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Abstract
Analytical expressions between inherent optical properties (IOPs) retrieved using semi-analytical algorithms

(SAAs) and the vertical distributions of IOPs are derived based on an analytical model for subsurface remote
sensing reflectance (rrs). These expressions provide a theoretical and comprehensive understanding of the
inverted IOPs for stratified waters and lay the foundation to obtain equivalent products from profiling measure-
ments for apple-to-apple comparison of the remotely sensed properties. It is found that the backscattering coef-
ficient (bb) derived from an rrs spectrum via an SAA is governed by rrs in the longer wavelengths, consequently
the inverted bb has less (or negligible) contributions from deeper depths, such as the subsurface chlorophyll
maximum. In addition, the inverted bb spectrum does not have the spectral feature of the vertically weighted
average bb. The SAA-derived absorption coefficients, on the other hand, are found related to both the weighting
profile at the wavelength of interest and the weighting profile in the longer wavelength(s). As a result, the
absorption coefficients in the shorter wavelengths inverted from a perfect SAA are generally lower (can be 40%
or more) than its vertically weighted average unless the surface layer dominates the diffuse attenuation of light.
Furthermore, unlike the historical perception of remotely sensed chlorophyll concentration (Chl) for stratified
waters, SAA-derived Chl is also sensitive to the vertical profile of bb and tends to be lower than its vertically
weighted average assuming perfect bio-optical relationships, unless surface properties dominate the water
column.

Concentrations of phytoplankton chlorophyll (Chl, mg m−3)
and the inherent optical properties (IOPs) (Preisendorfer 1976) of
water can be derived (IOCCG 2000, 2006) from the spectrum of
remote sensing reflectance (Rrs, sr

−1), which is defined as the ratio
of water-leaving radiance to downwelling irradiance just above
the surface. Through measurements from ocean color satellites,
such products are critical for evaluating the spatial-temporal vari-
ations of the oceans and large lakes under a changing climate
(Gregg and Conkright 2002; Boyce et al. 2014; Signorini et al.
2015). Based on a large number of field measurements, the pro-
duction of Chl from Rrs generally takes an empirical band-ratio
approach (Gordon and Morel 1983; O’Reilly et al. 1998), a tradi-
tion that is still followed today, which can be expressed as

ChlRS = 10α0 + α1 ×RR+ α2 ×RR2 + α3 ×RR3 + α4 ×RR4
, ð1aÞ

RR= log10
Max Rrs λ1ð Þ,Rrs λ2ð Þ,Rrs λ3ð Þð Þ

Rrs λ4ð Þ
� �

: ð1bÞ

Here, λ1–3 are wavelengths in the range of ~ 440–510 nm,
with λ4 around 550 nm. Superscript “RS” represents a property
derived from ocean color remote sensing. α0–4 are empirical
coefficients derived by fitting Eq. 1 for a data set containing a
wide range of Chl and RR.

For vertically homogeneous waters, ChlRS can be compared
with Chl measured at any depth in the upper layer to evaluate
the accuracy of ChlRS or the performance of an inversion algo-
rithm. Due to interactions of light and nutrient distributions
as well as dynamic processes, however, the vertical distribu-
tion of Chl or suspended sediment can be stratified (Morel
and Berthon 1989; Churnside and Donaghay 2009; Cullen
2015; Moore et al. 2019). Various studies (e.g., Sathyendranath
and Platt 1989; Zaneveld et al. 1998; Forget et al. 2001; Kutser
et al. 2008) have demonstrated that such vertical variations of
Chl or suspended sediment can have serious influence on Rrs

or irradiance reflectance. To help the interpretation of ChlRS

of such stratified waters, Gordon and Clark (1980) and Gor-
don (1992) proposed that ChlRS can be considered as a
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weighted average of the vertical profile of chlorophyll con-
centration (Chl(z)), expressed as

Chl λð Þh iGC =
ð∞
0
Chl zð ÞwGC z,λð Þdz: ð2Þ

Here, symbol “<>GC” represents a vertically weighted average
of a property following Gordon and Clark (1980), and wGC(z,λ)
is the weighting profile at wavelength λ (nm) proposed by Gor-
don and Clark (1980) and Gordon (1992),

wGC z,λð Þ= exp −2τ z,λð Þð ÞÐ∞
0 exp −2τ z,λð Þð Þdz , ð3aÞ

with

2τ z,λð Þ=
ðz
0
Kd z0,λð Þ+ κu z0,λð Þð Þdz0 ð3bÞ

and

ð∞
0
wGC z,λð Þdz=1: ð3cÞ

Here, z (in m) is water depth from surface and positive
downward, “2τ” simply indicates the round-trip attenuation
of diffused light from surface-to-depth and back-to-surface.
Kd(z, λ) (in m−1) is the diffuse attenuation coefficient of down-
welling irradiance at wavelength λ, while κu(z, λ) (in m−1) is
the diffuse attenuation coefficient for radiance backscattered at
depth z propagating toward the surface (Philpot 1987). Gordon
and Clark (1980) and Gordon (1992) indicted that a use of Kd to
replace κu resulted in negligible impact on <Chl(λ)>GC, a practice
also followed here. Note that 2τ(λ) and <Chl(λ)>GC are spectrally
dependent, while ChlRS of Eq. 1 is associated with at least two
wavelengths. Sathyendranath and Platt (1989) therefore
suggested to use the smaller 2τ(λ) among the twowavelengths for
the weighting calculation, as the light at this wavelength pene-
trates deeper to encounter the layer of maximum Chl; while
Morel and Berthon (1989) used KPAR (the diffuse attenuation
coefficient of the photosynthetic available radiation) to represent
the average of (Kd + κu). The integration to ∞ in Eqs. 2, 3 can be
truncated to the penetration depth (D, in m) (Gordon and
Mcluney 1975), as the contributions from D to ∞ are small
(< 10%) due to the two-way exponential attenuation of light.

