(¢)), the value of
scattering angle 6 is obtained through linear interpolation of ;1 and 6;.

After updating ¢ and 60, the updated propagation direction of the
photon (uyk, Uyk, Uzk) can be obtained. If the photon’s movement di-
rection is close to the z-axis (i.e., [uzk.1| > 0.9999), then (uy, Uy, Uzk)
can be updated as follows:

Uy = sin(@)cos(¢p)
uyx = sin(f)sin(p) ) )
Uy = SIGN (U1 ) -cos(6)

where the SIGN(u; 1) function can be expressed as:

1 s Ug -1 > 0
1, Upp1 <O

SIGN (uzj-1) = { ©)

If the movement direction of the photon is not close to the z-axis (i.e.,
|uz k1] < 0.9999), the updated direction components (uyk, Uy k, Uz k) are
expressed as:

Uy 1Uz k-1€0S(@) — Uy 15in(@)

\ 1- ug,k—l

Uy k—1Uzk—1COS((0) + Uxg_15in(ep)

2
1- Wi

Uk = —sin(0)cos(p)-1/1 — w2, + Uzx_1c08(0)

Given the photon’s current position (xk.1, Yk-1, 2k-1), the next step
length s, and the movement direction of next step (Uyk, Uyk, Uzk) are
known, the updated position of the photon (x, Yk, 2x) can be expressed
as:

Uy = sin(0)

+ Uy x—1€08(0)

Uy = sin(6) + Uy g-1c0s(6) - )
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Xk = Xk—1 + Uxk Sk
Yk = Yk-1 + Uyk-Sk - ®
2k = Zk—1 + Ugk-Sk

Subsequently, based on the updated photon weight and position, it is
to determine whether the photon has been extinguished and whether it
is within the receiver full-angle field of view (FOV). The updated photon
weight Wy is further compared with Wr, if Wy < Wr, the photon is
extinguished, and no further iteration is required; if Wy > Wt and the
photon is within the receiver FOV, the photon is recorded. To determine
if the photon remains within the receiver FOV after scattering, it is
necessary to first establish the range of the FOV.

When the laser is incident perpendicularly, with the lidar system
positioned at a vertical height H above the water surface, the relation-
ship between the FOV below the water surface (FOV') and the FOV above
the surface, after refraction at the water surface, can be expressed ac-
cording to Snell’s law as:

FOV' = 2.arcsin[sin(FOV/2)/n], 9

where n is the refractive index of water, with a value of 1.33. For a
photon at coordinates (x, y, ) to be within the FOV, it should satisfy the
following conditions:

X +y? < [rs + ztan(FOV'/2) |, 10

The tilt angle of the lidar system is denoted as @, while the laser
divergence angle (typically ranging from microradians to milliradians)
is much smaller in comparison. Therefore, in the simulation process, the
influence of the laser divergence angle on the incident angle is neglec-
ted. The photon incident angle is treated as equivalent to the tilt angle @
of the lidar system. When the lidar system is tilted, the receiver footprint
on the water surface becomes elliptical. A schematic diagram is shown in
Fig. 2.

As shown in Fig. 2, O represents the origin of the coordinate system
on the water surface, with coordinates (0,0,0). The line segment OD is
the semi-major axis of the ellipse, and its length can be expressed as
follows:

H'-[tan(a + FOV/2) — tan(a — FOV/2) |

m= 5 . 1)

The distance H from the apex of the cone, F, to the water surface, can

Air

Air-Sea
interface x

Sea

Fig. 2. Schematic diagram of a laser obliquely incident on the water surface.
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be expressed as:

H = H+ [D;/2-cos(a) ] /tan(FOV/2), 12)

where D is the receiver radius of the telescope, and h, defined as (Dy/
2-cosa)/tan (FOV/2), is illustrated in Fig. 2.

To determine the specific shape of the ellipse, it is necessary to
identify the coordinates of any point on the ellipse besides B and D. As
shown in Fig. 2, point M is a point on the water surface, located at the
intersection of the circumference of the cone’s base centered at point C
and the water surface. Therefore, the coordinates of point M can be
expressed as (xp, Ym, 0), where the x-coordinate of point M is equal to
the x-coordinate of point C, and can be expressed as:

Xy = lgc —m = H-tana — H -tan(a — FOV/2) —m, 13)

where [p¢ represents the length of the line segment BC.

Since point M lies on the circular base of the cone centered at C, the
length of line segment CM is the radius of the circle. Additionally, line
segment MN is perpendicular to the x-axis, so the y-coordinate of point
M can be expressed as:

Yu = H-tan(FOV/2)/cos(a). a9

Since point M lies on the ellipse of the receiver footprint on the water
surface, it satisfies the following equation:

x2 2

_l\g + _}’_1‘,; =1, (15)
m?  n,

where n, is the semi-minor axis length of the ellipse and can be expressed
as:

n, :yM/\/l — X3, /m2. (16)

Assume point E is any point within the boundary of the ellipse on the
receiver footprint of the water surface, with coordinates (xg, yg, 0). The
distance L between point A (the projection of point F on the water sur-
face) and point E, and the angle of incidence ; at point E can be
expressed as:

L—\/(m+lAB+XE +}'E

an
= arcsm( /\/ V412 >

where I4p represents the length of line segment AB. According to Snell’s
Law, the relationship between the angle of incidence.
a; and the angle of refraction a; is as follows:

sing; = n-sina,. (18)

Utilizing the angle of refraction, when photons at point E propagate
to point G at a depth z,, the projection of their travel distance along the
direction of line AE is dL, which can be expressed as:

dL = z,-tan(a,). 19
Then, the coordinates of point G (xg, yg, 2r), can be expressed as:

Xg = Xg + dL-cos(w)

Y6 =Ye — dL-sin(w),y <0 20)
Y6 =Y +dL-sin(w),y >0’
2 =2

where o is the angle between the line segment AE and the x-axis, and can
be expressed as:

= arcsin(yg/L). 21

Since point E is any point within the boundary of the ellipse on the
receiver footprint of the water surface, based on this constraint and in
conjunction with Eq. (20), the boundary of the underwater receiving
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field can similarly be derived as:

{ [x — dL~cosa1]2/m2 +y+ dL~sinco]2/ne2 =1,y < dL-sin(o) 22

[x — dL-cosw]z/m2 +y— dL~sinco}2/ne2 =1,y > dLsin(w)

When photons are within the lidar’s FOV, the expected photon en-
ergy E at depth z can be expressed as (Li et al., 2024; Zhou et al., 2021):

Ar @ exp <

E®) = (i 1 2) cos@ P 47

- Z cid'> T.T, Wy, (23)

i=1

where A, is the aperture of the telescope; H is the vertical height of lidar
system; i is the i-th photon layer; c; is the beam attenuation coefficient of

the i-th layer; d = z/4/1 — (sina/n)?is the distance from the current
scattering point to the sea surface; T, is the atmospheric transmittance,
T; is the sea-air interface transmittance; Wy is the weight of currently
scattered photon. When photons scatter, the expected value E is recor-
ded at the corresponding position, and the weight of the photon packet is
reduced accordingly. The recording method for the photon position is as

follows:

S = <d+Zsi> /2, (24)

where s; is the actual step length of each photon movement. The signal
recorded in this manner is the time-based depth profile resulting from
multiple scatterings with the water column.

However, s, does not represent the actual depth where the lidar hits.
The depth where the laser hits is z,, which can be expressed as:

2, = Zzi. (25)

where z; is the actual depth of each photon movement, whether it is a
tilted system or a nadir viewing system. The signal recorded in this way
is the real depth profile.

