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Abstract— Seagrass meadows are vital blue carbon ecosystems,
and remote sensing provides a cost-effective means of monitoring
their changes at high spatiotemporal resolution. While existing
algorithms excel in low-tide mapping, accurately and consistently
identifying seagrass at mid-to-high tide levels remains challeng-
ing. This study presents a support vector machine (SVM)-based
substrate classification model (SCM_SVM) for automated sea-
grass identification across various tidal conditions using Planet
SuperDove imagery, with a demonstration provided for the
Li’An Lagoon (LAL). By training with ~1.8 million matched
ground-truth substrate data and Rayleigh scattering-corrected
top-of-atmosphere reflectance (p,.), SCM_SVM could robustly
identify seagrass from SuperDove p,. measurements across low-
to-high tide levels. Validation against independent field measure-
ments indicated a detection accuracy of seagrass exceeding 85%.
Notably, SCM_SVM provided consistent seagrass distributions in
spatial patterns and extents for images acquired under different
tidal levels. Time-series analysis from 2021 to 2023 revealed a
significant decline of —0.15 km?/yr in the area. These results
underscore the potential of SuperDove for high spatiotemporal
resolution monitoring of seagrass dynamics. Future work will
focus on enhancing the global applicability of SCM_SVM and
extending it to detect other submerged vegetation.

Index Terms— High tide, remote sensing, seagrass mapping,
SuperDove.

I. INTRODUCTION

EAGRASSES, underwater angiosperms thriving in tropi-
S cal and temperate regions, constitute a pivotal component
of shallow coastal marine ecosystems [1], [2], [3]. Seagrasses
provide essential habitats and nourishment for various marine
organisms, mitigating the impacts of currents and waves while
regulating sediment deposition and erosion [4], [5]. Further-
more, seagrass beds are recognized as significant contributors
to marine blue carbon through photosynthesis [6], [7], [8],
providing 10%—15% of the ocean’s total carbon and 50% of
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particulate organic carbon sequestration despite covering only
0.2% of the ocean’s surface area [9], [10], [11]. However, sea-
grass growth is highly vulnerable to human activities, extreme
events, and climate change [12], [13]. Globally, seagrass
coverage declines rapidly at approximately 7% per year, with
an escalating degradation trend [3], [14]. Therefore, timely and
large-scale monitoring approaches are crucial for the conser-
vation and management of seagrass ecosystems [15], [16].

Monitoring seagrass distributions involves two primary
approaches, i.e., field investigations and remote sensing tech-
niques [17], [18]. Field investigations encompass in situ
sampling, underwater photography, and sonar detection [19],
[20], providing the baseline data on seagrass distribution.
However, these methods are labor-intensive and have limited
spatial and temporal coverage, making it challenging to under-
stand large-scale seagrass dynamics comprehensively [21].
Satellite remote sensing, characterized by extensive spatial
coverage and frequent revisits, has emerged as an essential
approach in seagrass monitoring, with many seagrass detection
algorithms developed in recent years [22]. These algorithms
primarily rely on the empirical or semi-analytical relationships
between substrate data and airborne or satellite-borne radio-
metric measurements. They can be broadly classified into three
main categories: spectral index algorithms, semi-analytical
algorithms, and machine learning approaches [20], [23].

Spectral index methods differentiate seagrass from other
substrates by analyzing the spectral signature of radiomet-
ric measurements, such as the remote sensing reflectance
[R,s(A)], and applying different thresholds of spectral indexes
for substrate classification [22], [24]. Semi-analytical algo-
rithms estimate the contribution of the water column and
substrate to the measured R,;(A) through radiative trans-
fer models, which can simultaneously predict the substrate
type [25], [26], [27], [28]. Machine learning models, including
supervised and unsupervised classification techniques, have
demonstrated effectiveness in substrate detection and classifi-
cation [29]. Once trained, algorithms such as random forests,
support vector machines (SVMs), and decision trees can
automatically classify various substrate types [26], [30], [31],
[32]. In addition, target detection-based deep learning models,
including DLNN, convolutional neural networks, and UNet,
have also been used for seagrass identification [33], [34], [35],
[36]. However, the performance of these existing models is
highly dependent on the tidal conditions, with most of them
only applicable to low-tide scenarios, especially for index-
based algorithms [37], [38].
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(a) Location of the LAL in China. (b) True-color composited image of SuperDove acquired on November 5, 2022. The green and yellow dots

represent the ground-truth substrates acquired from several field surveys conducted between November 15, 2022 and November 20, 2022, respectively.