The above system for evaluation of ChlRS of stratified waters
has been adopted by the community in the past decades to eval-
uate various retrievals (Smith 1981; Gordon et al. 1983; Lee et al.
2013; Werdell et al. 2014). In the recent decades, however, an
important advance in ocean color algorithms is the development
and application of analytical or semianalytical algorithms (SAAs)
for both Chl and the IOPs (in particular the absorption and back-
scattering coefficients) (Lee et al. 2002; IOCCG 2006; Werdell
et al. 2013b). Although we now have a solid understanding on

how stratified waters impact Rrs at each wavelength
(Sathyendranath and Platt 1989; Gordon 1992; Zaneveld
et al. 2005), it is very different when inverting Rrs of strati-
fied waters for IOPs or Chl with an SAA. This is because,
unlike the band-ratio algorithm for Chl, an SAA, in particular
the spectral optimization algorithms (SOAs) (Roesler and Perry
1995; Lee et al. 1999; Maritorena et al. 2002; Huang et al. 2013;
Werdell et al. 2018), uses all or most available Rrs values to
simultaneously retrieve a set of bio-optical properties. Since the
impact of stratification on Rrs is wavelength-dependent
(Sathyendranath and Platt 1989; Gordon 1992; Zaneveld et al.
2005), it is actually unknown how such a spectral variation of
stratification influences the SAA retrievals; or if the obtained
ChlRS or IOPsRS from an SAA can still be evaluated using the
classic weighted average (Gordon and Clark 1980; Gordon
1992) as shown in Eq. 2. For instance, Werdell et al. (2014)
showed that the inverted concentrations of Noctiluca miliaris
and diatoms biased lower than the weighted averages for strati-
fied cases, which is attributed to imperfection of the optimiza-
tion algorithm. However, could the method of weighted
averaging also contribute to this discrepancy? Ideally, to avoid
this dilemma, it is required to obtain the vertical distribu-
tions of water constituents from ocean color reflectance, but
this can only be limited to situations where all profile related
parameters can be described using one variable (Morel and
Berthon 1989), or the vertical profiles are known a priori
(Xue et al. 2015). This is because fundamentally there are
multiple variables to determine an Rrs spectrum, which make
the analytical inversion of Rrs an “ill-posed” mathematical
problem (Defoin-Platel and Chami 2007), unless the focus is
simply the backscattering coefficient in the longer wave-
lengths (Lee et al. 2002).

To fill the gap in understanding SAA-derived ChlRS or
IOPsRS of stratified waters, we here present theoretical
expressions of the analytically inverted IOPs for stratified
waters, which show that SAA-inverted IOPsRS are far more
complex than the classic model (Gordon and Clark 1980;
Gordon 1992), and the absorption and backscattering coef-
ficients are associated with different ways of “weighted
averaging.” The results here will not only provide a compre-
hensive understanding of IOPs and Chl inverted from Rrs of
stratified waters, but also reduce uncertainties when com-
paring remotely sensed products with measurements for
such waters.

Brief review of SAAs for IOPs
Unlike simple band-ratio type empirical algorithms for

water properties (e.g., Chl, or absorption coefficients), an SAA
employs a relationship between Rrs and IOPs and uses Rrs mea-
surements from ~ 400 nm to ~ 700 nm (or even longer wave-
length) to carry out the derivation (Doerffer and Fisher 1994;
Maritorena et al. 2002; Werdell et al. 2013a). Without loss of
generality, the following uses the quasi-analytical algorithm
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(QAA) (Lee et al. 2002) as an example to describe this kind of
inversion algorithms.

An SAA like QAA employs a model for subsurface remote
sensing reflectance (rrs) for the inversion, where rrs can be
accurately calculated from Rrs (Gordon et al. 1988; Lee et al.
2002). The model for rrs usually takes the following form
(Gordon et al. 1988):

rrs = g0 + g1uð Þu: ð4Þ

Here, g0 and g1 are model constants, u, which can be
derived algebraically from known rrs, is a function of the
inverted IOPs,

u λð Þ= bRSb λð Þ
aRS λð Þ+ bRSb λð Þ , ð5Þ

with bRSb and aRS, respectively, the products of backscattering
and absorption coefficients to be derived from an SAA. There
are other forms developed to model rrs as a function of IOPs
(e.g., Lee et al. 2004; Park and Ruddick 2005; Twardowski and
Tonizzo 2018), but the overall nature is the same as that
expressed by Eq. 4, although some model coefficients and
expressions are different.

Because there are two unknowns (a and bb) for rrs at each
wavelength, QAA starts the estimation of absorption at the
longer (or reference) wavelength (λ0), expressed as

aRS λ0ð Þ= aw λ0ð Þ+Δa λ0ð Þ= aw λ0ð Þ+ f rrsð Þ: ð6Þ

This is because aw(λ0) dominates a(λ0) in the longer wave-
lengths, thus rrs(λ0) can be approximated as just a function of
variable bb(λ0), and the math problem is less or no longer “ill-
posed.” f(rrs) here is an empirical function for the estimation
of aRS(λ0), and this is a key step in QAA as it initiates the calcu-
lations and plays an important role in determining the accu-
racy of the inverted IOPs (Lee et al. 2010).

