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Abstract— Primary production (PP) of the South China Sea
(SCS) basin area (waters depth deeper than 200 m) is estimated
using satellite products, with an overarching goal to reliably
characterize the spatial distribution and temporal variation of
PP of this important marginal sea. Among the PP models used,
the absorption-based model (AbPM) showed better performance
(R2 = 0.47 and N = 39). In comparison, the R2 value is 0.26 for
a chlorophyll-based model [vertically generalized production
model (VGPM)] and 0.15 for the carbon-based model (CbPM).
Furthermore, we observed that the PP spatial patterns obtained
from these models were similar but disagree on the annual
PP magnitude, where VGPM and CbPM, respectively, obtained
∼50% lower and ∼40% higher annual PP compared to that
obtained by AbPM. In particular, after analysis using empirical
orthogonal functions (EOFs), the upwelling-induced high PP off
Luzon (winter) and Vietnam coast (summer) was clearly reflected
in the first EOF mode of the AbPM results, and its principal
component 1 has shown a decreasing trend for the period of
2003–2019 (−15.0% yr−1 for winter, p < 0.05; −14.7% yr−1

for summer, p < 0.05), which reflects the impact of weakening
wind and higher sea surface temperature in the SCS. For the
results of VGPM and CbPM, however, no strong relationships
were found with the main regional oceanographic features. These
results suggested that the spatiotemporal variations of SCS PP
obtained from AbPM are more reasonable and further highlight
the importance of a robust model in reliably capturing large-scale
spatiotemporal dynamics of PP in marine environments.

Index Terms— Model, primary production (PP), remote sens-
ing, South China Sea (SCS), spatiotemporal variability.

I. INTRODUCTION

PRIMARY production (PP) represents the capacity of
marine phytoplankton to fix carbon dioxide (CO2),

accounting for about half of global biological carbon
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fixation [4]. It transfers atmospheric carbon into the ocean inte-
rior through the “biological pump” [5], a process that reduces
atmospheric CO2 by about 180 ppm compared to an ocean
without biological pump [6] and helps to slow global warming.
In this regard, PP is an important indicator for assessing
the contributions of marine ecosystems to long-term climate
change [7], [8]. The South China Sea (SCS), situated in the
western side of the Pacific Ocean, is an important region for
the study of the Pacific and global climate and phytoplankton
interactions [9], [10], which also exchanges carbon with “the
engine of global climate” (the western Pacific warm pool)
through the Luzon Strait. It has been suggested that PP in
the SCS is about 545.1 Tg C·yr−1 (1012 g·C), contributing
∼64% of PP in China Seas [9], [10], [11]. However, due to
the difficulties in measuring PP in situ, compared to other
major biological factors, there has been much less PP data
in SCS to adequately characterize its spatial distribution and
temporal variation [12]. As a consequence, the response of PP
in SCS in the context of climate change is far from clear.

In the past two decades, based on in situ measurements of
PP in the SCS, Ning et al. [9] provided an initial description
of the spatial and temporal variations of PP in SCS. Due to
limited coverage from these measurements, it is necessary
to compile long-term PP data of such large areas based on
satellite observations [13]. For this purpose, many models
have since been developed to convert satellite products to
PP [14], [15], [16], [17]. The vertically generalized production
model (VGPM) [16] has been one of the most applied models
to estimate PP from satellite ocean color remote sensing and
the scheme to study PP in the SCS [18], [19], [20], [21].

For instance, Tan and Shi [22] analyzed the spatial and
temporal variation of PP in SCS for the period of 1998–2006
using a modified VGPM and found that the PP maximum
occurred mainly in the northwestern part of the Luzon Strait
on winter and in eastern Vietnam on summer, with low PP
in the basin. This conclusion was echoed by Kong et al. [20]
who reported the spatial distribution of PP for the period of
1998–2016 based on spatial distribution characteristics
obtained by VGPM. Generally, these findings are consistent
with the results observed from field measurements [9]. On the
temporal variations, Li et al. [23] applied VGPM to estimate
PP in SCS and found no significant PP trend in the SCS
between 1998 and 2002. Similar results were also found by
Tan and Shi [22] after expanding the time range to 2006 along
with a modified VGPM. Further extending the time scale
and also based on VGPM, Kong et al. [20], however, found
that the PP of the whole SCS was increasing at a rate of
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2.95 mg·C·m−2 month−1 between 1998 and 2016. However,
as pointed out in many studies [24], [25], [26], [27], there are
large uncertainties in the VGPM-estimated PP, thus not clear
how much the VGPM-estimated PP for waters in the SCS
contains bias, consequently negatively affecting the analysis
of its spatial distributions and long-term trends.

For VGPM, there are two primary sources of uncertain-
ties in the estimation of PP, where the determination of
the maximum carbon fixation rate within the water column
(P B

opt) is the key and there are no feasible means yet for
its accurate estimate from remote sensing [28]. Therefore,
a model of estimating PP based on phytoplankton carbon (Cph,
mg·m−3) (termed as carbon-based model (CbPM) [28], [29])
has been developed, where the ratio of chlorophyll concen-
tration (Chl, mg·m−3) to Cph is used to track changes in
phytoplankton physiology [28], [29]. Separately, in view of the
large uncertainties in estimating Chl from ocean color remote
sensing, an absorption-based model (AbPM) was developed
in a concept to bypass the estimation of Chl [30], [31].
Various studies [31], [32], [33] have suggested that at least
the AbPM performed significantly better than VGPM on the
remote estimation of PP due to its no involvement of the
chlorophyll-specific absorption coefficient, which is a property
varies widely and at present could not be accurately estimated
remotely. It is thus important and useful to evaluate the PP spa-
tial distribution and temporal variation in the SCS in the past
decades using PP estimates from these different approaches.
We therefore first used in situ PP from regions covering the
northern SCS (NSCS), central SCS (CSCS), and western SCS
(WSCS) for the period of 2009–2020 to evaluate the estimated
PP from the three models. Furthermore, a long-term dataset of
PP was constructed from satellite measurements for the period
of 2003–2019. The goals of this study are thus twofold: 1) to
identify a better strategy or model for the estimation of PP in
SCS and 2) to obtain more reasonable spatial and temporal
variations of PP in SCS from the long-term satellite ocean
color measurements.