Lidar profiles

Large r, with large FOV

777777777777777777777777777777777777 Z\ 2y -2y 2y Zs

e assmomemooeeooe -8y 8y S8y s 4
2 Pi9 7 |8
‘\_- ‘ ' :

- Time-based J

Small 7, with small FOV
Lidar profiles

Fig. 3. Schematic diagram illustrating the differences between time-based and
real depth profiles caused by multiple scattering.
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To further illustrate the difference between the two profiles, Fig. 3
provides a schematic diagram, which demonstrates the impact of
different rg and FOV on the discrepancy. As shown in Fig. 3(a) and Fig. 3
(c), due to the influence of multiple scattering, there is a discrepancy
between the time-based and real depth profiles. When recording the
expected photon energy, if the photon position is recorded based on the
movement step described in Eq. (24), the corresponding backscattered
signal is the time-based depth profile. If the photon position is recorded
as the true depth described in Eq. (25), the corresponding signal is the
real depth profile. The profile diagrams for different FOVs are shown in
Fig. 3(b) and Fig. 3(d).

As shown in Fig. 3, because of the strong forward scattering of laser
beams as they travel through water, photons experience multiple scat-
tering events during their journey. When the parameter r; is large, as
demonstrated in Fig. 3(a), the range of motion for photons within the
receiver FOV increases, particularly with more photons moving later-
ally. As a result, the discrepancy between the travel distance of photons
and their actual depth becomes more pronounced, as shown in Fig. 3(b).
Consequently, for platforms with a large receiver footprint, such as
spaceborne or high-altitude airborne platforms, this difference becomes
significant and cannot be ignored.

For platforms with a smaller ry and a small FOV, such as the under-
water platforms and low-altitude airborne platforms, as shown in Fig. 3
(c), the scattering of photons is confined to a limited volume. Photons
outside this volume cannot be received and recorded by the telescope.
Consequently, although the backscattered signal contains a significant
amount of multiple scattering information, the angles of these photons
are primarily restricted to around 0°. Therefore, as shown in Fig. 3(d),
the difference between the time-based and real depth profiles is rela-
tively small.

2.2. Influencing factors analysis

As shown in the above analysis, discrepancies between time-based
and real depth profiles are influenced by multiple factors, including
the IOPs of the water—namely b, a, and SPF—as well as the illumination
and reception geometry of the lidar system, such as the receiver FOV,
laser incident angle, and laser divergence angle. In addition, sea surface
roughness also plays a role. These factors affect the scattering angles and
distributions of photons, thereby contributing to the discrepancies. For
clarity, the influencing factors and their mechanisms are summarized in

Table 1
Factors affecting discrepancy.
Parameter Effect Included
Laser incident Larger angles increase path length and scattering, Yes
angle enhancing multiple scattering.
. A wider beam increases the spatial distribution of
Laser divergence ) o
angle photo.n pe.lths, promqtlng path \{arlablhty and Yes
contributing to multiple scattering.
A larger FOV allows the receiver to collect more
Receiver FOV photons, including those from higher-order Yes
scattering events.
. A higher scattering coefficient increases the
Scattering

number of scattering events, enhancing the Yes
multiple scattering effect.
Surface waves modify the entry angles and spatial

coefficient b

Sea surface

roughness spread of photons, altering their underwater Discussed
s trajectories and increasing path variability.
. In highly absorbing waters, photons are rapidl
Absorption sy '8 » prioton Iy .
. . attenuated, reducing the contribution from Discussed
coefficient a R R
multiple scattering.
Determines the angular distribution and intensity
SPF of scattered photons, influencing the Discussed
directionality and range of scattering paths.
Vertical variations in absorption and scatterin,
Depth-dependent . P . & .
properties affect photon propagation paths and Discussed

10Ps signal shape.
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Table 1.

Evidently, constructing a comprehensive model that accounts for all
these factors is highly challenging. Therefore, this study first simplifies
the model by focusing on Case-1 water conditions, assuming vertically
uniform IOPs and neglecting sea surface roughness. Under these as-
sumptions, the relationships between the discrepancies and water IOPs
and receiver FOV are analyzed while considering the effects of laser
incident angle. Based on this foundation, the impacts of a, SPF, vertical
variations in IOPs, and sea surface roughness on the discrepancies will
be further discussed.

2.3. Bio-optical models

To simplify the simulation analysis, the bio-optical models for Case-1
waters are employed, as listed in Table 2, where Am represents the laser
wavelength, which is set to 532 nm in this simulation. As shown in Eq.
(1), the step length of photon movement is determined by c, which is the
sum of a and b. The a consists of the absorption coefficient of pure water,
ay (Lee et al., 2015), the absorption coefficient of phytoplankton pig-
ments, apy (Prieur and Sathyendranath, 1981), and the absorption co-
efficient of yellow substances, a, (Lee and Tang, 2022). Additionally, b
can be expressed as the sum of the scattering coefficient of pure water,
by (Zhang and Hu, 2009) and the scattering coefficient of particles, b,
(Morel, 1988). The specific values of a and b are determined by the laser
wavelength and Chl.

2.4. Key Parameters of Lidar Systems

To study the impact of multiple scattering on the detection depth,
this research selected a total of six typical platforms, including space-
borne, airborne, shipborne, and underwater. The key parameters of the
lidar systems for each platform are listed in Table 3.

3. Monte Carlo Results

Based on the lidar parameters from Table 3 and the water bio-optical
models from Table 2 using the Petzold SPF (Petzold, 1972), with a Chl
set to 0.1 mg/m>, the simulated time-based and real depth profiles for
lidar on different platforms are shown in Fig. 4. To illustrate the dif-
ference more intuitively between the real and time-based depth profiles,
the MC lidar profiles in Fig. 4 and Fig. 5 have been normalized, with
each profile divided by the larger of its respective maximum value.

As shown in Fig. 4, although the Chl is set to only 0.1 mg/m?, there is
a significant difference between the time-based and real depth profiles
of lidar on platforms other than the underwater lidar. When the depth is
shallow, the signal intensity of the real depth profile is greater than that
of the time-based depth profile. However, as the depth increases, the
signal intensity of the time-based depth profile surpasses that of the real
depth profile, and the two profiles intersect at a certain depth. In other
words, the attenuation rate of the time-based depth profile is slower than
that of the real depth profile. Consequently, the maximum detection
depth is overestimated when based on the time-based depth profile,
meaning the actual penetration depth of ocean lidar is much shallower
than the detection depth indicated by the time-based depth profile.

Additionally, as shown in Fig. 4, the differences between the time-
based and real depth profiles vary across platforms, even under the
same water IOPs. For the underwater platform, the time-based and real
depth profiles almost completely overlap. For the airborne lidar at a
flight altitude of 0.35 km, the difference between the time-based and
real depth profiles is minimal. However, for platforms like CALIPSO, the
differences between the time-based and real depth profiles are sub-
stantial. This indicates that the lidar parameters on different platforms
influence the distribution of these discrepancies.

By decomposing the multiple scattering (MS) components in the
backscattered profiles of the time-based and real depth profiles across
four different platforms, the results are presented in Fig. 5. The figure
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Table 2
Bio-optical models of MC simulation.