Seagrass detection becomes more difficult under high-tide
conditions due to the attenuation of bottom reflectance with
increasing water depth. At greater depths, the contribution of
benthic seagrass to the water-leaving signal may be signifi-
cantly reduced, making it challenging to distinguish seagrass
from other substrates from remote sensing. Additionally, the
strong absorption of water in the red and near-infrared (NIR)
bands can diminish the effectiveness of index-based algo-
rithms, which typically rely on the relative difference between
surface reflectance (SR) at the red and NIR bands [38], [39].
As a result, seagrass meadows are often misidentified or
underestimated in distribution maps derived from mid-tide
to high-tide images [18], [40]. For machine learning-based
models, low-tide imagery is commonly used to enhance the
classification accuracy, while the absence of high-tide data
restricts both dataset size and model performance under high-
tide conditions. Thus, constructing a representative, large-scale
training dataset is crucial for accurately detecting seagrass
distribution from satellite imagery across varying tidal sce-
narios. However, research on this aspect remains limited, with
relatively few studies incorporating high-tide data into model
training and validation.

Another key limitation of seagrass detection through remote
sensing is the spatiotemporal resolution of satellite imagery.
On the one hand, most seagrass meadows are distributed in
narrow and fragmented nearshore areas, making their detection
challenging for operational medium-resolution satellites [23].
On the other hand, the revisit time of high-resolution satel-
lites and cloud cover directly affects the number of usable
images for the timely assessment of seagrass dynamics [41],
[42]. Therefore, satellite imagery with high resolution and
revisit frequency would be preferred for seagrass detection in
nearshore areas.

This study aims to develop a model that ensures accurate
and consistent seagrass mapping across varying tidal scenarios
using Planet SuperDove, a SmallSat constellation charac-

terized by high spatiotemporal resolution (3 m, subdaily).
To achieve this, we first constructed a training dataset with
~2.3 million matched “ground-truth” substrate data and radio-
metric measurements from SuperDove images acquired across
low to high tide levels in the Li’An Lagoon (LAL). We then
developed a machine learning-based model for seagrass
detection, validated it against field survey measurements, and
applied it to characterize the spatiotemporal variability of
seagrass distribution in LAL. Sections II-IV describe the data,
methods, results, the model’s performance, and limitations.

II. DATA AND METHODS
A. Study Area and Field Surveys

The LAL, situated in Lingshui County, Hainan Province,
is centered at 18.42°N and 110.06°E (Fig. 1). This
semi-enclosed lagoon covers an area of ~9 km?, with a
maximum depth of 7.6 m and an average depth of 5.1 m.
Tides are the primary hydrodynamic forces, with average tide
levels ranging from 0.3 to 1.6 m. Seagrass meadows are widely
distributed throughout the lagoon, dominated by Thalassia
hemprichii and E. acoroides, which persist throughout the
year. Other commonly found species include Halophila ovalis,
Zostera marina, and Cymodocea rotunda.

B. Field Survey and Processing

Field surveys were conducted in the LAL from November
15, 2022 to November 20, 2022, to collect ground-truth sub-
strate data using a single-beam echo sounder (SBE, BioSonics
DT-X). Specifically, the SBE was mounted on the boat’s hull,
with the sonar transducer positioned vertically downward to
capture signals from the seabed, enabling continuous under-
way measurements of sonar reflections. All raw data were
processed and analyzed using BioSonics Visual Habitat soft-
ware to estimate seagrass canopy height and water depth [19].
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Fig. 2. Example echogram generated by the DT-X echosounder for sonar signal recorded during the field survey. The red line with arrows in the inset figure

represents the canopy height.

As an example, the echogram in Fig. 2 highlights the
distinct variations in signal intensity when the sonar pulse
interacts with different media, including water, seagrass, and
seabed. Each medium produces a unique echo response, with
signal amplitude varying based on its physical properties. The
presence of seagrass or seabed significantly increases signal
intensity due to their dense structure, which reflects sound
waves more strongly than the surrounding water column. Thus,
a canopy or seabed line can be calculated based on the signal
density, which is automatically extracted by BioSonics Visual
Habitat software. The vertical distance between the seabed
and seagrass canopy lines is then calculated to determine the
seagrass canopy height.