II. DATA AND METHODS

A. Models for Primary Production Estimation

As mentioned above, three models, namely, VGPM, CbPM,
and AbPM, which represent three different strategies for
the estimation of PP, are evaluated in this study. VGPM is
calculated as follows:

PPVGPM =0.66125 × P B
opt ×

PAR(0)

PAR(0) + 4.1
×Zeu × Chl × DL

(1)

with PPVGPM (mg·C·m−2
·d−1) for total PP within the euphotic

zone. Here, Chl is a proxy of phytoplankton biomass,
P B

opt (mg C (mg Chl) −1
·h−1) is the maximum carbon fixation

rate within the water column, which is modeled empirically
as a seventh-order polynomial function of sea surface tem-
perature (SST) (◦C), and PAR(0) (mol photons m−2 d−1)

refers to daily photosynthetically available radiation at the
surface, with DL (h) as the daily light hours. Zeu (m) is the
euphotic-zone depth defined here as the depth of 1% surface

photosynthetically active radiation (PAR) in VGPM. Chl, SST,
and PAR(0) are standard products from satellite ocean color
missions, while Zeu was estimated from Chl [34].

CbPM at depth z is expressed as [28]

PPCbPM = Cph
{(

bbp(440)
}

× µ
{
µmax, Chl:Cph, Ig

}
PPCbPM

(2)

Cph = 13000 ×
(
bbp(440) − 0.00035

)
(3)

where µmax is the maximum carbon-specific growth rate and
taken as 2 day−1. Cph is calculated from particulate backscat-
tering coefficients at 440 nm (bbp(440), m−1), which can be
derived from remote sensing reflectance (Rrs, sr−1). Further-
more, phytoplankton growth rate is estimated from Chl:Cph
ratio and growth irradiance (Ig , mol photons m−2

·h−1).
AbPM estimates PP at depth z as

PP(z) =

∫ 700

400
φ(z) × aph(λ) × E(z, λ)dλ (4)

E(z, λ) = PAR(0) × Ē S(λ) × exp(−Kd(λ) × z) (5)

where φ is the quantum yield of phytoplankton photosynthesis,
which varies with light intensity, and was modeled follow-
ing Kiefer and Mitchell [35] after considering photoinhibition:

φ = φm × Kφ/
(

Kφ + PAR(z)
)

× exp(−ν × PAR(z) (6)

with Kφ the light intensity when φ is at half φm. The
default values of φm and Kφ for global applications are
commonly taken as 0.06 mol·C·mol·photons−1 [36] and
10-mol·photons·m−2

·d−1 [35], respectively. ν is photoinhibit-
ion factor [37], with an average value of 0.01 (Ein·m−2

·d−1)−1.
aph is the absorption coefficient of phytoplankton and Kd is
the diffuse attenuation coefficient of downwelling irradiance,
and both can be derived from Rrs [38]. Ē S is a normalized
spectrum for downwelling solar radiation, which reflects the
spectral shape of PAR at sea surface [38]. Finally, integrating
PP(z) in the euphotic zone provides water-column primary
production from AbPM (PPAbPM). More detailed descriptions
of AbPM for PP can be found in Zoffoli et al. [38].

B. Modeled PP Using Satellite and in Situ Inputs

For model validations and analyses of long-term trend,
eight-day composite and monthly mean PP products from
VGPM and CbPM estimated using data from the Mod-
erate Resolution Imaging Spectroradiometer-Aqua (Aqua-
MODIS) for the period of January 2003–December 2019
were downloaded from the Oregon Ocean Productivity
Laboratory (OSU: http://sites.science.oregonstate.edu/ocean.
productivity/index.php). The spatial resolution of these data
products is 9 km.

There are no standard PP products from AbPM yet for
download, and therefore, PP of AbPM was estimated
based on standard satellite data [Rrs and PAR(0)]
downloaded from NASA (https://oceancolor.gsfc.nasa.gov).
Specifically, Aqua-MODIS eight-day composite and monthly
mean Level-3 Rrs (data processing version R2014.0)
products, also at 9-km resolution, were downloaded and fed
to the quasi-analytical algorithm (QAA, Version 6, http://www.
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Fig. 1. Locations of field measurements and two well-known upwelling
zones in the SCS. The solid gray line represents 200-m water depth. Red
dots: NSCS dataset; blue dots: CSCS dataset; yellow dots: WSCS dataset;
green crosses: stations with collocated PP, Rrs, and PAR data. Black solid
line boxes: northwest Luzon (Lu , 18◦N –20.5◦N, 118◦E–121◦E) and east off
Vietnam (Vu , 11◦N–15◦N, 109◦E–111◦E) [1].

ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf) to
derive inherent optical properties (IOPs), such as a(490),
bb(490), and aph(443); they were further fed to the AbPM
model [see (4)–(6)] to obtain PP.