Remote Sensing of Environment 329 (2025) 114910

Parameter

Empirical relationships

References

Beam attenuation coefficient

Absorption coefficient

Scattering coefficient

Diffuse attenuation coefficient

¢(Am>Chl) = (A, Chl) + b4, Chl)

a(Am, Chl) = @y (Am) + 0.06A(An)-Ch1®®® + ay (4, Chl)
ay(Am, Chl = a,(440, Chl)exp| — 0.014(4,, — 440)]

a,(440, Chl) = o.z[aw<440) + 0.06A(440)-Ch1®*®

= 0.0046(450 /1, )**
by( Am,Chl 0.3-Ch1®%*(550/4,)

K4 = moa+ my[1 — meexp( — mza) by
mp ~ 1+ 0.005a
m; =4.18,m; =0.52,m; =10.8

{ b( zm Chl = by (Am) + By (4m, Chl)

Lee and Tang (2022)

Lee et al. (2015)

Prieur and Sathyendranath (1981)
Morel (1974)

Morel (1988)

Lee et al. (2005)

Table 3
Key parameters of lidar systems.
Parameter CALIPSO ICESat-2 Airborne Airborne Shipborne Underwater
3 km 0.35 km
Wavelength of laser 532 nm 532 nm 532 nm 532 nm 532 nm 532 nm
Photon counts 10° 10° 10® 10® 10® 10°
Biﬁ;r;rspOt radius of the emitted 2.5 mm 2.5 mm 25 mm 3.25 mm 10 mm 2 mm
Laser divergence angle 0.1 mrad 0.035 mrad 2.4 mrad 0.25 mrad 1 mrad 0.5 mrad
Laser beam spot radius on water 35m <87 m 36m 0.4375 m 0.005 m None
surface
Aperture of the telescope 1000 mm 800 mm 200 mm 200 mm 50.8 mm 6 mm
FOV of the receiver 0.13 mrad 0.0884 mrad 25 mrad 6 mrad 200 mrad 3.8 mrad
Receiver footprint 92 m 45 m 75.2m 2.3m 2.06 m None
Vertical height 701,000 m 500,000 m 3000 m 350 m 10m None
Tilt angle 8.2176° 2.0002° 3° 15° 60° None
Winker et al. Neumann et al. Chen et al. Chen and Pan (2019); Gordon Zhou et al. Shangguan et al.
References )
(2004) (2019) (2021) (1982) (2022) (2023b)

shows that, regardless of the platform, the distribution of single scat-
tering in both the time-based and real depth profiles is identical. The
difference lies in the multiple scattering signal profiles. Therefore, it can
be concluded that multiple scattering is the primary cause of the
discrepancy between the time-based and real depth profiles.

Additionally, for both the time-based and real depth profiles, the
proportion of multiple scattering components in the total signal in-
creases with depth. For the time-based depth profile, except for the
underwater lidar, the distribution of multiple scattering initially in-
creases and then decreases. However, for the real depth profile, the
profile of multiple scattering components is monotonically decreasing.
Furthermore, as depth increases, the proportion of higher-order scat-
tering components in the time-based depth profile increases more
rapidly.

Additionally, to test the MC simulations, the simulated time-based
depth profiles and real-photon profiles were further analyzed as fol-
lows. For vertically homogeneous water, the lidar equation for elastic
scattering can be expressed as:

__BuQu@TeT? o
PM(Z)_[(HH+Z)/COSQ]2 ﬂm exp( 2Klld(1fz)7 (26)

where P, represents the signal of backscattered photon at depth z
received by a lidar receiver at altitude H, By, is a constant in the elastic
lidar system that does not vary with detection distance, including the
pulse energy of the laser, the quantum efficiency of the detector, the
telescope’s receiving area, and the transmission efficiency of the optical
system for both emission and reception, Q, is the geometric overlap
factor, H is the height of the lidar above the water surface, « is the tilt
angle of the lidar system, f3,, represents the volume scattering function at

180° at 532 nm, Kj;gqr represents the lidar attenuation coefficient at 532
nm. For a homogeneous water body, f,, can be considered constant
values that do not change with depth. Although Kjiq, exhibits slight
depth dependence even within a homogeneous water column because of
multiple scattering (Walker and Mclean, 1999; Zhou et al., 2019), as
shown in Fig.4, to simplify the analysis, the column-averaged lidar
attenuation coefficient Kjqqr will be used in the subsequent discussions.
Therefore, after obtaining the MC simulated signals, Kjgqr can be
determined using the slope method (Churnside et al., 2018).

To facilitate comparisons between different platforms, the mea-
surement dynamic range of the lidar is limited to 60 dB, corresponding
to 107, When the time-based depth profile decays by 60 dB, the cor-
responding detection depth is defined as z4, and the true depth of the
photon at that point is defined as 2% for vertically incident systems. The
time-based and real depth profiles are truncated based on zz and 2%,
respectively. Then, the lidar attenuation coefficients for the time-based
depth profile (Ky and the real depth profile (K,) are calculated using the
slope method. For the lidar system with an inclination angle of «, it is
necessary to first correct the photon positions (x;) of the time-based
depth profile. The corrected photon positions (x;") can be expressed as:

x; = x;-cos(a'), 27)
where a’ is the underwater refraction angle corresponding to the incli-
nation angle a, which can be expressed as:

o = arcsin[sin(a)/n]. (28)

The time-based depth profile, after tilt angle correction, will be used
for further calculation of z; and K;. Previous simulation studies show
that when backscattered signals are dominated by single scattering, the
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Fig. 4. Normalized MC simulated time-based depth profiles (solid lines) and
real depth profiles (dashed lines) for different platforms with Chl at 0.1 mg/m?>:
(a) CALIPSO, (b) ICESat-2, (c) Airborne at 3 km, (d) Airborne at 0.35 km, (e)
Shipborne, and (f) Underwater.

lidar attenuation coefficient, name Kjq,, approaches c. In contrast,
when multiple scattering dominates, Kjgqer approximates the diffuse
attenuation coefficient (K4) (Gordon, 1982). Thus, K; and K, should lie
between ¢ and Ky, and this conclusion has been validated based on MC
simulation (D’alimonte et al., 2024). To further test the MC simulations,
K; and K, are compared with ¢ and Kj for the six platforms, as shown in
Fig. 6. The model of the K4 at 532 nm is determined by a and the
backscattering coefficient by (Lee et al., 2005). The by can be calculated
using b(532) when the SPF is defined. Note that the wavelength used in
all simulations in this work is 532 nm. For simplicity, K;, K, b, a, and Ky
refer to the parameters at 532 nm, respectively, with the same notation
used thereafter.

From Fig. 6(b), it can be observed that except for the underwater
platform, the backscattered signals from the other five platforms contain
a large amount of multiple scattering components, resulting in K; being
close to Kg. Although there are slight differences among the platforms
due to variations in lidar hardware parameters, the relationship between
K, and Kj generally follows the 1:1 line. In contrast, for the underwater
platform, K, is significantly larger than Kg4. On the other hand, from Fig. 6
(a), the K; for the underwater platform is close to the c, while K; for the
other platforms is much smaller than c. This is consistent with the pre-
vious MC simulation results (Eidam et al., 2024; Shangguan et al.,
2024d; D’alimonte et al., 2024).

Additionally, as shown in Fig. 6(c) and Fig. 6(d), the K, values for the
underwater platform are still larger than the K; of the other five plat-
forms. Furthermore, from the comparison between Fig. 6(b) and Fig. 6
(d), it can be observed that except for the underwater platform, where
the difference between K, and K; is not significant, the K, for the other
five platforms is approximately twice as large as K;. As shown in Fig. 6
(c), the K value for the underwater platform is closer to the 1:1 line with
¢, and compared to the relationship between K; and c in Fig. 6(a), the
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Fig. 5. Normalized MC simulated time-based depth profiles and real depth
profiles for different platforms with Chl at 0.1 mg/m®, showing profiles of
multiple scattering: (a-b) ICESat-2, (c-d) Airborne at 3 km, (e-f) Shipborne, and
(g-h) Underwater. In panels (a), (c), (e), and (g), solid lines represent the time-
based depth profiles, while corresponding real depth profiles are shown with
dashed lines in panels (b), (d), (f), and (h). MS-1, MS-2, MS-3, and MS-4
represent single scattering, double scattering, triple scattering, and four or
more scattering signals, respectively.

difference between K, and c is smaller. Moreover, the differences be-
tween K; and c for the other five platforms are also smaller than those
between K; and c. These results suggest that the differences between K,
and K; require further analysis.

4. Analysis of Discrepancies
4.1. K;/K;

To enhance simulation efficiency and emphasize the influence of
multiple scattering on subsurface signals, the air-sea interface effects
were neglected in the simulations. To quantitatively investigate the
discrepancies between the real and time-based depth profiles, the ratios
K,/K;and z5'/z4 are introduced. According to the analysis in the previous
sections, the difference is related to both water IOPs and the lidar’s FOV.