After aRS(λ0) is known, bRSb λ0ð Þ can be calculated algebrai-
cally from Eq. 5,

bRSb λ0ð Þ= u λ0ð ÞaRS λ0ð Þ
1−u λ0ð Þ : ð7Þ

Furthermore, the backscattering coefficient of particles (bbp)
is calculated by subtracting off the backscattering coefficient

of pure seawater (bbw) from bb. b
RS
b λ0ð Þ is then extended to the

other wavelengths following

bRSb λð Þ= bbw λð Þ+ bRSbp λ0ð Þ λ0
λ

� �Y

: ð8Þ

Here, parameter Y is estimated empirically from the mea-

sured Rrs spectrum (Lee et al. 2002). After bRSb λð Þ is known,
aRS(λ) can be calculated algebraically from Eq. 5,

aRS λð Þ= bRSb λð Þ 1−u λð Þð Þ
u λð Þ : ð9Þ

After the total absorption coefficients are derived from rrs,
they can further be decomposed into contributions of phyto-
plankton pigments and colored dissolved organic matter (Lee
et al. 2002; Dong et al. 2013; Zheng et al. 2015; Grunert et al.
2019). Results from QAA have been shown to be very success-
ful for the derivation of IOPs (IOCCG 2006; Chen and Zhang
2015; Gomes et al. 2018), as it employs limited empirical rela-
tionships at least for the derivation of the total absorption
and backscattering coefficients (Lee et al. 2002). The above
processes and products assume the water column is homoge-

neous, where the nature of the retrieved bRSb λð Þ and aRS(λ)
becomes unknown if the water is stratified. In other words, if
the water is stratified and there are measurements of IOP pro-

files, it is not clear if the above derived bRSb λð Þ and aRS(λ) should
be compared with their weighted averages following Eq. 2,
although some studies (Lee et al. 2013; Werdell et al. 2014)
took this approach without rigorous scrutiny.

Model of rrs for stratified waters
For stratified waters, based on numerical simulations,

Gordon (1992) suggested that rrs can still be modeled by Eq. 4,
but u should be replaced by <u>GC, which is a weighted aver-
age similarly like <Chl>GC,

uh iGC =
ð∞
0
u zð ÞwGC zð Þdz, ð10Þ

with u(z) the depth profile of the ratio of bb(z) to a(z) + bb(z),

u zð Þ= bb zð Þ
a zð Þ+ bb zð Þ : ð11Þ

Note that wavelength is omitted for brevity, unless it is
required for clarification.

However, based on a two-stream model derived from the
radiative transfer equation (Aas 1987), Zaneveld et al. (2005)
showed that the weighted average of u(z) for rrs of stratified
waters follows a different weighting and results in a different
weighted-average (represented as <u>Z). This average can be
expressed as

uh iZ =
ð∞
0
u zð ÞwZ zð Þdz, ð12Þ

with the weighting factor wZ(z) as (Zaneveld et al. 2005),

wZ zð Þ= d
dz

exp −
ðz
0
Kd z0ð Þ+ κu z0ð Þð Þdz0

� �� �
, ð13aÞ

which can be written as
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wZ zð Þ= exp −2τ zð Þð Þ Kd zð Þ+ κu zð Þð Þ, ð13bÞ

and,

ð∞
0
wZ zð Þdz=1: ð13cÞ

We here use “<>Z” to represent a weighted average of a
property following Zaneveld et al. (2005). Note that in the above
expressions g0 and g1 for the rrs model (Eq. 4) are assumed con-
stant vertically.

Comparing Eq. 13b with Eq. 3a, it shows large differences
in the weighting of different layers contributing to Rrs (or rrs),
where the weighting is proportional to round trip attenuation
with the Gordon and Clark (1980) model, but proportional to
the derivative of round trip attenuation with the Zaneveld
et al. (2005) model. In other words, Eq. 13b indicates that
u for subsurface remote sensing reflectance of stratified waters
is not an average of u(z) weighted by two-way attenuation of
light, rather with a two-way attenuation modulated by the dif-
fuse attenuation coefficient (Zaneveld et al. 2005). Such a
weighting mechanism is also consistent with the derivations
based on the single scattering approximation (Philpot 1987).
This difference in weighting factor is further demonstrated in
Fig. 1 for a synthesized Chl profile (Fig. 1a), with values of Kd

calculated from Hydrolight (HL) simulations (Mobley and
Sundman 2013), where simulation of the IOP profiles is
described in Supporting Information Appendix. For this case
where surface Chl is 0.2 mg m−3, weightings (or contributions)
of the near surface layers to rrs are just about 1%, and it is the
top ~ 18.5 m that contributes 90% of rrs at 440 nm based on
Eq. 13, but ~ 14.5 m for 550 nm. In other words, light at
440 nm “feels” much more of this chlorophyll maximum
layer than light at 550 nm for this case. In addition, the con-
tributions to rrs from the layer of maximum Chl (at 20 m) are
found enhanced with the Zaneveld et al. (2005) model, with
wZ(20,440) nearly a factor of 2 of wGC(20,440) for this case. In

the following, although weighting profiles described by
Eqs. 3a, 13b are the same if τ is independent of depth, the
model of Zaneveld et al. (2005) for rrs is adopted for the deriva-
tions of retrieved IOPs for stratified waters.

General relationships for QAA-inverted IOPs of
stratified waters
Absorption coefficient at the reference wavelength

In QAA (v6) (http://www.ioccg.org/groups/software.html),
aRS(λ0) is estimated empirically as

aRS λ0ð Þ= aw λ0ð Þ+ f rrs 440ð Þ, rrs 490ð Þ
rrs 550ð Þ, rrs 670ð Þ
� �

, ð14Þ

Since rrs is a function of u (see Eq. 4), Eq. 14 effectively is

aRS λ0ð Þ = aw λ0ð Þ+ f
Ð∞
0 u z,440ð ÞwZ z,440ð Þdz, Ð∞0 u z,490ð ÞwZ z,490ð ÞdzÐ∞
0 u z,550ð ÞwZ z,550ð Þdz, Ð∞0 u z,670ð ÞwZ z,670ð Þdz

 !
:

ð15Þ

This expression shows the complex nature of aRS(λ0) when
the water is stratified, especially due to the association of dif-
ferent wavelengths where the weighting factors differ spec-
trally. On the other hand, because of the empirical nature of
this estimation, the aRS(λ0) of Eq. 14 depends on the choice of
absorption property used for the development of the empirical
relationship. Following Eq. 12, it makes more sense, and is
consistent to radiative transfer, to use <a>Z at λ0 for this prop-
erty. Thus, for stratified waters, the targeted aRS(λ0) of QAA is

aRS λ0ð Þ=
ð∞
0
a z,λ0ð ÞwZ z,λ0ð Þdz, ð16aÞ

or,

aRS λ0ð Þ= aw λ0ð Þ+ anw λ0ð Þh iZ: ð16bÞ
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Fig. 1. (b) Profiles of weighting factors at 440 and 550 nm for a synthesized stratified Chl profile (a), with weighting factors following the models of
Gordon and Clark (1980) and Zaneveld et al. (2005), respectively. The blue green lines in (a) indicate the penetration depths of 440 nm and 550 nm,
respectively. Corresponding profiles of IOPs are described in Supporting Information Appendix.
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Here, anw represents contributions to the total absorption
coefficient from nonwater components. In short, to cover
both homogeneous and stratified waters, the algorithm coeffi-
cients of Eq. 14 should be tuned using absorption data calcu-
lated through Eq. 16. However, because λ0 is generally in the
green to red/infrared spectral domain, due to higher τ(λ0) from
the higher aw(λ0) values, a

RS(λ0) represents primarily properties
near the surface, where contributions from a layer of subsur-
face constituents, such as the layer of maximum chlorophyll,
will be limited unless this layer is near or on the surface (see
Fig. 1 for example).

As examples, Fig. 2 shows change of aRS(550) derived from
QAA, along with changes of <a(550)>Z, for four synthesized
cases with different depths of chlorophyll maximum, where,
as expected, the impact to aRS(550) from deep Chl maximum
for these simulations appears small (< 9% between zmax = 10 m
and zmax = 40 m). Therefore, in the following, all derivations
and discussions are based on this observation or assumption
that aRS(λ0) approximates <a(λ0)>Z, which is also because that
in general we can select (or employ) longer λ0 for the estima-
tion of aRS(λ0).

Backscattering coefficient at the reference wavelength
In QAA, u is inverted through Eq. 4. Following Eq. 12, there is

bRSb
aRS + bRSb

= uh iZ: ð17Þ

Because QAA starts from λ0, where generally a >> bb at such
longer wavelengths, the above equation approximates,

bRSb λ0ð Þ
aRS λ0ð Þ≈

ð∞
0

bb z,λ0ð Þ
a z,λ0ð Þ wZ z,λ0ð Þdz: ð18Þ

Applying Eq. 16b, there is

bRSb λ0ð Þ≈
ð∞
0

aw λ0ð Þ+ anw λ0ð Þh i
aw λ0ð Þ+ anw z,λ0ð Þbb z,λ0ð ÞwZ z,λ0ð Þdz: ð19Þ

Thus, for cases where aw(λ0) >> anw(λ0), such as oceanic
waters and λ0 = 550 nm or longer wavelengths for coastal
waters (Lee et al. 2002), the above becomes

bRSb λ0ð Þ≈
ð∞
0
bb z,λ0ð ÞwZ z,λ0ð Þdz: ð20aÞ

or

bRSb λ0ð Þ≈
ð∞
0
bb z,λ0ð Þexp −τ z,λ0ð Þð Þ Kd z,λ0ð Þ+ κu z,λ0ð Þð Þdz: ð20bÞ

This expression, which shows the associated weighting

parameters, is key for understanding bRSb λ0ð Þ retrieved by QAA

or other SAAs of stratified waters, that is, the retrieved bRSb λ0ð Þ
(and then bRSbp λ0ð Þ) can be considered as a weighted average of

the vertical bb(z, λ0). This is consistent with Zaneveld et al.
(2005) for the case when absorption coefficient is nearly a
constant vertically.

Backscattering coefficient at other wavelengths
The backscattering coefficient at other wavelengths in QAA

is extended from bRSb λ0ð Þ via Eq. 8,

bRSb λð Þ= bbw λð Þ+
ð∞
0
bbp z,λ0ð ÞwZ z,λ0ð Þdz

� �
λ0
λ

� �Y

: ð21Þ

This equation indicates that bRSb λð Þ of stratified waters
derived via QAA is generally weighted by attenuation in the
longer wavelength (λ0), instead of the weighting factor at
the wavelength of interest. This is very different from the
weighting scheme (Eq. 2) proposed by Gordon and Clark
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Fig. 2. Impact of zmax on the values of <a(550)>Z and a(550)QAA. (Left) Four Chl profiles, with change only in zmax (10, 20, 30, and 40 m); (right)
corresponding values of <a(550)>Z and a(550)QAA for the four Chl profiles.
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(1980). As an example, Fig. 3b compares bRSbp λð Þ with <bbp(λ)>Z
for a stratified case with a layer of maximum chlorophyll at

20m (Fig. 3a), where bRSbp λð Þ is ~ 30% smaller than <bbp(λ)>Z for

wavelengths in the ~ 400–500nm range for this case. In partic-

ular, because Y value is given (either estimated or fixed), bRSbp λð Þ
is a smooth power-law function of wavelength and does not
have the spectral variation presented in <bbp(λ)>Z, a spectral fea-
ture contributed by the spectrally varying wZ(λ). In order words,

because bRSbp λð Þ is extended from bRSbp λ0ð Þ in QAA (or SAA), the

weighting factor for bRSbp λð Þ obtained in QAA (or SAA) is not

wZ(λ), rather wZ(λ0). Therefore, when comparing QAA-derived

bRSb (or bRSbp) with in situ measurements for stratified waters, the

bb(z) (or bbp(z)) frommeasurements should not beweight-averaged
via Eq. 12 for bbp of interested wavelength, rather weight-averaged
usingweighting factors in the longerwavelength.