Also, in situ measured Rrs and PAR were used to estimate
daily PP from VGPM [see (1)] and AbPM, with a purpose
to evaluate model performances without concerns of issues
related to satellite data processing. CbPM was not included in
this step because the input parameters for CbPM could not be
estimated from Rrs [e.g., nitracline depth (ZNO3)].

C. In Situ Data

Primary productivity measurements were carried out in three
subregions of the SCS (10◦N–25◦N, 105◦E–121◦E) between
2009 and 2020, which were mainly located in the NSCS,
CSCS, and WSCS parts of SCS (see Fig. 1). PP was measured
by the 14C tracer method [39]. A quantum scalar radiometer
was used to continuously measure surface PAR (QSPL-2100,
Biospherical Instruments Inc., San Diego, CA, USA). Water
samples from the 5, 25, 50, and 75 m depth were collected
to perform the photosynthesis–irradiance curve (P–E) exper-
iments. Then, the samples were dispensed into 11 or 13
70-mL Corning tissue culture flasks, inoculated with
5–20 µCi of NaH14CO3 solution, and incubated in a pho-
tosynthesis simulator on deck for 4 h. After the incubations,
the PP was obtained by integrating PP(z) over the day and
the euphotic zone. Briefly, the P–E parameters are linearly
interpolated in the vertical direction at 6-min time intervals and
1-m depth intervals and then summed up after substitution into

PAR and Chl calculations. Detailed information and descrip-
tion regarding PP measurements and its vertical integration in
SCS can be found in [2] and [3].

Remote sensing reflectance, Rrs (sr−1), which is the ratio
of water-leaving radiance to downwelling irradiance just
above the surface, was derived after radiometric measure-
ments with a GER 1500 spectroradiometer (Spectra Vista
Corporation, Poughkeepsie, NY, USA). For each measurement,
three radiances were measured sequentially; they are the
upwelling radiance above the surface (Lu , W·m−2

·nm−1
·sr−1),

the radiance from a standard Spectralon plaque (Lplaque,
W·m−2

·nm−1
·sr−1), and the downwelling sky radiance

(Lsky, W·m−2
·nm−1

·sr−1) in the reciprocal angle of Lu . Rrs
was then calculated as

Rrs(λ) =
ρ
(

Lu(λ) − r × Lsky(λ)
)

π × Lplaque(λ)
−1 (7)

where r is the surface reflectance and a value of 0.023 was
taken; ρ is the reflectance of the standard plaque with a
reflectance of 0.2 or 0.5; and 1 represents the residual surface
contribution (glint and so on), which was determined by
assuming Rrs(750) = 0 (clear oceanic waters) or through an
optimization process [40].

Surface water samples (0.1–5 L) were filtered onto 25-mm-
diameter glass fiber filters (GF/F, Whatman) for the determi-
nation of phytoplankton absorption coefficients and Chl.

The filter pads were stored frozen in liquid nitrogen until
after the cruise for analysis. Total particulate absorption
coefficient (ap, m−1) was determined by the transmittance
(T)–reflectance (R) filter-pad technique [41], [42] and was
measured with a dual-beam PE Lambda 950 spectropho-
tometer equipped with an integrating sphere (150 mm in
diameter). Detrital absorption (ad , m−1) was then measured
after extraction of pigments by methanol, and aph (m−1) was
calculated by subtracting ad from ap. Details of the methods
can be found in previous work [43]. Chl was measured using
high-performance liquid chromatography (HPLC) following
the protocol of Huang et al. [44].

To evaluate the PP estimates from satellite measurements
by the models described earlier and to increase the number of
matchups between satellite and field data, eight-day composite
data of Aqua-MODIS were used to match with in situ PP
measurements [45], [46]. Note that due to cloud coverage
and failures in atmospheric correction [47], only one satellite-
in situ data could be matched up if daily satellite products
were used.

Gregg and Rousseaux [48], we focused on satellite data
in offshore (the bottom depth is deeper than 200 m) waters,
whereas the IOPs and Chl products are more reliable than
those of nearshore waters due to the impact from river runoff
as well as difficulties in obtaining accurate Rrs for inshore
waters. This is also because coastal waters’ spatial hetero-
geneity is strong and the ocean color products in such waters
have higher uncertainties [49].

The matchup strategy follows that described in [50]. Briefly,
for each field measurement, 3 × 3 MODIS pixels around
this station were extracted. Satellite data were retained only
when the valid pixels in the 3 × 3 array were >50% and
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TABLE I
MATCHUP STATIONS IN THE SCS SUBREGIONS USED FOR ALGORITHM VALIDATION. N IS THE NUMBER OF MEASURED PP MATCHING

UP WITH AVAILABLE MODIS-AQUA PRODUCTS. OBSERVATIONS SHALLOWER THAN 200 M WERE
EXCLUDED TO MINIMIZE THE IMPACT OF IMPERFECT SATELLITE PRODUCTS

the coefficient of variation (CV) of the valid pixels was less
than 0.15 to exclude the errors caused by extreme variations
among the pixels. Finally, an average of the remaining pixels
was computed and was considered to match up with in situ
measurement. From these, a total of 39 data pairs (N = 39)
were compiled for the evaluation of PP products from satellites
obtained by the described models. Table I lists the information
of the matchup samples used in this effort.

For these measurements, the coefficient of determination
(R2), root-mean-square difference (RMSD), biased (Bias), and
unbiased RMSD (uRMSD) were calculated, all in log10 scale
following that in the literature [51], [52], to evaluate the
performance of these models:

RMSD =

√∑N
i=1

(
log10(PPest(i))−log10(PPmea(i))

)2

N
(8)

Bias = log10(PPest) − log10(PPmea) (9)

uRMSD =

√(
RMSD2

− Bias2) (10)

where PPmea and PPest are field-measured PP values and their
corresponding estimates, respectively, and N is the number of
data pairs.