E. acoroides has an average canopy height of approximately
0.4 m, ranging from 0.1 to 0.8 m [43], whereas T. hemprichii
averages 0.17 m in canopy height [43]. Thus, we used a
canopy height greater than 0.1 m to differentiate seagrass from
a sand substrate. Such a threshold could maximize sample
inclusion and ensure that smaller seagrass patches are retained
in the ground-truth data, enhancing the representativeness of
the training data.

The ground-truth data for the distribution of seagrass and
sand substrates in LAL were then obtained from the sonar
data. Approximately 130000 ground-truth substrate records
were collected, with their spatial distributions presented in
Fig. 1(b). The ground-truth seagrass distributions derived from
sonar measurements were used solely for the independent
validation of support vector machine (SVM)-based substrate
classification model (SCM_SVM).

C. Satellite Data and Preprocessing

The Planet constellation, consisting of hundreds of Dove
satellites, is the world’s largest fleet of SmallSats. Planet
launched its first four-band (blue, green, red, and NIR)
Dove-Classic (PlanetScope-0) prototype satellite in 2013.
Since April 2019, the third-generation SuperDove satellites
(PlanetScope-2) have been continuously deployed, featuring

enhanced image quality and improved spectral resolution.
SuperDove satellites are equipped with eight spectral bands
in the visible-to-NIR domain, centered at 444, 492, 533,
566, 612, 665, 707, and 866 nm. With over 200 satellites
in orbit, SuperDove provides high-resolution (3 m) and high-
frequency (subdaily) imagery for advanced Earth observations.
Although PlanetScope has been widely used for the remote
sensing interpretation of seagrass meadows, most of these
studies have focused on low-tide and pixel-based imagery
analysis [44], [45], without fully addressing the challenges
of seagrass detection under high-tide conditions. However, the
enhanced spectral information of SuperDove should have the
potential to enable more accurate identification of seagrass
under different tidal conditions.

Due to the absence of an onboard calibration system, Super-
Dove achieves a relative calibration through synchronized
observations with the Sentinel-2 satellite for top-of-atmosphere
reflectance [p(A4)] [46]. Planet’s Level-2 SR product, obtained
through atmospheric correction using the 6S radiative trans-
fer model, performs well in clear water bodies but is less
suitable for nearshore shallow areas [47]. Due to nearshore
adjacency effects and challenges in aerosol scattering correc-
tions, atmospheric correction algorithms in nearshore waters
often perform poorly, leading to low-quality R,;(A) and
occasionally even negative values [48]. In contrast, Rayleigh
scattering-corrected reflectance [p,.(A)] retains aerosol con-
tributions and is less affected by environmental disturbances,
significantly enhancing data availability for remote sensing
applications in nearshore waters [49], [50].

In this study, we acquired 157 cloud-free SuperDove images
of LAL from 2021 to 2023, encompassing all seasons and
a range of tidal conditions. All the Level 1 products were
processed using Acolite to generate the p,.(4) products. The
tidal information for each SuperDove acquisition was obtained
from a tidal station in the nearby Xincun Lagoon (~30 km
from LAL), with tide records sourced from the Global Tide
Forecast Service Platform (http://global-tide.nmdis.org.cn).
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Fig. 3. Proposed framework for seagrass mapping in this study. (a) Construction of the training dataset using matchups between satellite radiometric

measurements and groundtruth substrate data. (b) Model development based on machine learning. (c) Model validation and application.

D. Development of the Substrate Classification Model

As illustrated in Fig. 3, the seagrass mapping framework
comprises three key modules: the construction of matchups
between satellite radiometric measurements and ground-truth
substrate data for model training, model development based
on machine learning, and model validation and application.

Given the limited spatiotemporal coverage of field-based
substrate data, we implemented an alternative approach to
obtain ground-truth substrate data. This method leverages the
differences in texture, color, and distribution patterns between
seagrass and sand substrates during low tide, as illustrated
in Fig. 4. Seagrass typically appears as dark gray, irregular
patches with distinct textures. In contrast, sand substrates
have a lighter color and a more uniform distribution, while
optically deep water (ODW) generally appears dark blue.
To ensure comprehensive coverage, we collected all available
low-tide SuperDove images from 2022 to 2023, encompassing
all four seasons, and obtained the “ground-truth” substrate data
through visual interpretation. Here, the ground-truth substrate
types were categorized into seagrass and sand only. We intro-
duced an additional category, i.e., ODW, to minimize possible
misclassification of substrates in ODW where the substrate
contributes almost nil to the satellite-observed signal [50]. For

simplicity, ODW is also referred to as one of the substrate
types in the following.