To simplify the analysis, the simulation adopts the Case-1 water,
where Chl can simultaneously determine a and b. Therefore, the greater
the value of Chl, resulting in greater contributions of multiple scattering
signals to the total lidar backscattered signal due to that there are
relatively more increase in b than in a for the 532 nm wavelength. To
facilitate the analysis, b is initially used to represent the contribution of



M. Shangguan et al.

on
v : . . .
— S{b) / & CALIPSO
; - [CESat-2
o ;‘2 s * Alrbornej@
e 'S .
g 3 )
o | = e
0 = p
= " & Airborne 0.35 km
L < Shipborne
& = © * Underwater
0.0 : . 5200 0.5 1.0 1.5

K, (m™)

¢ (m?)
1.0

0.5

&

L
S00 05 10
K. (m™)

= ‘ ‘
1.5 0.0 0.5 1.0 1.5
K_(m™)

Fig. 6. Relationships of K, and K,, with K, and c for six platforms: (a) c vs. K;;
(b) Kgq vs. Kg; (¢) ¢ vs. K; (d) Kq vs. K.

multiple scattering caused by water IOPs, and an analysis of the impact
of a on the results will be conducted subsequently. Additionally, the
difference between the time-based and real depth profiles is also influ-
enced by r;. When the value of r is small, the multiple scattering angles
of photons are limited to approximately 0°, and in this case, even if a
significant amount of multiple scattering signal is included in the
backscattered signal, it does not cause a notable difference between the
time-based and real depth profiles. However, when r; is large, the
probability of lateral transmission of the laser increases, which, in turn,
increases the difference between the time-based and real depth profiles.
Therefore, the difference between the time-based and real depth profiles
becomes significant only when both r; and b are large.

To simplify the study, the simulation assumes a vertically homoge-
neous distribution of the water, allowing the slope method to calculate
K; and K, from the MC-simulated time-based and real depth profiles. In
the simulation process, the range of Chl is set from 0.01 to 10 mg/m? to
cover a broad range of water conditions. Subsequently, the lidar pa-
rameters listed in Table 3 are input into the MC simulation, using the
Petzold SPF to obtain lidar time-based and real depth profiles under
different Chl values, from which K; and K, are calculated.

The relationship between K,/K; and b-r; obtained from the MC
simulation is shown in Fig. 7(a). It can be seen from the figure that the
relationships between K,/K; and b-r; differ across platforms. However,
for the five typical platforms—CALIPSO, ICESat-2, airborne 3 km,
airborne 0.35 km, and shipborne—K,/K; increases with increasing b,

102 10° 102 “
wv oo P = ' ' .
- & -Airborne 0.35 km - - Linear fitting i
N O Shipb;mc' /':' - | r 5 %;5
e a)| <l o3 7 (b)-
¥\ 25 '/Qg ( ) g - ;’i‘*/ (a% ( )
Q"’ f“f/ St g ,é/,"( g 10
& s =] £f [
i s =\ K Lol 5
o ' : NS ‘L
IS ¢* -o-ICESat-2 J < ,O’g«: i /“’
g 4 -e-CALIPSO S S 0o
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Fig. 7. Relationship between K,/K, and b-r; across the range of Chl from 0.01 to
10 mg/rn3: (a) linear scale and (b) natural logarithmic scale for CALIPSO,
ICESat-2, airborne 3 km, airborne 0.35 km, and shipborne platforms.
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with values ranging from 1 to between 3 and 4.5. When the natural
logarithms of K,/K; and b-rs are taken, the results, shown in Fig. 7(b),
indicate a linear relationship between the two variables. The fitting is
performed using the linear function In(K,/Ky) = m;-In(b-rs) + n;, where
m; is the slope of the fitted line, and n; is the intercept, with all fits
having an R-squared (R?) value exceeding 0.96.

Considering that the differences between the time-based and real
depth profiles across different platforms under the same water IOPs are
primarily attributed to ry, the relationships between rs and my, as well as
between ry and n;, are established. Additionally, to provide more
comprehensive data, the FOV of the lidar systems listed in Table 3 is
respectively increased and decreased by a factor of two, followed by
additional MC simulations. This increases the number of simulations,
making the data on the relationships between rs; and m;, and r; and m;
more comprehensive and generalized. The final relationships between r;
and m,, and between rg and n; are shown in Fig. 8.

As shown in Fig. 8(a), when r; ranges from 1 m to 100 m, the vari-
ation in m; is small, remaining between 0.25 and 0.35. Specifically,
when r; increases from 1 to about 10 m, m; increases rapidly, but as rs
continues to increase, m; exhibits a trend of gradual change. For the
relationship between n; and r,, as shown in Fig. 8(b), n; decreases
rapidly with increasing r;, following a logarithmic trend. After fitting m;
and r;, as well as n; and r; using logarithmic functions, the R? values are
0.66 and 0.98, respectively. The fitting results are as follows:

m; = 0.29+40.01In(r; — 0.17). 29

n; = 1.00 — 0.24-In(r; + 0.07). (30)

By substituting Eq. (29) and Eq. (30) into the linear relationship
between In(K,/Ky and In(b-rs), an expression for K,/K; applicable to
different lidar platforms can be derived as:

K./K: = expim;-In(b-r) +mny |. (€2D)
Furthermore, K, can be expressed as a function of K
K, = exp[m;-In(b-r;) +n; |-K; (32)

After modifying the x-axis of Fig. 7(a) to my-In(b-rs) + n;-1.00, a
relationship between K,/K; and both b and r; applicable to different lidar
platforms can be obtained, as shown in Fig. 9(a). Furthermore, the
relationship between K,/K; and m;-In(b-r5) + n;-1.00 can be well fitted
using a quartic polynomial, with an R? of 0.98. It can be expressed as:

% = 2.83+3.25:x¢ + 0.69-xx% — 1.70-x¢> — 0.89-x¢* (33)

t

where xx is defined as my-In(b-r5) + n;-1.00.

Through the above process, the statistical model for K,/K; in terms of
both b and r;, specifically for Case-1 water, are established. Using Eq.
(33), the distribution of K,/K; under varying b and ry conditions can be
plotted, as shown in Fig. 9(b). To clearly illustrate the relationship be-
tween K,/K; and both b and r;, the variation of K,/K; with b (i.e., Chl)

< ~ , , o
- RI—066 @ B o Simulated (b)
° o : — Fitted
o0
° = L ° =
Sﬂg 7° <
Q: 4
9 ° i (==}
[ S%mulated | s i
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S0 20 40 60 80 100 <0 20 40 60 80 100
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Fig. 8. Results from fitting a linear function to the curve of In(K,/K,) vs. In(b-rs)
in Fig. 7(a) the relationship between the slope m; obtained from the fit and r,
and (b) the relationship between the intercept n; obtained from the fit and r;.
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Fig. 10. (a) Variation of K,/K, with b (i.e., Chl) for CALIPSO, ICESat-2, airborne
3 km, airborne 0.35 km, and shipborne platforms. (b) Variation of K,/K, with rg
under different Chl. Symbols represent MC simulation results, and the lines
represent results calculated using Eq. (33).

under different platforms in Case-1 water is shown in Fig. 10(a), while
its variation with ry under different Chl conditions is shown in Fig. 10(b).
Symbols represent MC simulation results, and the lines represent results
calculated using Eq. (33). It can be seen from the figures that the results
from Eq. (33) are consistent with the simulation results. For shipborne
platform, despite the r; is relatively small, the larger FOV causes the
receiver footprint to expand rapidly with increasing depth. This in-
creases the probability of scattered photons moving sideways, resulting
in a certain degree of error between the fitting relationship and the
simulation results. Additionally, both Fig. 10(a) and Fig. 10(b) indicate
that the ratio K,/K; increases monotonically with both b and r;. For the
shipborne platform and the airborne 0.35 km platform, where ry is
relatively small, the range of K,/K; is between 1 and 3.5. In contrast, for
the airborne 3 km, ICESat-2, and CALIPSO platforms, where ry is larger,
the range of K,/K; is broader, spanning from 1 to 4.5. Moreover, a
comparison of Fig. 10(a) and Fig. 10(b) shows that K,/K; is more sen-
sitive to changes in b than to changes in r;. Furthermore, when Chl is
low, such as 0.01 mg/m3 and 0.1 mg/m3, the effect of ry on K,/K; is
minimal. Fig. 10(b) shows that the minimum value of K,/K; is deter-
mined by b. As Chl increases, K,/K; becomes more sensitive to changes in
rs, particularly when ry < 50 m, where K,/K; increases monotonically
with rg. As g continues to increase, the changes in K,/K; begin to saturate
and stabilize.