For comparison between modeled results, we also calculated
the unbiased percentage difference (uPD) for each pair of
models

uPD = 2 × (PPx − PPAbPM)/(PPx + PPAbPM) × 100 (11)

with PPx representing the PP estimated by the other two
models.

D. Other Data and Analysis

To characterize the long-term trends of PP in SCS, linear
regression analyses between satellite-derived PP anomalies
and other related physical variables were carried out following
methods in the literature [48], [53]. A significant trend is
defined when the confidence level exceeds 95% (p < 0.05).

Meanwhile, in order to extract the principal components
accounting for the most dominant interannual variation of PP
in different seasons, analysis with empirical orthogonal func-
tion (EOF) decomposition, commonly used in the time-series
analysis [54], [55], was carried out. As the upper SCS cir-
culation is mainly controlled by the East Asian monsoon
and characterized by seasonal upwelling and cold eddies,
the seasonal variations of PP mainly appear in winter and
summer. Thus, the interannual variations of PP in the SCS in
winter and summer were analyzed separately following [56].
First, climatology PP of winter (December–February) and
summer (June–August) seasons were calculated. Subsequently,
the distributions of PP anomalies (the difference between PP of
each season and the climatology) in both winter and summer
were obtained. Then, the EOF analysis was applied to the
spatial distribution of PP anomalies.

To facilitate analysis and discussion, the monthly mean wind
speed data (2003–2019) from cross-calibrated multiplatform
(CCMP) were used in the study, which was produced by
Remote Sensing Systems (https://remss.com/measurements/
ccmp/). In addition, monthly averaged Chl products by the
ocean color index (OCI) algorithm and monthly mean SST
data were also downloaded from NASA, with a spatial reso-
lution of 9 km.

III. RESULTS

A. Comparison of Modeled PP With in Situ PP

To characterize the performance of these PP models, we first
used in situ data [Rrs and PAR(0)] to estimate daily PP
and compared the results with that from incubation mea-
surements. Fig. 2 shows the scatterplots between estimated
PP and measured PP and Table II tabulates the statistics.
PP from 20 stations (in the NSCS, see Fig. 1, green crosses)
with concurrent field measurements [including PP, Rrs, and
PAR(0)] were compiled since there were no in situ Rrs for
the CSCS and WSCS cruises. Overall, the two models had
R2 values in the range of 0.43–0.54, with a Bias between
−0.01 and −0.18, while uRMSD (0.21) was the same for
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Fig. 2. Comparison between in situ (PPmea) and model-estimated (PPest) primary production, where field data were used as model inputs. (a) AbPM.
(b) VGPM. The black dashed line is the 1:1 line, whereas the blue line represents the regression line.

TABLE II
SUMMARY OF STATISTICS OF PP MODEL PERFORMANCES FOR MATCHUP STATIONS

the two models. Compared with in situ PP that ranged
in 86–1581 mg·C·m−2

·d−1, VGPM and AbPM did not provide
highly consistent estimates, where both models underestimated
PP at the high end and overestimated PP at the lower end.
Although the outcome of AbPM appeared slightly better when
compared to in situ measured data, due to the small number
of samplings, it is inconclusive if AbPM is better from this
dataset nor conclusive if there are more uncertainties in the
measured PP or modeled PP.

We further compared the PP estimates obtained from satel-
lite data by the three models with field-measured PP, where
39 matchups were compiled as mentioned in Section II-C, with
scatterplots presented in Fig. 3 for visual inspection, while
statistics are included in Table II. Note that the PP results
of VGPM and CbPM were downloaded from the website of
model developers.

Table III summarizes an evaluation of the individual com-
ponents (e.g., Rrs, PAR(0), and SST) used in these models,
where the performance is in general consistent with that
presented in the literature [57], [58], [59], [60]. The lower
R2 value for PAR(0) is due to a very narrow range of values
(35.2–56.7 mol·photons·m−2

·d−1) for these low-latitude
waters.

Among the three models evaluated, the R2 values are in
a range of 0.15–0.47, slightly worse than using in situ Rrs
and PAR(0). This is mainly attributed to no precise matchups
between satellite pixels and in situ measurements due to
different footprint and temporal coverage. Similarly, as the
above evaluation among in situ measurements, AbPM showed
the highest R2 (0.47) and lowest uRMSD (0.21). In com-
parison, VGPM generally shows an underestimation, while
CbPM shows an overestimation. For this dataset (N = 39),
AbPM explained 47% of the PP variability, where in situ
measured PP is in a range of 100–1315 mg·C·m−2

·d−1, and
again, VGPM and AbPM showed lower estimates at the high
end of PP measurements. Reasons for these discrepancies
include measurement uncertainties, satellite data processing,
as well as the far from perfect “matchup” between satellite
and in situ data. More discussion regarding model uncer-
tainties can be found in the literature [30], [61], [62] and
the following. Nevertheless, previous round-robin comparisons
of primary productivity algorithms [25], [51] showed that
the R2 values of 30 models were in a range of 0.23–0.60
with a mean value of 0.51 ± 0.01, which suggests that
the outcome of AbPM is still at the higher end for such
comparisons.
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Fig. 3. Comparison between in situ (PPmea) and model-estimated (PPest) primary production, where satellite and other environmental data were used as
model inputs. (a) VGPM. (b) CbPM. (c) AbPM. The black dashed line is the 1:1 line, whereas the blue line represents the regression line.