It is important to note that only pixels located at the
center of each substrate patch were selected as ground-
truth data, as shown in Fig. 4(a) and (d), as these pixels
could have a lower possibility of misclassification. In other
words, we selected only pixels with high confidence for
each ground-truth substrate type. In addition, the normalized
difference vegetation index (NDVI) was also employed as
a supplement to constrain the ground-truth seagrass sub-
strate when the tide is extremely low. We did not further
distinguish the seagrass species in this effort, as the multi-
spectral p,.(A) of the two dominant seagrass species in the
LAL exhibited quite similar spectral characteristics, especially
for mid- to high-tide scenarios. Finally, we extracted the
ground-truth substrate types and their geolocation information
using ArcGIS. It is worth pointing out that the distribution
of these selected ground-truth substrates in Fig. 4(e) aligns
well with our observations from field surveys. Subsequently,
the interpreted ground-truth substrates from each low-tide
image were used as a reference to match all available p,.(A)
measurements from SuperDove within two weeks of that
image’s capture date. In this way, we obtained ~2.3 million
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Fig. 4. Demonstration of substrate classification from low-tide images using visual interpretation. (a)-(d) Substrate classification examples for ODW, sand,
Z. marina, and E. acoroides, respectively, with their locations highlighted as red marks in (e). The blue, yellow, and green patches in (e) represent the final

extracted ground-truth substrates for ODW, sand, and seagrass, respectively.

matchups between ground-truth substrate types and p,.(A)
measurements acquired under various tide conditions from low
to relatively high tides. This compiled dataset was then used
to develop the substrate classification model, where 90% of
the data were randomly selected for model training (termed
Train_set) and the remaining 10% employed for model testing
(termed Test_set). Since this study aims to accurately map
seagrass distributions, the training dataset is predominantly
composed of seagrass substrates (~54%), with sand (~28%)
and ODW (~18%) making up the remainder.

In this study, a machine learning model based on the
support vector machine (SVM) was developed for substrate
classification, which is hereafter termed SCM_SVM. The input
for SCM_SVM consists of p,.(A) at the eight SuperDove
bands, and the model output classifies substrates into seagrass,
sand, and ODW. The SVM model supports linear, polynomial,
and radial basis function (RBF) kernels, making it adaptable
to various linear or nonlinear data types [51]. The design of
SVM is relatively simple, with fewer tunable hyperparameters
than other machine learning models. Its performance can be
enhanced with longer training times when processing large
datasets. The SVM model utilizes hyperplanes to determine the
optimal separation space between classes, thereby maximizing
the margin between data points and the hyperplane. One of
the key advantages of SVM is its accuracy and robustness to
outliers [33], [51], [52], making it one of the most widely used
machine learning models for substrate classifications [53],
[54].

E. Model Intercomparison and Evaluation Metrics

In addition to SCM_SVM, we employed the water-adjusted
vegetation index (WAVI) [55] and the submerged seagrass

identification index (SSII) [56] for model intercomparison.
Specifically, WAVI incorporates an adjustment factor L to
correct for water influence, enhancing its effectiveness in
aquatic vegetation detection, and is expressed as

prc(865) — Pre (490)
Pre(865) 4 00 (490) + L

where L ranges from O to 1 and is set to 0.5 in this study,
a typical value that effectively reduces background interference
for medium vegetation cover [22]. Higher WAVI values indi-
cate stronger responses from medium- to high-density aquatic
vegetation.

SSII, on the other hand, is specifically designed to identify
submerged seagrass. It is formulated as

pre(705)
pre(865) +a

where a is a small adjustment factor (e.g., 0.00001) used to
prevent division by zero. Higher SSII values indicate greater
seagrass density. The threshold values for both indices are
generally determined empirically, based on expert knowledge
and case-specific analysis.