4.2. 2%%/24

The detection depth of lidar is an important metric. From the above
analysis, the attenuation coefficient K; of the time-based depth profile is
smaller than the attenuation coefficient K of the real depth profile. It
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indicates that the attenuation rate of the time-based depth profile is
slower than that of the real depth profile, causing the calculated
detection depth (z4) from the time-based profile to be greater than the
real detection depth ), thus leading to an overestimation of the
detection depth. Since the attenuation rate of the lidar signal determines
the detectable depth, 2z5/z4 can be calculated from K,/K;. As shown in
Fig. 11(a), there is a negative correlation between z8/z4 and K,/K,. Based
on this relationship, 2z%/z4 can be obtained from K,/K; using the
following equation:

P /zd = (K,/K) " (34

Through the above process, the expressions for 28'/z, are established,
for Case-1 waters. Using Eq. (34), the distribution of 28/z4 under varying
b and r; conditions can be plotted, as shown in Fig. 11(b). To clearly
illustrate the relationship between z8'/z4 and both b and r;, the variation
of 28/z4 with b under different platforms is shown in Fig. 12(a), while its
variation with ry under different Chl conditions is shown in Fig. 12(b).
Symbols represent MC simulation results, and the lines represent results
calculated using Eq. (34). It can be seen from the figures that the results
from Eq. (34) are consistent with the simulation results.

As shown in Fig. 12, similar to the relationship between K,/K; and
both b and r; in Fig. 10, 25%/z4 is more sensitive to changes in b than to
those in r,. When b is less than 0.3 m ™, 2%/z4 is particularly sensitive to
b. For example, when b increases from 0 to 0.3 m~ 28/24 decreases from
nearly 1 to 0.5, indicating that the actual detection depth is only 50 % of
the time-based depth. As b increases, the changes in z8'/z4 become more
stable. In contrast, as shown in Fig. 12(b), the effect of r; on 28/zq is
relatively small; 25/z4 decreases slowly as ry increases from about 1 m to
100 m. The minor fluctuations in 28/z4 with ry may be attributed to a
lower signal-to-noise ratio (SNR) in the MC simulation.

For the underwater lidar with parameters listed in Table 3, due to the
small FOV and the system is submerged underwater, the difference be-
tween the time-based and real depth profiles is minimal. As Chl varies
from 0.01 to 10 mg/m?>, the relationships between K,/K; and b, and
between 25/z4 and b for the underwater lidar are shown in Fig. 13(a) and
Fig. 13(b), respectively. As shown in Fig. 13, when the Chl is low, e.g.,
less than 5 mg/m3, the K,/K; and z%/z4 values for the underwater lidar
approach 1. This indicates that the difference between the time-based
and real depth profiles is minimal. However, as the Chl increases, the
differences between K; and K, as well as between 2% and z4, become
more pronounced. When the Chl reaches 10 mg/m?, K,/K, is about 1.35,
and z%'/z4 is about 0.62. Therefore, in most oceanic regions where Chl <
5 mg/m®, the measurements from the underwater lidar closely represent
the distribution of photons at different depths. However, when Chl ex-
ceeds 5 mg/m°, the underwater lidar measurements deviate signifi-
cantly from the real depth profile and require correction.

4.3. Analysis of the statistical models

To validate the accuracy of Eq. (33) and Eq. (34), MC simulations

|5
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& — 2= (KK .
% =
04! (a) _R2=0.98 M
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Fig. 11. (a) The relationship between 2z%/z; and K,/K, Symbols represent
simulated results, and the black line represents the reciprocal of K,/K,. (b) The
relationship between K,/K; and both b and r;, calculated using Eq. (34).
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Fig. 13. (a) K,/K; vs. b-rs and (b) 25/z4 vs. b-rs as Chl ranges from 0.01 to 10
mg/m>, for the underwater platform.

were conducted using Chl not included in the model construction. The
K,/K; and 28"/ results from the re-run MC simulations were compared
with the corresponding model-predicted values to quantify the model’s
prediction errors. Specifically, K,/K; and 25/z4 derived from the MC
simulation are denoted as K; and z;, respectively, while the corre-
sponding model-predicted values are denoted as K, and z,. The predic-
tion errors for K,/K; and 2z%/zg, denoted as Errory and Error,
respectively, are calculated using the following equations:

Errorg = |K; — K, | /K, x 100% (35)

Error, = |2, — 2| /2, x 100% (36)

As shown in Fig. 14, the model exhibits strong predictive accuracy
across different platforms, with the prediction errors (Errorg and Error;)
remaining below 15 % even across a wide range of Chl variations.

To assess the model’s sensitivity, partial derivatives of Eq. (33) and
Eq. (34) with respect to b and r; were carried out, and the results are
shown in Fig. 15 and Fig. 16. As illustrated in Fig. 15(a)and Fig. 16(a), as
b increases, d(K,/K;)/d(b) and d(25"/24)/d(b) decrease. This indicates that
K,/K;and 2%/z4 are more sensitive to changes in b when b is small, but as

X X
S T - Sr . . —
& [-=Chl=0.15 mg/m? (@ | &|-=Chl=0.15mgm’ (b)
-A- Chl = 0.55 mg/m® -A- Chl = 0.55 mg/m® -
-& Chl = 1.05 mg/m? ¢ -& Chl=1.05 mg/m’® N
193 s 3 N - 3 K
Fe o~ Chl = 8.50 mg/m § © o~ Chl = 8.50 mg/m 7
N i
B = =
)
B =t e | &
e L L, Ls e

Fig. 14. Errorg(a) and Errorg(a) for different Chl and platform, where L, ~ Ls
represent CALIPSO, ICESat-2, Airborne 3 km. Airborne 0.35 km, Shipborne
respectively.
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Fig. 15. (a) Partial derivative of K,/K, with respect to b using Eq. (33) for
CALIPSO, ICESat-2, airborne 3 km, airborne 0.35 km, and shipborne platforms.
(b) Partial derivative of K,/K, with respect to ry under different Chl using
Eq. (33).
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Fig. 16. Similar to Fig. 15, but (a) shows d(z%/z4)/ d(b) vs. b and (b) shows
0(=%/2q)/ 9(rs) vs. Ts.

b increases, the sensitivity weakens, leading to the stabilization of K,/K;
and z%/z,4. A similar pattern is observed for r;, as shown in Fig. 15(b) and
Fig. 16(b). Comparing Fig. 15(a) with Fig. 15(b) and Fig. 16(a) with
Fig. 16(b), it can be concluded that K,/K; and z%/z4 are much more
sensitive to changes in b than to changes in r;, meaning that K,/K; and
28/24 are more strongly influenced by b.