TABLE III
SUMMARY OF STATISTICS OF CORRELATION COEFFICIENT OF LINEAR REGRESSION,RMSD, URMSD,

AND NUMBER OF MATCHUP POINTS FROM THE THREE SUBREGIONS

B. General Spatial Characteristics
The above validations regarding the three PP strategies and

models suggested that AbPM provided better results for PP
remote sensing; therefore, values from AbPM were used to
describe the general spatial variations of PP in the SCS basin
(for depths deeper than 200 m). The spatial distribution of
climatological PP (for the period of 2003–2019) is presented
in Fig. 4, which is highly season dependent. Generally, AbPM
captures the basic distribution features of PP levels being high
in the upwelling areas and low in the basin area, with the
highest PP levels in winter and the lowest in summer (Fig. 4).
PP peak occurs in the northwestern part of Luzon in winter
and is about two times higher than that in the central basin
area. For the entire SCS basin, its annual average is 503 ±

34 mg·C·m−2
·d−1 (∼252 Tg·C·yr−1). The highest productivity

is in winter with an average of 526 ± 17 mg·C·m−2
·d−1,

followed by spring (506 ± 13 mg·C·m−2
·d−1) and autumn

(492 ± 7 mg·C·m−2
·d−1), with the lowest in summer

(482 ± 3 mg·C·m−2
·d−1). These results are similar to that

observed by Chen et al. [63] based on limited field data.
In addition, the winter estimates (∼546 mg·C·m−2

·d−1) by
AbPM are found consistent with those reported in [64]
(∼530 mg·C·m−2

·d−1) from field measurements, suggesting
that the seasonal variations of PP in SCS obtained from AbPM
are reasonable.

There existed a zone of surge-type high PP along the
Vietnamese shore in summer, with productivity reaching
∼600 mg·C·m−2

·d−1 [Fig. 4(b)]. This effect further extends
to the central part of the basin in autumn, showing a trend of
high PP distribution in the west and low PP in the east. This is
related to the prevailing southwest monsoon and high rainfall
in summer, which caused the injection of land-sourced water
carrying large amounts of nutrients into the ocean, resulting
in a significant increase in PP in WSCS [65].
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Fig. 4. Spatial distribution of AbPM-obtained seasonal climatology PP of
SCS from 17 years (from January 2003 to December 2019) of satellite mea-
surements. (a) Spring (March–May, MAM). (b) Summer (June–August, JJA).
(c) Autumn (September–November, SON). (d) Winter (December–
February, DJF).

In wintertime [Fig. 4(d)], due to the intensification of
winter mixing, a patch of extremely high PP values forms in
northwestern Luzon (a mean value up to 800 mg·C·m−2

·d−1).
In addition, a secondary strong patch exists in the southern part
of the SCS centered around 111◦E, 8◦N. PP data from field
measurements also show winter peaks mainly in northwestern
Luzon (>500 mg·C·m−2

·d−1), the basin region of the SCS,
and the Sunda shelf [9]. Overall, the pattern of PP exhibits
clear strong spatial and seasonal variations.

Because of the different strategies in estimating PP from
remote sensing data, the climatological (2003–2019) spatial
pattern of PP from AbPM is different from that obtained with
VGPM and CbPM [see Fig. 5(b) and (c)], where overall PP
from VGPM is ∼50% lower than that from AbPM [Fig. 5(d)],
while the PP from CbPM is ∼40% higher [Fig. 5(e)]. These
results further highlight the dependence of basin-scale PP
products on the models of PP from satellite data.

C. General Temporal Characteristics

For the temporal (monthly climatology) variability of the
entire basin, as shown in Fig. 6, AbPM exhibits the highest
value in winter (January) and the lowest in summer (July),
but the difference is just about 11%. The winter high and
summer low in PP are also observed from the results of CbPM
and VGPM, but the monthly variation is not the same, where
CbPM shows high PP in February and March and October
and November, and VGPM obtained a small PP bump in
August. More importantly, while both AbPM and CbPM show
mild monthly variations, the winter high PP from VGPM is
nearly 1.7 times that of its summer low, i.e., a significantly
stronger monthly (or seasonally) variation from VGPM. The
above results indicate that there are considerable differences in
temporal patterns among the PP results obtained from different
models.

Fig. 5. Spatial distribution of annual climatology PP (mg·C·m−2
·d−1)

generated by three different PP models with MODIS data obtained from
2003 to 2019. (a) AbPM. (b) VGPM. (c) CbPM. (d) and (e) uPD of VGPM
and CbPM compared to AbPM, respectively.

Fig. 6. Monthly climatology PP of SCS basin from the three models obtained
from MODIS measurements. Gray shadow refers to winter (December–Febru-
ary); orange shadow refers to summer (June–August).

These model dependences also appeared at the upwelling
zones (see Fig. 7 for examples), where high PP often
emerges due to enhanced water mixing and nutrient enrich-
ment [11], [63], [65]. For the upwelling zone off Vietnam
(Fig. 7(a), see Fig. 1 for locations), while all three PP models
showed summer high PP, but VGPM obtained the maximum in
winter, not in summer as that indicated by results from AbPM
and CbPM as well as from field observations [9]. On the
other hand, for the upwelling zone of Luzon Strait [Fig. 7(b)],
although the three models exhibit similar seasonal PP cycles of
high in winter and low in summer, the VGPM model resulted
in significantly lower values in summer and much stronger
seasonal variations.

D. Model Analysis From EOF

The model-dependent variations of SCS PP at various scales
make it difficult to conclude results from which model is
closer to reality. To address this question, we decomposed the
observed long-term spatiotemporal PP anomaly field with EOF
analysis and compared the results with known understandings
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Fig. 7. Monthly climatology PP of the two well-known upwelling zones in SCS from the three models obtained from MODIS measurements. (a) Vu . (b) Lu .
Shadow colors are the same as that in Fig. 6.