Separately, due to the high aw(λ0) values, b
RS
b (then bRSbp) has

limited or no contributions from deeper layers, such as the
layer of Chl maximum commonly observed in the open

ocean. On the other hand, for λ longer than λ0, if b
RS
bp λ0ð Þ has

some information of subsurface Chl maximum, bRSbp λð Þ will

tend to be larger than <bbp(λ)>. This is because bRSbp λð Þ is

extended from bRSbp λ0ð Þ (Eq. 21), and <bbp(λ)> has less vertical

information than <bbp(λ0)> for the longer λ due to larger τ(λ)
values.

Absorption coefficient at the shorter wavelengths

Applying the above derived bRSb λð Þ to Eq. 17, we have

aRS λð Þ= bRSb λð Þ1− u λð Þh iZ
u λð Þh iZ

: ð22Þ

Considering generally a >> bb, Eq. 22 could be approxi-
mated as

aRS λð Þ≈bRSb λð Þ 1Ð∞
0

bb z,λð Þ
a z,λð Þ

� �
wZ z,λð Þdz

: ð23aÞ

Or, to spell out the weighting factor associated with bRSb λð Þ,
it is

aRS λð Þ≈ bbw λð Þ+
ð∞
0
bbp z,λ0ð ÞwZ z,λ0ð Þdz

� �
λ0
λ

� �Y
( )

1Ð∞
0

bb z,λð Þ
a z,λð Þ

� �
wZ z,λð Þdz

:

ð23bÞ

This expression shows a very different, and complex, rela-
tionship for QAA derived absorption coefficient compared to
the classic weighted average (Eq. 2) when water is stratified.
Specifically,

1. aRS(λ) of stratified waters is not only determined by the
weighting factors at λ, but also by the weighting factor at
λ0, or the longer wavelengths in general.

2. aRS(λ) is not simply the weighted average of a(z, λ), rather it
is governed by the vertical profiles of both bb and u. This
result shows that the classical vertically weighted average
showing by Eq. 2 is not applicable to SAA-derived absorp-
tion coefficients, where Eq. 2 shows that the weighted
average has no association of multiple IOPs except the
round-trip attenuation of light at the interested wavelength.
Equation 23 rather suggests that for stratified waters, it
requires detailed profile measurements of at least bb(z) and a
(z) when aRS is compared with in situ measurements.

3. In addition, because mathematically the average of 1/a
emphasizes smaller a values, while the average of
a emphasizes larger a values, Eq. 23 indicates in general
aRS(λ) will be lower than <a(λ)>Z for stratified waters.
Fundamentally, this is due to that, although weighted by
wZ(z), <bb/a> (or rrs) is driven by larger values of bb(z)/a
(z), not larger values of a(z).
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4. Furthermore, because bRSb λð Þ is in general smaller
than <bb(λ)>Z, this feature further enhances the overall
tendency of lower aRS(λ) compared to <a(λ)>Z, unless
the surface layer dominates the diffuse attenuation of
light.
As an example, Fig. 4b compares aRS(λ) from QAA vs. <a
(λ)>Z for the Chl profile of Fig. 4a, where aRS(λ) from
QAA is smaller by ~ 40% compared to <a(λ)>Z for wave-
lengths ~ 400–500nm.
Note that in the above example, it is <a(λ0)>Z used for

the derivation of bRSb λ0ð Þ. If it is the a(λ0) value just below
the surface (black line in Fig. 4b) used, even smaller

bRSb λ0ð Þ (then aRS(λ)) will result because a(λ0) just below
the surface is smaller than <a(λ0)>Z for such a case.

If the water is stratified in a way that the layer of maximum

constituents is on the sea surface, the retrieved bRSb λð Þ and
aRS(λ) will match better with <bb(λ)>Z and <a(λ)>Z, respec-
tively, due to both higher bb(λ) and a(λ) values from this layer
and the significantly greater weightings from the near surface.
Certainly the closeness in agreement is dependent on the
details of such stratifications.

Discussion
Implication for SOAs

Are the above conclusions for QAA applicable for an SOA
when applied to stratified waters? To answer this, let us briefly
review the steps of an SOA. The goal and outcomes of SOAs
are simultaneously, and numerically, to solve Eqs. 4 or 5 for a
few (usually three) variables by minimizing the difference
between measured and modeled rrs (or u) spectra. During this
process, the total absorption and backscattering coefficients
are generally modeled as (Lee et al. 1999; Maritorena
et al. 2002)

aRS λð Þ= aw λð Þ+M1*a*ph λð Þ+M2*a*dg λð Þ: ð24aÞ

bRSb λð Þ= bbw λð Þ+M3*b
*
bp λð Þ: ð24bÞ

Here, M1–3 are magnitude variables that are desired and to
be derived from an rrs spectrum, while a*ph λð Þ, a*dg λð Þ, and

b*bp λð Þ are spectral shapes determined from bio-optical models.

The above aRS and bRSb spectra are applied to Eq. 5 to get
modeled u and rrs spectra, and values of M1–3 are derived
numerically by minimizing the difference (δRrs , see Eq. 25)
between the modeled rrs (or u) spectrum and the measured rrs
(or u) spectrum for wavelengths in the blue-red (or blue-
infrared for very turbid waters).

δRrs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ Rmea

rs λið Þ−Rmod
rs λið Þ	 
2� �r

Λ Rmea
rs λið Þ	 
 : ð25Þ

Here, Λ represents average of a property for wavelengths
employed in the optimization process.