5. V. Discussion of the Influence of Other Parameters
5.1. Effect of Absorption Coefficient

For Case-1 waters, the IOPs can be calculated using Chl, which allows
b to effectively represent the IOPs of the water, thereby establishing
statistical models for K,/K; and 2%/z4. However, as the a is a key
component of ¢, it is evident from Eq. (1) that the absorption coefficient
a influences the average photon path length (s) and also affects the single
scattering albedo (b/c), which in turn impacts photon attenuation and
the distribution of multiple scattering. Therefore, it is necessary to
analyze the effect of changes in a on K,/K; and 2%/z4. To investigate the
model’s applicability in non-Case-1 waters and evaluate the impact of
the absorption coefficient a on K,/K; and 25/z4, two sets of MC simula-
tion experiments were conducted under three Chl: 0.01 mg/m®, 0.1 mg/
m>, and 1 mg/m°>. In the first set, the scattering coefficient b was held
constant while varying a from O to 2 times the Case-1 water model value.
In the second set, a was fixed while b was varied within the same range.
The corresponding simulation results are presented in Fig. 17 and
Fig. 18. Two representative lidar platforms are selected for the analysis.
The first is the spaceborne ICESat-2, which features a small incident
angle and a large r;. The second is a 0.35 km airborne platform, char-
acterized by a large incident angle and a small r;. These two platforms
are also employed in the subsequent analyses to discuss the effects of
different SPFs, sea surface roughness, and depth-dependent IOP varia-
tions on the discrepancies.

As shown in Fig. 17 and Fig. 18, for both spaceborne and airborne
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Fig. 17. Effect of a on K,/K, (a) and z5/z4 (b), and effect of b on K,/K, (c) and
2%/24 (d) under three b and a value, respectively, for the ICESat-2 platform.
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Fig. 18. Similar to Fig. 17, but for the airborne 0.35 km platform.

lidar platforms, and regardless of the value of b, an increase in a, with b
held constant, causes K,/K; and z%/z4 to converge towards 1. This is
because the increase in a leads to a rise in ¢, thereby reducing the photon
step length (s), and also lowers the b/c ratio, which accelerates photon
weight attenuation. Both factors limit the penetration depth of photons,
suppressing the multiple scattering effect, which reduces the difference
between the time-based depth signal and the real depth signal, ulti-
mately causing K,/K; and z8/z,4 to converge towards 1.

However, when a remains constant, increasing b causes K,/K; and
28/24 to gradually deviate from 1. This is because a higher b increases
the ratio b/c, leading to slower photon attenuation and more scattering
events. As a result, multiple scattering effects are intensified, thereby
enlarging the discrepancy between the time-based depth signal and the
actual depth.

Finally, for Case-1 waters, where both a and b are determined by Chl,
K, can be evaluated using Eq. (33), and 2% can be assessed based on Eq.
(34). For other waters, the effect of the absorption coefficient a should
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be considered.

5.2. Effect of scattering phase function

The SPF determines the distribution of the light field underwater
(Churnside and Shaw, 2020), which in turn affect the distribution of K,/
K, and 28/24. To investigate the influence of different SPFs on K,/K; and
28/24, this work incorporates the Henyey-Greenstein (HG) SPF, which
significantly differs from the previously used Petzold SPF, for con-
ducting the MC study. The HG function can be expressed as (Henyey and
Greenstein, 1941):

~ 1

172
A &

Tz (1 + g2 — 2gcos(0) ]3/2

37)

where g is the asymmetry factor, ranging from —1 to 1. When g = 0.919,
this function yields the same backscattering ratio (Bp) as the Petzold SPF
(Churnside and Shaw, 2020). Bp is a key parameter in ocean optics,
closely related to the optical properties of water, and represents the
probability of photon backscattering (6 > 90°). It is calculated as follows
(Liu et al., 2020):

Bp = by, /by, (38)
where by, is the particulate backscattering coefficient, and b, is the total
particulate scattering coefficient. For the HG SPF, Bp depends on the
value of the asymmetry factor g (Mobley et al., 2002):

< l1+g 1>.
N

In typical ocean waters, the Bp generally ranges from 0.005 to 0.03
(Mobley et al., 2002). To examine the impact of different SPFs on the
simulation results, the ICESat-2 platform was used as an example. Three
g values were selected: 0.919, 0.880, and 0.975, corresponding to Bp
values of 0.0183, 0.0280, and 0.0053, respectively. These SPFs are
referred to as HG1, HG,, and HGs.

Fig. 19(a) compares the Petzold SPF with the HG SPFs under
different g values. For forward scattering angles less than 5°, HG; and
HG, show significantly lower values than the Petzold SPF, while dif-
ferences in the backward direction are relatively small. HG3 exhibits
more substantial deviations from the Petzold SPF: at angles below 1° and
from 8° to 180°, the Petzold SPF is noticeably stronger. Furthermore, the
Petzold SPF increases monotonically from 135° to 180°, whereas HG3
decreases monotonically.

The cumulative distribution functions F(0) for each SPF are shown in
Fig. 19(b). According to Eq. (4), in each scattering event, a random value
between 0 and 1 is drawn for F(6), which determines the photon’s
scattering angle. As shown in the figure, for the same F(0), HG; yields the
largest 6, followed by HG;. When 6 < 1°, HG3 produces larger angles
than the Petzold SPF, while for 6 > 1°, HGg3 yields the smallest angles.

To demonstrate the influence of different SPFs on the lidar back-
scattered signal, photon scattering trajectories for the ICESat-2 platform
were compared for Chl of 0.10 mg/m® and 1.00 mg/m?>, as shown in
Fig. 19(c) and (d). Note that the single photon trajectory is inherently
random and is presented here solely to clearly illustrate the underlying
principles. During the simulation, all SPFs shared the same photon step
length and F(6) for each scattering event, with only the scattering angle
varying to reflect the angular characteristics of different SPFs. As shown
in Fig. 19(c) and (d), since HG3 generally produces smaller scattering
angles, the corresponding photon paths are longer.

The resulting MC signals for the two Chl conditions of ICESat-2 and
Airborne 0.35 km platforms are shown in Fig. 19(e-h). For all cases, HG3
yields the largest 25 and zg4, indicating the longest signal propagation and
greatest penetration depth. However, the differences in 2%'/z; among
different SPFs are minimal, with deviations from the Petzold SPF
remaining below 10 %, as shown in Table 4. Although different SPFs

_1-s

Bp = % (39
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Fig. 19. Comparison four different SPFs (a) and their corresponding F(6)
functions (b), where solid line represents Petzold, while dashed lines represent
HG with different g. (c)-(d): schematic photon trajectories under different SPFs
for ICESat-2 at Chl = 0.10 mg/m3 and 1.00 mg/ms, respectively. (e)-(f): MC
results under different SPFs for ICESat-2 at Chl = 0.10 mg/m? and 1.00 mg/m?,
where solid lines indicate time-based signals and dashed lines indicate real
depth signals. (g)-(h): As in (e)-(f), but for Airborne 0.35 km platform.

cause variations in lidar penetration depth, when using the HG SPF with
Bp values ranging from 0.005 to 0.03, the impact on the ratio 25"/z4 is
relatively small.

To specifically compare the differences in the statistical models
under different SPFs, the HG; model was used, and the relationship
between K,/K; and both b and r; is recalculated as follows:

K,/K, = exp[mz-In(b-r;) +ny], (40)

where my and ny are functions of r;, and can be expressed as follows:

my = 0.32+2.16 x 103-In(r; — 0.28). (41)

ny = 0.96 — 0.22:In(r; — 0.13). (42)

Similarly, the relationship between 2z8'/z4 and K,/K; under the HG;
can also be represented by Eq. (34).
To quantitatively analyze the MC results obtained with the Petzold
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Table 4
Simulation results of different SPF.

Platform Chl (mg/m3) SPF 2524 Relative deviation vs. Eq. (34)
Petzold 0.702 1.30 %
01 HG; 0.704 1.59 %
HG, 0.695 0.29 %
HG3 0.716 3.32%
ICESat-2 Petzold  0.398  0.25%
1.0 HG,; 0.395 0.50 %
HG, 0.392 1.26 %
HGs 0.396 0.25 %
Petzold 0.874 5.62 %
01 HG,; 0.868 4.91 %
HG, 0.825 0.28 %
Airborne HG; 0.870 5.16 %
0.35 km Petzold 0.507 6.66 %
1.0 HG, 0.490 9.92 %
HG, 0.475 12.61 %
HG3 0.526 3.20 %

and HG; SPFs, the relative errors between K,/K; and z%/z4 obtained
using the Petzold SPF and those obtained using the HG; SPF are defined
as A(K/Ky) and A(z5/2y), respectively. The equations are as follows:

|(Ke/Ke), — (Ko /Ky, 0

A(K,/K,) = k), x 100%, (43)
|2 /2a), — (2% /2a)pg o

A(2% /24) = (;t/—zd)p x 100%, 44

where the subscripts p and hg represent the simulation results obtained
using Petzold SPF and HG; SPF, respectively.