Fig. 8. (a) Spatial variation of the first mode of EOF analysis for winter (December–February) SCS PP obtained by AbPM. (b) and (c) Annual variation of
the PC1 (left axis) of the first EOF mode in winter and its relationship with SST (red curve, right axis) and wind speed (blue curve, right axis). (d)–(f) are
the same as (a)–(c), but for summer SCS PP (June–August).

of SCS productivity. The results are shown in Figs. 8–10.
It is found that the first EOF mode of AbPM-estimated PP
accounted for 43% and 48% of the PP spatial variance in
winter and summer, respectively, describing a large fraction of
the PP variations [Fig. 8(a) and (d)]. The corresponding spatial
patterns of this EOF mode indicate spatially different response
of PP to environmental forcings, where higher values are
apparent for waters off Luzon in winter and another off Viet-
nam in summer. These patches were exactly consistent with
the well-known upwelling zones, i.e., the winter Luzon bloom
[66], [67] and summer Vietnamese coastal bloom [65], [68].
The behavior of this mode in the time domain is fur-
ther represented by its principal component 1 (PC1)
[Fig. 8(b), (c), (e), and (f)], where a significant decreasing

trend for the period of 2003–2019 (−15.0% yr−1 for winter,
p < 0.05; −14.7% yr−1 for summer, p < 0.05) emerged.
This PP variability from AbPM estimates is a response
to the interannual variations of both wind and SST for
this period [Fig. 8(b), (c), (e), and (f)], with wind (SST)
decreased (increased) by −3.9% yr−1 (1.9% yr−1). The
decrease (increase) of wind (SST) would result in less nutrient
due to relaxed mixing in the water column, thus a decrease
in primary production. These results echo the findings of
Shih et al. [60] from the time-series study conducted at the
South East Asian Time-series Study (SEATs) that climate
warming (increased SST) has led to a decrease in phyto-
plankton primary production in low-latitude waters such as
the SCS.

Authorized licensed use limited to: Xiamen University. Downloaded on September 04,2023 at 04:14:47 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: ON THE SPATIAL AND TEMPORAL VARIATIONS OF PRIMARY PRODUCTION IN THE SCS 4201514

Fig. 9. Same as Fig. 8, but for CbPM-estimated PP in SCS. (a) Spatial variation of the first mode of EOF analysis for winter (December–February) SCS PP
obtained by CbPM. (b) and (c) Annual variation of the PC1 (left axis) of the first EOF mode in winter and its relationship with SST (red curve, right axis)
and wind speed (blue curve, right axis). (d)–(f) are the same as (a)–(c), but for summer SCS PP (June–August).

Fig. 10. Same as Fig. 8, but for VGPM-estimated PP in SCS. (a) Spatial variation of the first mode of EOF analysis for winter (December–February) SCS
PP obtained by VGPM. (b) and (c) Annual variation of the PC1 (left axis) of the first EOF mode in winter and its relationship with SST (red curve, right
axis) and wind speed (blue curve, right axis). (d)–(f) are the same as (a)–(c), but for summer SCS PP (June–August).

On the other hand, the first EOF mode of PP from VGPM
and CbPM estimates (Figs. 9 and 10) does not show clear
relationships with the main oceanographic features of this
region. For instance, the winter high of the first EOF mode
for both CbPM and VGPM [see Figs. 9(a) and 10(a)] appears
not only for waters off Luzon but also in the broad east coast
of Vietnam, but there is rare evidence in the literature on a
high productivity off the Vietnamese coast in winter. On the
other hand, for both CbPM and VGPM, the summer high of
the first EOF mode extends well into the southern SCS and

the SCS basin, which is neither supported by the circulation
dynamics of the summer upwelling off the Vietnamese coast.
In addition, while the PC1 of the first EOF mode of CbPM also
shows decreasing trends of −9.8% yr−1 (p < 0.05) for winter
and −10.2% yr−1 (p < 0.05) for summer, which are weaker
compared to those of AbPM. Furthermore, there is no strong
trend for PC1 of the first EOF model of VGPM (−9.6% yr−1

for winter, p = 0.05; −0.7% yr−1 for summer, p = 0.89)
estimates. From these results and comparisons, it suggests
that PP from AbPM reflects better the spatiotemporal vari-
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ations of PP in SCS and the responses to environmental
forcings.

IV. DISCUSSION

A. Major Reasons for Model-Measurement Discrepancies

The performance of the PP models shown in Section III-A,
as well as those shown in the round-robin comparisons of
PP algorithms [25], [51], either with measured data or with
satellite data as inputs, indicates that there are quite large
differences between measured and modeled PP, even for
the better performing AbPM model. The reasons behind the
discrepancies are multifold. When using in situ data as input,
part of the low performance is in the uncertainties of the mea-
surements (see Fig. 2). For instance, between Stations K1 and
S1 (see Fig. 1 for locations), field measured PAR, aph(443),
and Chl are similar (Chl values were within a factor of ∼1.5,
and others were within a factor of 1.2), but in situ PP differed
by a factor of ∼5, which then contributed significantly to the
differences between estimated PP and modeled PP. Another
factor is the on-deck 14C incubation for PP measurement with
flowing surface water to maintain temperature, a scheme taken
since the joint global ocean flux (JGOFS) program in the
1990s [69], [70]. Such an approach inevitably could lead to the
possibility that deep phytoplankton was growing at unsuitable
temperatures, especially those samples from 50 and 75 m
with elevated chlorophyll values, where the temperature could
be 3 ◦C–5 ◦C lower compared to that at surface. Conse-
quently, this will cause uncertainties in the measured PP.
On the other hand, because most of the photosynthesis happens
near surface, phytoplankton at deeper depths contribute just
∼5%–30% to the water-column-integrated PP in SCS, and
such uncertainties due to temperature difference are considered
acceptable since JGOFS. In addition to the measurement errors
or uncertainties, another key source of discrepancy between
satellite and in situ data is the mismatch in time and space,
where in situ data represent a point measurement within a day,
while satellite data represent an average of an area in square
kilometers for a period of eight days. Unfortunately, limited
by field capacities and techniques to obtain in situ PP as well
as the spatial resolution of ocean color satellites, as shown in
many similar studies [71], [72], [73], [74], it is not possible yet
to obtain a large number of perfect matchups between satellite
and in situ data.