Unlike QAA where the inversion processes and steps are
explicit, processes of an SOA inversion are implicit, so it is not
obvious on how M1–3 are derived. However, the explanation
of QAA results is portable to the results of an SOA. Partially it
is because results of QAA and an SOA are nearly identical at
least for homogeneous waters (Lee et al. 2002), also because
the physics of an SOA is the same as QAA. Specifically,

1. Although it is the entire rrs (Rrs) spectrum (multiband or
hyperspectral) used for the inversion of M1–3, it is primarily
rrs (or u) in the longer wavelengths determining the value
of M3. This is due to that only in the longer wavelengths
(approximately > 550 nm or wavelengths in the red/-
infrared for more productive waters) values of aw are signifi-
cantly greater than the contributions from aph and adg as
well as that from bbp, u

mod can be approximated as

umod λð Þ≈M3*b
*
bp λð Þ

aw λð Þ : ð26Þ
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Therefore, the value of M3 (or bbp) can be derived, numeri-
cally, by comparing umod with uRS. So, as articulated for
QAA derived bbp, because it is the rrs (u) data in the longer
wavelengths used for the derivation of bbp, this property
from an SOA may not have the contribution from deeper

depths. Also, because it is the same type of b*bp spectral

shape (Eq. 8) used to obtain the bbp spectrum in an SOA
(Maritorena et al. 2002; Werdell et al. 2013a), the resulted
bbp spectrum will not have the spectral feature of <bbp(λ)>Z.
Furthermore, the resulted absorption coefficient will also
tend to be lower than <a(λ)>Z assuming a perfect SOA at
least for homogeneous waters, unless it is a stratified water
column where the surface layer dominates the diffuse
attenuation of light.
To demonstrate these features, the hyperspectral optimiza-
tion process exemplar (HOPE) described in Lee et al. (1999)
was applied to the rrs spectrum (400–700nm, 5nm step) of

the Chl profile showing in Fig. 3a. The resulted bRSbp λð Þ and

aRS(λ) spectra are included in Figs. 3b, 4b, respectively. As
articulated above, although there is a strong chlorophyll

maximum at 20m, the bRSbp λð Þ from HOPE are lower

(by ~ 40%) than <bbp(λ)>Z for wavelengths of 400–550nm
range, and lower (by ~10%) than that from QAA. This

lower HOPE-bRSbp λð Þ is due to the use of rrs in the even longer

wavelengths (600–700nm) in the inversion process, where
the contribution of bbp from deeper depths to rrs is negligi-

ble, thus the inverted bRSbp λð Þ is primarily determined by sub-

surface values, as show in Fig. 3b (see the red vs. black

spectra). Furthermore, due to the lower bRSbp λð Þ, the resulted

a(λ)RS from HOPE is also lower (by ~10%) than that from
QAA for the ~400–550nm range. In addition, HOPE-aRS(λ)
spectrum shows different spectral shapes from QAA-aRS(λ)
spectrum. This is because HOPE-aRS is a sum of the compo-
nent absorption coefficient where errors in a*ph λð Þ and

a*dg λð Þ will propagate to aRS(λ) (and δRrs ), while QAA-aRS(λ) is

an inversion of rrs without assumptions in a*ph λð Þ and

a*dg λð Þ. Note that these findings are also applicable to the

Garver–Siegel–Maritorena (GSM) algorithm (Maritorena
et al. 2002) or the generalized IOP algorithm (GIOP)
(Werdell et al. 2013a), as the overall algorithm structures of
those SOAs are the same as that of HOPE, except the bio-
optical models for component IOPs and the computation
architecture.

2. Because ChlRS is primarily derived from aRS(λ) through SAAs,
ChlRS will also be a complex average involving profiles of
Chl and IOPs as indicated by Eq. 23, not as the classic rela-
tionship described by Eq. 2. Furthermore, because aRS(λ) in
the shorter wavelengths will be lower in general than the
weighted average for a stratified water, SAAs-inverted ChlRS

will also tend to be lower compared to the weighted average
even assuming perfect relationships between the absorption

coefficient and Chl. This inherent spectrally varying effect
of stratified water in an SAA provides a sound explanation
for the underestimated concentrations of N. miliaris and dia-
toms compared to the vertically weighted values (Werdell
et al. 2014), where the GIOP was implemented to invert ver-
tically stratified distributions of N. miliaris and diatoms. In
other words, the agreement between the Rrs inversion and
the known values will be better if a more reasonable
weighted average is applied.

Implication for other IOPs or AOPs inferred from

SAA-derived aRS(λ) and bRS
b λð Þ

For an ocean color processing system centered on IOPs,
other useful properties can be further calculated from the SAA-

derived aRS(λ) and bRSb λð Þ. These include, for example, the
Kd(λ), the Secchi disk depth (ZSD, in m), aph(λ), and concentra-
tion of suspended particulate matter (CSPM, in gm−3). For
stratified waters with a layer of maximum constituents deeper

down from surface, as shown above, because aRS(λ) and bRSb λð Þ
will tend to be lower than the weighed average, thus Kd(λ) cal-

culated from these aRS(λ) and bRSb λð Þ (Gordon 1989a; Lee et al.
2005) will also tend to be smaller than their weighted average
or those derived from a linear regression between ln(Ed(z)) and
z (Austin and Petzold 1981; Mueller and Trees 1997). Here,
Ed(z) is downwelling irradiance at depth z. Such a pattern of
“underestimation” will also propagate to CSPM (when derived

from bRSbp) and aph(λ), as these properties are proportional to

aRS(λ) and bRSb λð Þ. On the other hand, ZSD is a function of
inverse Kd (Lee et al. 2015b), then the above-mentioned
underestimation of Kd(λ) for stratified waters will likely result
in an overestimation of ZSD for such cases.