Their distributions of A(K,/Kp and A(2%"/z4) with respect to both b
and ry are shown in Fig. 20. The results in Fig. 20 indicate that the dif-
ferences between the results from the two SPFs are minimal. For Chl
ranging from 0 to 10 mg/m® and r; ranging from 0 to 100 m, A(K,/Ky)
and A(z%/z4) remain within 10 %. Overall, whether the water is repre-
sented by the Petzold or HG;, despite some differences between them,
the conclusion remains consistent: when the r; and water’s b are large,
the differences between the time-based profile and the real depth profile
are significant.

5.3. Effect of sea surface roughness

Surface waves alter the laser incident angle and the transmittance
and reflectance at the air-sea interface, thereby affecting the under-
water photon paths, the incident energy, and the strength of the surface
backscatter. To analyze the impact of a rough sea surface on subsurface
profile signals, a rough surface model is established in this section,
focusing on the effects of transmittance variation and incident angle
changes, while excluding the simulation of surface backscatter. First, the
Pierson-Moskowitz (PM) spectrum is used to describe the energy dis-
tribution of ocean waves. The PM spectrum is a complex sinusoidal wave
model, and the variation of energy spectral density with angular fre-
quency can be expressed as (Pierson Jr and Moskowitz, 1964):

Fig. 20. (a) A(K,/K) and (b) A(z%/zy) distribution with respect to both b and r.
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ool (2]

where w denotes the angular frequency of ocean waves; A and B are
constants of the Pierson-Moskowitz (P-M) spectrum, with values of 8.1
x 1072 and 0.74, respectively. g is the gravitational acceleration, taken
as 9.81 m/s% U represents the wind speed at 19.5 m above the sea
surface (unit: m/s) and is the only variable parameter in the P-M
spectrum.

Additionally, the directional spreading function y/(6) is expressed as:

A-gy?
P(w) = =2

(45)

2 ., T b2
w(0) = cos (0), —5< 0 < > (46)
where @ is the angle between the wave propagation direction and the
wind direction. The distribution of ¢ is independent of the angular fre-
quency w. The wave spectrum function includes both wave direction and
wave frequency, represented as the product of these two independent
functions (Chen et al., 2022):

Sw,6) = P(w)y(0)

A% o~ B(E)' ]« Zeos?
= exp{ B(U~w) } X —cos (0).

47)

To fully characterize the sea surface elevation in three-dimensional
space, each wave component must incorporate spatial propagation
terms. For a given frequency wy, and direction 6, the wavenumber k;, is
determined by the dispersion relation as follows:

ky = w3 /8. (48)

The projections of the x-coordinate and y-coordinate are given as
follows, respectively:

{ ken = kncost,

kyn = knsing, (49)

The ocean surface can be considered as the linear superposition of
multiple wave components with different frequencies, directions, am-
plitudes, and phases. The resulting linear wave function represents the
surface elevation at each point. In practical applications, the wave
spectrum is expressed as (Chen et al., 2022):

(50)

C(x,y,t) = 25(Wn, 00)8-C08 (KX + Ky Y — Wt + &),

NgE

Il
—

n

where x and y are the two-dimensional plane coordinates along the wind
speed direction and perpendicular to the wind speed direction, respec-
tively, 8y = wy, — wy_1 denotes the frequency interval, wy, is the wave
angular frequency, and ¢, is a random phase.

To investigate the influence of sea surface roughness on K,/K; and
28'/24, the ICESat-2 platform is taken as an example. The wave frequency
wy, is set from 0.01 to 3 rad/s to cover wave characteristics from long to
short wavelengths, with a frequency interval &, of 0.02 rad/s. Wind
speeds U are set to 0 m/s, 10 m/s, and 20 m/s, and sea surface wave-
forms at t = 0 are randomly generated, and the wave cross-section along
the x-axis direction is shown in Fig. 21(a) and (b). When photons
penetrate the sea surface at random positions, their propagation di-
rections change due to refraction at the rough interface.

During the simulation, the initial horizontal positions of photons (xo,
¥o) and the movement step length in each scattering event are set to be
the same under different wind speeds U, while the initial vertical posi-
tion zp and the initial refraction angle vary according to the corre-
sponding sea surface slope. Taking Chl of 0.10 mg/m® and 1.00 mg/m?
as examples, representative photon scattering trajectories for ICESat-2
are shown in Fig. 21(c) and (d). Under calm sea conditions (U = 0 m/
s), photons exhibit the longest propagation paths, while under U = 20
m/s, the penetration depth is the shallowest. The MC signals from both
ICESat-2 and the Airborne 0.35 km platform, as shown in Fig. 21(e-f)
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Fig. 21. Sea surface roughness patterns under different wind speeds: (a) U = 0
m/s and 10 m/s, (b) U = 20 m/s; arrows indicate refracted photon paths at
different incident positions. (c), (d) Photon trajectory diagrams at Chl = 0.10
mg/m?® and 1.00 mg/m® of ICESat-2, respectively. (e), (f) Corresponding MC
signals of ICESat-2, where solid lines represent time-based signals and dashed
lines represent real-depth signals. Note that surface backscatter is not included
in this simulation. (g)-(h): As in (e)-(f), but for Airborne 0.35 km platform.

and (g-h), respectively, also confirm that lidar penetration becomes
shallower with increasing wind speed U, due to the enhanced sea surface
roughness. Nevertheless, the variations in 28/z4 under different wind
speeds U are minor, with deviations from the statistical model (Eq. (34))
remaining below 10 %, as shown in Table 5. Therefore, it can be inferred

Table 5
Simulation results of different wind speed.
Platform Chl (mg/m?’) U (m/s) 2524 Relative deviation vs. Eq. (34)
0 0.705 1.73 %
0.1 10 0.710 2.45 %
20 0.709 2.31%
ICESat-2 0 0392  1.26%
1.0 10 0.398 0.25 %
20 0.395 0.50 %
0 0.849 2.62 %
0.1 10 0.869 4.99 %
Airborne 20 0.803 2.94 %
0.35 km 0 0.477 9.96 %
1.0 10 0.500 5.66 %
20 0.486 8.38 %
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that although sea surface roughness affects the absolute detection depth,
its impact on the ratio 28/z is limited.

5.4. Effects of depth-dependent IOP variations

When the IOPs of the water column are vertically non-uniform, light
propagation in the stratified water body becomes more complex. The
presence of stratification alters the propagation path of light and en-
hances multiple scattering effects, thereby increasing the discrepancy
between time-based signals and real depth signals.

To investigate the impact of vertically non-uniform IOPs on the ratios
K,/K; and z8/z4, lidar backscattered signals under different Chl distri-
butions were simulated using the ICESat-2 and Airborne 0.35 km plat-
forms as examples, as shown in Fig. 22. In the simulations, the
background Chl was set to 0.1 mg/m?, with a peak value of 0.5 mg/m?>.
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Fig. 22. Analysis of the effect of vertical IOPs distribution on statistical models.
Vertical Chl distributions: (a) uniform, (c) shallow thin scattering layer, (e)
deep thin scattering layer, and (g) thick scattering layer. Corresponding MC
signals for ICESat-2 are shown in (a), (c), (e), and (g), while MC signals of the
Airborne 0.35 km platform are shown in (b), (d), (f), and (h), where solid lines
represent time-based signals and dotted lines represent real depth signals. Re-
lationships between the vertical integral of Chl and 1/(2%/z,) for (i) ICESat-2
and (j) the Airborne 0.35 km platform.
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The position and thickness of the peak layer were varied accordingly.