B. AbPM

One of the major components for AbPM is the phytoplank-
ton absorption coefficient (aph), which is a strong predictor for
phytoplankton biomass [59], [75]. Because aph is a key compo-
nent for the estimation of PP via AbPM [see (4)], its accuracy
plays an important role on the robustness of PP estimation.
For the field data compiled for this study, it is found that
there is an excellent agreement between field-measured and
satellite Rrs-inverted aph(443) [R2

= 0.85, uRMSD = 0.08,
and N = 20, see Table III and Fig. 11(a)], with estimates
from Rrs distributed around the 1:1 line from pad-measured
aph(443). This result echoes earlier findings that ocean color
inversion can obtain highly accurate aph [76], [77], [78], which

in part is because aph is an optical property that is directly
related to Rrs [79], [80].

The second major component for AbPM is the quantum
yield (φ) of photosynthesis, which is not a property directly
retrievable by remote sensing yet, but modeled with two
parameters (φm and Kφ), with their values obtained from
various field measurements [35], [62], [81]. Among them,
the effect of Kφ on the AbPM-estimated PP is mainly
in the surface layer, where it varies between 5 and
15 mol·photons·m−2

·d−1 [38], while φm is more influenced
by both depth and nutrient levels and varies roughly between
0.005 and 0.08 mol·C·mol·photons−1 [2], [82], with its lowest
value usually in the surface layer and under oligotrophic
regimes [83], [84]. In principle, φm and Kφ should not be con-
stants. However, since these parameters cannot be accurately
determined yet from remote sensing, the default and constant
values used in this study were taken from [35]. Although φm =

0.06 mol·C·mol·photons−1 works overall reasonably well for
the SCS basin, the validation results with measured data still
show underestimation at high values and overestimation at low
values [see Fig. 3(c)], if we assume that field measured PP is
accurate. This is mainly because the uncertainty of φm has the
greatest impact on the output of AbPM (∼38%) [85]. Even
so, the results of this study are similar to that obtained in [22]
with the modified VGPM (R2

= 0.49 and N = 13), also for
waters of the SCS.

C. VGPM

Concentration of chlorophyll (Chl) is a key input in VGPM.
Even though highlighted in [28] that Chl is a poor proxy for
phytoplankton biomass in the ocean as it can be strongly
influenced by the physiological state of the phytoplankton
assemblage, Chl is a common input for most PP models.
In this study, the satellite-estimated Chl matched in situ
measurements quite well [R2

= 0.75 and N = 27; see Table III
and Fig. 11(b)], with a uRMSD value as 0.14. This suggests
that the underestimation PP (bias = −0.15) at the high end
(>500 mg·C·m−2

·d−1) by VGPM is not caused by errors in
Chl derived from satellite measurements, if field measured PP
is reliable. This point is echoed when using the measured Chl
as the input (Bias = −0.18).

The other key component for VGPM is P B
opt, where a

range of 4.00–6.54 mg·C (mg·Chl)−1
·h−1 was obtained based

on the scheme of Behrenfeld and Falkowski [16] for a
temperature range of 17 ◦C–32 ◦C. These modeled P B

opt
were quite low compared to in situ P B

opt (slightly under
20 mg·C (mg·Chl)−1

·h−1) for a similar temperature range [26].
In other words, a significant underestimation of the modeled
P B

opt contributes most to the underestimation of the high end of
the VGPM-estimated PP. Certainly, the model for P B

opt could be
improved with other inputs or math formula, but such revisions
are always data-dependent, where its applicability in a wider
range of environments and time spans is unsure. Furthermore,
the reason P B

opt has such poor accuracy is, ultimately, because
in VGPM, it is expressed only as a single environmental
variable SST, even though the satellite SST can be a good
reflection of the measured SST (R2

= 0.92, uRMSD = 0.01,
and N = 27; see Table III). However, in many cases, SST is
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Fig. 11. Comparison between properties estimated from Rrs and measured from water samples for (a) aph(443) and (b) Chl. Red and yellow squares are for
NSCS and WSCS, respectively. The black dashed line is the 1:1 line.

far less important than the effect of nutrients on phytoplankton
carbon fixation [28], [29], [86]. In addition, part of the vari-
ation of P B

opt is driven by the chlorophyll-specific absorption
coefficient (aph∗) [27], which can vary more than fourfold
for the same Chl due to pigment composition and “packing
effects” [87], [88], [89]. Such a large range of variation will
greatly increase the probability that aph∗ (and then P B

opt) does
not match the PP model and ultimately leads to errors in the
estimated PP [30].