The performance of SCM_SVM was evaluated mainly by
three metrics: the producer’s accuracy (PA), the overall identi-
fication accuracy (OIA), and the Kappa coefficient (K). PA is
calculated by

WAVI = (1 + L) (1)

SSII = 2)

P;
PA = — x 100%
A

1

3

where A; and P; are the numbers of ground-truth and correctly
identified pixels for each substrate type i, respectively.

The OIA is the percentage of correctly identified pixels
relative to the total number of pixels, representing the overall
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TABLE I

SUBSTRATE DETECTION ACCURACY (IN %) OF SCM_SVM IN THE TRAINING AND INDEPENDENT VALIDATION
DATASETS WITH DIFFERENT INPUT VARIABLES

Training dataset  Ground-truth data

Model Inputs

Sand  Seagrass Sand  Seagrass
1 444,533, and 612 nm 94.44% 86.42%  81.56%  74.71%
2 444;:(192’152351’11566 96.12% 89.74%  81.23%  77.95%
3 444, 435(’1 563635,151?16’ 612 96.86% 91.74%  83.80%  78.74%
4 444,492,533, 566, 612, 665, and 707 nm 97.40% 94.02% 82.37%  82.20%
5 444,492, 533,566,612, 665,707, and 866 nm 96.88%  95.45%  81.46%  85.18%
6 8 Band; Tide/Mean Tide 98.04% 97.80%  82.59%  85.00%
7 8 Band; cos(2pi*Lon/360); cos(2pi*Lat/180)  96.53%  94.70%  81.46%  85.24%
3 8 Band; cos(2pi*Lon/360); cos(2pi*Lat/180); 9793% 97.66% 82.34%  84.66%

Tide/Mean Tide

accuracy of substrate classification. It can be calculated by

S (P

OIA = x 100% @

where N is the total number of pixels.

The Kappa coefficient, which ranges from O to 1, indicates
the overall agreement between the distribution of classification
results and ground-truth measurements, where larger K values
indicate greater consistency [57]. K is calculated by

K= OIA — p.
1- Pe
where p, represents the chance agreement, which is calculated

based on the distributions of the actual and predicted substrate
types and is expressed as

®)

1 k
pe =73 D _(AiP) 6)
i=1

where k is the number of categories (k = 3).

III. RESULTS AND DISCUSSION
A. Sensitivity of Inputs on the Performance of SCM_SVM

Model inputs are crucial factors that influence the perfor-
mance of any algorithm. Table I presents the performance
of SCM_SVM with different input configurations, including
ore(A) at different spectral bands and additional environmental
variables. The analysis using different spectral bands showed
that the eight-band configuration most effectively captures
seagrass features from SuperDove imagery. When compared
to using p,.(A) at only three bands, the eight-band input
improved seagrass detection accuracy by 9%. Including an
additional band led to an average 2% increase in seagrass sub-
strate detection accuracy for both the training and independent
validation datasets.

As shown in Table I, incorporating additional variables, such
as geolocation and tide data, had a limited effect on model
performance compared to using o,.(A) at all eight spectral

bands. Note that, in Table I, tide height was normalized, and
latitude and longitude were cosine-transformed to maintain
similar data characteristics with p,.(A) and enhance the learn-
ing rate [58]. The optimal performance achieved using p,.(A)
at eight spectral bands and the neglected improvements from
additional variables can be attributed to the following reasons.

orc(A) at the eight bands, ranging from the visible to NIR,
can implicitly capture information related to the water body
(such as concentrations of different constituents), topography
(including substrates and depth), and atmospheric (aerosol)
effects. Thus, it ensures a comprehensive representation of
water and atmospheric properties, thereby improving model
performance compared to models with fewer spectral bands
as inputs.

Geolocation variables, such as latitude and longitude, have
limited impact on the performance of SCM_SVM, as it was
trained on data from a small lagoon. However, we anticipate
that geolocations may become necessary inputs for models
aimed at global seagrass detection. The negligible impact of
tide data on model performance could be due to the fact
that we used a single tide height value for the entire image,
which might be impractical because tidal height could vary
across LAL, particularly during ebb and flood tides. More
importantly, the depth information, implicitly represented in
the eight-band spectral p,.(1), may partially account for tide
variations. Given the negligible improvement in model perfor-
mance and the potential increase in computational complexity
when including these additional variables, we decided to use
pre(A) at the eight bands as the model inputs.