To facilitate comparison, the MC results for uniform Chl distribution
(Fig. 22(a)) are shown in Fig. 22(a)-(b). For cases involving a thin, high-
concentration Chl layer with a full width at half maximum (FWHM) of 5
m, the peak positions were set at 10 m and 40 m, respectively, as shown
in Fig. 22(c) and (e). The corresponding MC results are presented in
Fig. 22(c)-(f). The results show that, for the same platform, the z8/z4
values are nearly identical under thin Chl layers with different peak
depths. Since the increase in multiple scattering caused by the thin Chl
layer is limited, the deviation of 28'/z,4 from the statistical model (Eq.
(33)) remains within 10 %.

When the Chl layer becomes thicker (FWHM of 20 m), as shown in
Fig. 22(g), the corresponding MC results are presented in Fig. 22(g) and
(h). For the ICESat-2 platform, where the r; is relatively large, the
thickened Chl layer significantly enhances multiple scattering, leading
to a decrease in 28'/z4 from 0.65 to 0.55—a reduction of approximately
15.4 %. In contrast, for the airborne platform, under the same IOP dis-
tribution, the smaller rg limits the reception of multiple-scattered pho-
tons, resulting in a smaller decrease in 2%/z4 from 0.85 to 0.75—a
reduction of about 11.8 %. To further analysis the influence of vertical
Chl distribution on z8/z4, the vertically integrated chlorophyll concen-
tration, Chlg,,, was calculated as defined by the following equation:

100
/ Chi(z)dz.
0

The relationships between Chlg,, and 28'/24 of ICESat-2 and Airborne
0.35 km platforms are shown in Fig. 22(i) and 22(j), respectively. The
results reveal that as Chly,, increases, the discrepancy between time-
based signals and real-depth signals becomes more pronounced. Spe-
cifically, 1/ (2%/24) exhibits an approximately linear positive correlation
with Chlg,,, which corresponds to an inverse relationship with z8%/z4.
Moreover, for platforms with larger r;, 25'/z4 changes more rapidly with
Chlgym.

In summary, the vertical distribution of IOPs affects the magnitude of
the discrepancy between time-based signals and real depth signals.
When the vertical distribution of IOPs is non-uniform, the values of 25/
zq deviate from those derived by statistical models that assume vertically
uniform IOPs, as expressed in Eq. (34). When stratification is pro-
nounced, particularly with a significant increase in Chlg,n,, the discrep-
ancy becomes especially notable. In addition, this effect becomes more
significant for platforms with larger r;. Therefore, when applying sta-
tistical models, the actual vertical distribution of IOPs should be
considered, such as through retrieval from ocean lidar backscattered
signals (Chen et al., 2021; Churnside and Donaghay, 2009). Further-
more, even with the vertical distribution of IOPs available, quantita-
tively assessing their impact on discrepancies remains challenging and
requires a comprehensive consideration of the influencing factors listed
in Table 1.

Chlym = (51)

6. Conclusions

The detection depth of lidar has long been a subject of significant
interest. In comparison to previous studies, this article is the first to
propose that the subsurface signals measured by ocean lidar (i.e., the
time-based profile) do not correspond to the actual profile of photons
penetrating the water (i.e., the real depth profile). Specifically, because
of multiple scattering during laser transmit in the water, the actual
signal measured by lidar—recorded based on the arrival time of back-
scattered photons, does not accurately represent the actual depth dis-
tribution of photons. The work investigates the differences between
these profiles across six typical platforms. These discrepancies are
characterized by the ratio of the lidar attenuation coefficients (K,/K;)
and the ratio of detection depths (2%/24) between the two profiles.

For Case-1 water, assuming a vertically homogeneous water column
and neglecting sea surface fluctuations, and under the Petzold SPF, the
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results show that, both b and r; jointly influence the differences between
the two profiles. As b and r increase, K,/K; rises, while 28/z4 decreases.
These trends indicate that the differences between the two profiles
intensify, highlighting a greater discrepancy between the time-based
and real depth profiles. Based on the analysis of MC simulation data,
this work establishes statistical models for K,/K; and z%/z4 as functions
of b and r,, with a focus on Case 1 waters.

Specifically, for platforms with smaller r;, such as shipborne and
airborne 0.35 km, when Chl ranges from 0.01 to 10 mg/m3, K,/K;values
range from 1 and 3.5, while 2%/, ranges from 1 to 0.3. For platforms
with larger g, such as airborne 3 km, ICESat-2, and CALIPSO, the dif-
ferences between the time-based and real depth profiles are more pro-
nounced. In these cases, K,/K; ranges from 1 to 4.5, and z%/z4 ranges
from 1 to 0.25. This indicates that with larger Chl, the real depth rep-
resents only 25 % of the depth estimated by the time-based depth
profile.

For underwater lidar, due to its smaller r;, the time-based depth
profile closely approximates the real depth profile when Chl is less than
5 mg/m° and under the Case-1 conditions. Among the six platforms
analyzed, only the backscattered signal from underwater lidar accu-
rately represents the real depth distribution. This finding also highlights
the potential of underwater lidar for calibrating the lidar backscattered
signals from other platforms. Overall, when using time-based depth
profiles to evaluate other parameters or assess lidar penetration depth,
the effects of multiple scattering must be accounted for.

In addition, sensitivity analysis of the statistical model reveals that
K,/K; and 2%/z4 are more sensitive to variations in water optical
parameter b than to changes in r;. The study also investigates the effect
of the absorption coefficient a on the statistical model in non-Case-1
waters (i.e., when a and b are not solely determined by Chl). The re-
sults show that when a increases while b remains constant, the photon
penetration depth is limited, suppressing multiple scattering effects. As a
result, both K,/K; and z8'/z4 approach 1. In contrast, when a remains
constant and b increases, enhanced multiple scattering leads to greater
deviations of K,/K; and z%/z4 from 1, indicating a larger discrepancy
between the time-based and real depth signals.

A systematic analysis of SPF effects reveals that SPFs with stronger
forward scattering correspond to longer photon paths and deeper
penetration depths. Under Chl of 0.10 mg/m® and 1.00 mg/m>, the
differences between K,/K; and 2%/z4 and the statistical models in Eq.
(33) and Eq. (34) remain below 10 % across different SPFs. Within the
range of Bp at fixed values, Chl = 0-10 mg/m?’, and r; = 0-100 m, the
errors in K,/K; and 2%/z4 for both Petzold and HG; remain within 10 %,
demonstrating the applicability of the statistical models (Eq. (33) and
Eq. (34)) under varying SPFs. Furthermore, analysis of sea surface
roughness effects shows that while surface roughness affects the detec-
ted depth, its influence on the ratio z8/z4 is minimal. Under sea condi-
tions with wind speed U < 20 m/s, the differences between K,/K;, 25/24,
and the statistical models (Eq. (33) and Eq. (34)) remain below 10 %.

Finally, the study examines the impact of vertically inhomogeneous
IOPs. Results indicate that 1/(2%/z4) exhibit a linear relationship with
the vertical integral of Chl. As Chlg,, increases, multiple scattering ef-
fects become stronger, and the deviation from the statistical models (Eq.
(34)) increases accordingly.

Moreover, there are areas for improvement in this work, including
deriving more comprehensive statistical models that account for addi-
tional influencing factors (such as the absorption coefficient a and the
vertical distribution of IOPs), and experimentally validating the appli-
cability of the derived statistical models. These aspects will be addressed
in future research. Finally, this study enhances our understanding of
ocean lidar backscattered signals and is significant for detecting seabed
depth, terrain, and Chl in ocean lidar applications. Moreover, it estab-
lishes an important foundation for improving the accuracy and precision
of ocean parameter inversion from ocean lidars, thereby expanding the
role of lidar in biogeochemical research.
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