D. CbPM

For CbPM, phytoplankton carbon biomass (Cph) is one
of the key inputs, which likely contributed mainly to the
overprediction of PP at the lower end (Fig. 3(b), blue circles),
if we assume that field-measured PP is accurate and no gaps
in satellite-field matchups. This is because Cph is derived from
bbp(440), which includes the contributions from phytoplankton
and others (e.g., suspended sediments, detritus, and bubbles)
when it is estimated from ocean color. Therefore, only a por-
tion of bbp(440) can be considered for phytoplankton biomass,
and this portion could be quite small when there are large
amounts of nonalgal particles in the water column. Certainly,
such portions will vary from water to water, where the global
constant value (0.00035 m−1) used in (3) could not be univer-
sal [90]. If a value of 0.00056 m−1 proposed for the SCS [91]
was applied, Cph would be dropped to 7.7 ± 4.1 mg·m−3

from 18.5 ± 5.8 mg·m−3 for this dataset, indicating the
importance and challenge to accurately estimate Cph from bbp,
even assuming that bbp can be inverted robustly from Rrs, but
always, there are various levels of uncertainties [80], [92].

Another critical input for CbPM is the Chl:Cph ratio, which
tracks the change of phytoplankton physiological status [28],
[93] and is used to estimate the growth rate of phytoplank-
ton [28], [29]. This Chl:Cph ratio is described as a function of
PAR, the diffuse attenuation coefficient, and the mixed-layer
depth [94], where the accuracy of Chl:Cph ratio for SCS is not
known.

E. PAR at Surface

A common input parameter used in all primary product
models is the ambient light intensity (PAR), where the standard
daily PAR product provided by NASA has uncertainties in the
range of 10%–30% [95]. When the time scale is stretched to
monthly averages, the short-term variability affected by cloud
cover and other factors is reduced, and the uncertainty of the
monthly PAR is dropped to about 6% [96]. In this study, the
agreement between in situ PAR(0) and satellite PAR(0) is far
from exciting (R2

= 0.28, uRMSD = 0.08, and N = 8) due
to the small number of matchups and one “outlier,” and the
statistics improved significantly if this outlier was removed
(R2

= 0.82, uRMSD = 0.03, and N = 7). Overall, in view
of the large differences between the modeled and measured PP,
as indicated in earlier studies [16], [25], [26], uncertainties in
PAR(0) are a minor source of error for the estimation of PP.
F. Forcing for the Decreasing PP in the Upwelling Zones

The mode analysis in Section III-D suggested basin wide
declines in PP, which were more significant in the upwelling
systems. This implies common but inhomogeneous large-scale
forcing imparted on the SCS. In recent decades, the continuous
warming of the ocean [97] and the weakening of wind were
observed due to climate changes. Both factors intensified the
near-surface stratification [98] and can be the driver of such
decline. Indeed, the SST (wind) showed an antiphase (in-
phase) fluctuation with the PC1 [Fig. 8(b), (c), (e), and (f)].
The SST of SCS in recent decades has witnessed a warm-
ing rate at ∼0.5 ◦C per decade, combined with the wind
speed declines and deteriorating nutrient supply provided by
mixing. Moreover, the upwelling systems were more sen-
sitive to such forcing, leading to more significant declines
therein [47]. However, a more complex mechanistic analysis
is beyond the scope of our current study. In general, the
results here show that PP from AbPM better highlights the
role of climate oscillations, more reasonable on the temporal
variability. These explanations are consistent with the findings
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obtained from SEATs station in the SCS [99], [100], where
Shih et al. [60] showed a negative and statistically significant
correlation between in situ PP and in situ SST from 14 years
(2003–2016) of time-series measurements. They concluded
that the observed overall decrease in in situ PP could be
partially explained by an increase in SST. It is necessary
to keep in mind that even though we found the long-term
(∼20 years) trends in PP, this is far from sufficient to predict
the response of marine ecosystems in a future warming cli-
mate. This is on account of the phytoplankton’s physiological
properties exhibiting complex, nonlinear responses to changes
in temperature, light, and nutrients. Undeniably, this knowl-
edge is critical to better predict the effects of climate change
on ecosystems and carbon fluxes.

V. CONCLUSION

It has been a long-standing challenge and question on
which PP model should be applied to satellite data products
for obtaining basin-scale estimates of PP, as this is a
prerequisite for the characterization and evaluation of the
spatial distribution and temporal variation of PP over large
regions. For the SCS waters, existing knowledge regarding
the PP variation has been derived from the VGPM (or its
variant) model; apparently, due to the inherent uncertainties
associated with VGPM, our results suggest that some of the
earlier findings and conclusions deserve serious revisions.
Furthermore, for the three models (VGPM, CbPM, and AbPM)
applied and evaluated in this study, AbPM (a model centered
on phytoplankton absorption) presented more reasonable
results compared to field measurements and understanding
of phytoplankton response to environmental forcings. These
include overall basin-scale higher PP in winter and lower PP
in summer, as well as upwelling-induced high PP off Luzon
in winter and off Vietnam in summer. Furthermore, due to
weakening winds and warming in the SCS, there is a clear
decreasing trend in the AbPM-estimated PP in the upwelling
zones from 2003 to 2019 (−15.0% yr−1 for winter, p <

0.05; −14.7% yr−1 for summer, p < 0.05), a feature not well
captured by the PP results estimated from VGPM and CbPM.
The results from this effort not only provide new, more
reliable, insights on the spatial and temporal variations of PP
in SCS but also echo that AbPM is a plausible scheme for the
estimation of PP using ocean color satellite products, where
further efforts should be focused on improving the estimation
of the quantum yield of phytoplankton photosynthesis
(φ), as well as methods to obtain more accurate field
measurements of PP.
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