Robustness of rrs model for stratified waters
Based on Monte Carlo simulations, Gordon (1992) showed

that rrs of stratified waters can still be modeled using Eq. 4,
with u a vertically weighted average. This is also confirmed
with HL simulations for variation of IOPs determined by Chl
alone, as shown in Fig. 5 of two Chl profiles. The averaged
absolute relative difference between HL-simulated and Eq. 4
modeled rrs (400–800 nm, with <u>Z for Eq. 4) is ~ 6%. Larger
differences are found for wavelengths longer than 700 nm,
likely due to not separating the impacts of molecular
vs. particle scattering phase functions (Morel and Loisel 1998;
Lee et al. 2004) when rrs is modeled with a formula like Eq. 4.
In these simulations, however, there is just one scattering
phase function used for phytoplankton and associated detritus,
and this phase function is kept the same vertically, although
there are changes of Chl with the increase of depth. For strati-
fied waters, especially at river plume regions, the particles will
hardly be solely phytoplankton, rather there could be varying
mixtures of phytoplankton and suspended particulate matter
(Chen et al. 2018). Even if it is just phytoplankton, with the
increase of Chl with depth, likely there will be changes in
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composition and size, thus the scattering phase function for
phytoplankton will likely also change with depth (Morel and
Maritorena 2001; Sullivan and Twardowski 2009). When two
different scattering phase functions are associated with phyto-
plankton and SPM, however, differences as large as ~ 17% can
be found between HL simulated and Eq. 4 modeled rrs (see
Fig. 6). In such a case, if QAA is applied, the errors associated

with the rrs model will be propagated to the derived bRSb and
aRS. For SOA type of algorithms, part of the errors in rrs model-
ing will be propagated to the error function (δRrs ), while at the
same time it will be more challenging to properly model the

spectral shape functions of a*ph, a
*
dg, and b*bp and then introduce

errors in the derived bRSb and aRS. In short, because fundamen-
tally rrs is a weighted sum of IOP contributions in the water
column, it becomes an extremely complex problem to invert
such an rrs spectrum if there are wide ranges of particles in the
water column. It will demand more detailed information of
the nature of these constituents and its vertical variations to

better model κu, rrs and explain remotely sensed IOPs
(Sathyendranath and Platt 1989; Forget et al. 2001; Kutser
et al. 2008).

IOPs derived from a combination of Rrs and Kd

Remote sensing algorithms (Loisel and Stramski 2000;
Loisel et al. 2018) were also developed to invert aRS(λ) and

bRSb λð Þ from a combination of Rrs and Kd (termed as RKA
hereon for such Rrs-Kd algorithms). This is based on that both
Rrs and Kd are functions of a and bb (Gordon et al. 1988;
Gordon 1989b; Lee et al. 2013); therefore, it is a system of two

equations for two unknowns. When aRS(λ) and bRSb λð Þ are
inverted from Rrs(λ) via RKA, however, Kd(λ) is first estimated
from the Rrs(λ) spectrum through empirical regressions (Loisel
et al. 2001) or neural networks (Loisel et al. 2018), that is, the
Kd(λ) in RKA is not an independent measurement. Because
generally a dominates Kd at a given wavelength for most natural
waters (Gordon 1989b; Lee et al. 2013), aRS(λ) inverted via RKA is
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mainly dependent on the empirically estimated KRS
d λð Þ, with

bRSb λð Þ mainly determined from Rrs(λ) and the inverted aRS(λ).

As such, the picture of the inverted aRS(λ) and bRSb λð Þ via RKA is
not clear when the water is stratified. This is because if the

algorithm for KRS
d λð Þ was developed for vertically homoge-

neous waters (Loisel et al. 2001; Jamet et al. 2012), when an
Rrs spectrum of stratified waters is the input, similarly like the

empirically estimated Chl from Rrs, the resulted KRS
d λð Þ from

Rrs(λ) of stratified waters could be significantly lower or higher
than its weighted average (if also calculated following Eq. 2)
(Gordon 1992; Stramska and Stramski 2005). Subsequently
this uncertainty will be propagated to the calculated aRS(λ)

and bRSb λð Þ via the RKA. An algorithm for Kd(λ) of stratified
waters is required for application of RKA to such waters, which
will then be highly dependent on the data characteristics used
to train the empirical algorithm.

ChlRS from empirical algorithms
Presently the generation of chlorophyll concentration

(ChlRS) from satellite ocean color commonly takes an empiri-
cal approach with ratios of Rrs as the input (see Eq. 1 for an
example), and there have been quite many sensitivity studies
(Sathyendranath and Platt 1989; Stramska and Stramski 2005;
Kutser et al. 2008) to highlight the impact of stratified waters
on the empirical retrieval of Chl when algorithms developed
for homogeneous waters are used. However, we need to keep
in mind that the algorithm coefficients (e.g., values of α0–4 in
Eq. 1) are driven by the data pooled together for the develop-
ment of such algorithms, which is a nature of all empirical
algorithms (O’Reilly et al. 1998; Werdell and Bailey 2005; Hu
et al. 2012; Shang et al. 2019). For the operational Chl algo-
rithm adopted by NASA OBPG, the required Chl and Rrs were
pooled from global contributions with ~ 4000 colocated Chl
and multispectral Rrs. For such a large data set, roughly 50%
have vertical profiles of Chl (Werdell and Bailey 2005;
J. Werdell pers. comm.), while the other half have only subsur-
face Chl (represented as ChlSS hereon). For the ~ 50% data with
vertical Chl profiles, a weighted average for each profile was cal-
culated following Eq. 2 using the weighting profile calculated
at 490 nm (represented as <Chl(490)> hereon). Therefore, the
chlorophyll concentrations used for the algorithm develop-
ment were a mixture of ChlSS and <Chl(490)>, each about 50%.
With such a data set, the target of the empirical algorithm is
ambiguous. This is because:

1. ChlSS and <Chl(490)> are not the same type of property
and can differ a lot. For example, <Chl(490)>Z is ~ 74%
higher than Chl at 1 m for the case showing in Fig. 1.

2. Weighting profile is wavelength-dependent. <Chl(490)>Z is
not necessarily matching the weighted chlorophyll concen-
tration at 440 or 510 nm, or that from an Rrs ratio. Using
the case showing in Fig. 1 as an example, <Chl(490)>Z is

~ 26% higher than <Chl(510)>Z and ~ 36% higher than
<Chl(530)>Z, where such ratios vary with profiles.

3. Although ~ 50% of the data set have <Chl(490)>, to what
extent these Chl(z) were stratified are not clear. One possi-
ble scenario could be that the waters of ChlSS were more
stratified than the waters of <Chl(490)>.

Because the Chl data used for the algorithm development
is a mixture, more uncertainties could be introduced in the
empirically estimated ChlRS. In addition, it is necessary to
keep in mind that, as Gordon (1992) and Zaneveld et al.
(2005) pointed out, the match between band-ratio Chl and
<Chl(λ)>G (or <Chl(λ)>Z) will deteriorate if the profiles of
absorption and backscattering coefficients do not covary,
but such information about IOPs profiles was not available
or not considered during the phase of the algorithm
development.

Since it is Rrs representing the weighted average of the
upper water column and OC4 algorithm (or any other empiri-
cal algorithms) is empirical in nature, it could be better and
easier to simply pool ChlSS for the development of empirical
algorithms, regardless if the water column is stratified or not.
With such a data set, the resulted α0–4 will to some degree
compensate subsurface stratification information when Eq. 1
is forced to match ChlSS, if the data include stratified waters.
Furthermore, there will be no ambiguity regarding the
resulted ChlRS from such an algorithm, which then reduces
uncertainties when ChlRS is compared with in situ measure-
ments. For a ChlRS product comparable with that of Eq. 2,
values of <Chl(λ)>G (or <Chl(λ)>Z) must be employed during
the development or tuning of the empirical algorithms. In
particular, the wavelength(s) and the method of weighting
must be clearly spelled out (Werdell and Bailey 2005), and
must be followed exactly when later measurements are used
to validate remote sensing products from such algorithms,
otherwise it will be an apple-vs.-orange comparison. Recently
Valente et al. (2016) developed a large bio-optical dataset for
ocean color applications, where the Chl data are simple aver-
age of measured Chl of the upper 10 m under the condition
that the coefficient of variation among the measurements is
less than 50%. Such a data set excluded strongly stratified
waters if the stratification happened within top 10 m, but
may include data such as those showing in Fig. 1. It appears
that for stratified waters, a detailed comparison of using sub-
surface value vs. using different averages is necessary for a
complete understanding of the pros and cons for the devel-
opment of empirical algorithms or for the validation of algo-
rithm retrievals.

Conclusions
Through theoretical derivations, Zaneveld et al. (2005)

showed that for stratified waters, rrs can be considered as a
function of weighted average of bb(z)/(a(z) + bb(z)) by assum-
ing no vertical variation of the modeling coefficients, with
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the weighting factor a combination of the round-trip expo-
nential attenuation of light as well as the vertical profile of
the attenuation (τ(z)). Based on this model and the analytical
nature of QAA, it is found that the resulted IOPs and Chl
retrieved via QAA (or SAA) cannot be evaluated using the
classic model of weighted average. Rather, they are associated
with complex relationships with their vertical distributions.
In general:

1. The inverted bb (and then bbp) has limited bb information
from deeper depths due to the use of longer wavelengths in
the inversion process. Because of this nature, for cases with

a subsurface maximum chlorophyll, the bRSb λð Þ product in
the shorter (more transparent) wavelengths will tend to be
lower compared to the vertically weighted average with
weighting factors calculated at the wavelength of interest;

and, the spectral variation of the bRSb spectrum will not be
able to capture the spectral feature of the vertically weighted
average bb spectrum. It is more appropriate to use bb weighted
using weighting factors of the longer wavelengths to evaluate

bRSb obtained with SAA algorithms.
2. The inverted absorption coefficient is weighted by the

weighting factor of bb in the longer wavelength(s), as well
as the weighting factor in the wavelength of interest. As a
result, the inverted absorption coefficient in the shorter
(more transparent) wavelengths will tend to be lower than
the vertically weighted average (assuming perfect QAA or
SAA developed for homogeneous waters), unless the surface
layer dominates the diffuse attenuation of light. Or, to
properly evaluate the absorption coefficient obtained with
SAA algorithms, the weighted average should be modulated
by backscattering coefficient following Eq. 23.
In addition, for application of QAA to both homogeneous
and stratified waters, the estimation of the absorption coef-
ficient at the reference wavelength should be tuned using
vertically weighted averages.

3. Furthermore, because SAA-inverted Chl is mainly inferred
from the absorption coefficient, the Chl product (assuming
perfect bio-optical relationships) will also tend to be lower
than the vertically weighted average if the layer of maxi-
mum chlorophyll is not at sea surface.

4. The picture becomes much more complex for situations
where particle types and/or sizes differ with the increase of
depth, which will result in a change of particle phase func-
tions and then errors in rrs calculation if the current model is
applied, because the current rrs model was developed based
on a vertically constant (and same) scattering phase function
for all particulates. Therefore, for stratified waters, the uncer-
tainties will not simply arise from the vertical distribution of
chlorophyll concentration, also from the nature of all constit-
uents in the vertical dimension.

On the other hand, for empirical Chl algorithms, because of
the use of mixed Chl at the development phase of present

empirical algorithms, ChlRS estimated from the present OC4-type
empirical algorithms is not necessarily a representation of the
vertically weighted average Chl at 490 nm. To avoid ambiguity
about this data product, it might be better, at the development
phase of such empirical algorithms, to pool subsurface Chl value
and let the algorithm coefficients to compensate any effects
due to water column stratification. This is also because that the
weighted average scheme could run into large uncertainties if the
profiles of scattering and absorption coefficients do not covary.

The above describes the overall nature of the remote sens-
ing products of stratified waters when they are derived from
a remote sensing reflectance spectrum, as well as a theoretical
framework to subsequently pursue detailed analysis of the
products retrieved via an SAA for stratified waters. The char-
acteristics of remote sensing products are important to reduce
uncertainties in evaluation of IOPs and Chl products of strat-
ified waters when they are compared with field measure-
ments. It also emphasizes the importance to obtain detailed
information of water constituents in the vertical dimension,
because fundamentally it is rrs (Rrs) a weighted average of the
upper water column, while remote sensing products are
algorithm-dependent, especially the weighting factor varies
spectrally.
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