B. Evaluation of SCM_SVM

The performance of SCM_SVM was first evaluated using
the training dataset collected from LAL, with statistical results
presented in Table II. The statistical metrics for the Train_set
and Test_set were comparable, with negligible differences in
the computed values. For the Test_set, the PA for seagrass,
sand, and ODW was 94.1%, 94.2%, and 96.1%, respectively,
with an OIA of 94.8%. The K value for the predicted
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TABLE I

PERFORMANCE OF SCM_SVM IN THE TRAINING AND TESTING DATASETS (TRAIN_SET AND TEST_SET). P- AND T- STAND FOR PREDICTED AND TRUE
SUBSTRATES, RESPECTIVELY. PA REPRESENTS THE PRODUCER’S ACCURACY, AND OIA INDICATES THE OVERALL IDENTIFICATION ACCURACY

Train_set (N = 1.88x10°)

Test_set (N = 4.56x10%)

T-Seagrass T-Sand T-ODW T-Seagrass T-Sand T-ODW
P-Seagrass 9.49 0.26 0.10 2.31 0.66 0.03
P-Sand 0.48 4.99 0.02 0.12 1.22 0.01
P-ODW 0.10 0.28 3.32 0.02 0.01 0.81
Total 10.69 5.29 3.45 2.46 1.29 0.84
PA 94.5% 94.2% 96.3% 94.1% 94.2% 96.1%
OIA 95.0% 94.8%
K 0.91 0.91

substrates in Test_set is 0.91, indicating a high level of
agreement between the classification results and the ground-
truth measurements. These results suggest that SCM_SVM has
promising identification accuracy for these different substrates,
at least within the LAL.

To further assess the applicability of SCM_SVM,
we applied the model to two SuperDove images of LAL
acquired during relatively high and low tides on November 5,
2022 and November 13, 2022, respectively. Evaluations
of these two images provided independent validation of
SCM_SVM, as they were not part of the training dataset
construction. The predicted substrate distributions were val-
idated against ground-truth data from the sonar. Note that
each SuperDove pixel (~9 m?) may correspond to multi-
ple ground-truth records from underway sonar data. Thus,
the following criteria were applied for satellite and in situ
matchups. If more than 50% of the ground-truth records within
a matched pixel indicated seagrass presence, this pixel was
classified as seagrass substrate. Otherwise, it was categorized
into sand substrate. The derived substrate distributions from
both SuperDove images are presented in Figs. 5 and 6. Here,
all pixels identified as ODW by SCM_SVM are classified as
sand substrates for model validation against ground-truth data.

As illustrated in Figs. 5 and 6, seagrass meadows are
primarily concentrated in the southern region of LAL, with
scattered patches along the eastern and western coasts. This
distribution pattern is generally consistent with the reported
seagrass distribution from field surveys for the same lagoon
in 2019 and 2022 [24], [59]. Notably, the distribution pattern
of seagrass coincides with the dark gray areas in the RGB
imagery, demonstrating strong consistency between satellite
retrievals and visual interpretation. Furthermore, the sea-
grass distribution pattern shows good agreement with the
ground-truth observations from field surveys conducted within
two weeks of image acquisition [e.g., Figs. 5(e) and 6(e)].
Statistically, the PA of SCM_SVM in identifying seagrass
substrates reached 86.69% and 83.49% for images acquired
on November 5, 2022 and November 13, 2022, respectively.

Note that both WAVI and SSII are able to identify seagrass
for the low-tide image, but they significantly underestimate the
seagrass extent, even in the southern LAL, where seagrass is
dense. Specifically, ~90% and ~55% of seagrass substrate
was misclassified as sand (False Seagrass, FSG) by WAVI
and SSII, respectively. In contrast, only ~16.5% FSG were
observed for SCM_SVM. More importantly, the performance
of the two index-based models significantly deteriorated for the
high-tide image, with both models exhibiting misclassification
rates of over 95% for seagrass, compared to an FSG rate of
~13.3% by SCM_SVM. These comparison results indicate
that the two index-based models are ineffective for high-
tide scenarios, at least for the seagrass detection in LAL.
While potential improvements could be achieved by tuning the
empirical constants in (1) and (2) or adjusting the threshold
for seagrass detection, these adjustments are arbitrary and,
in fact, provide only a slight enhancement in seagrass detec-
tion accuracy. Nevertheless, SCM_SVM shows much more
consistent performance in identifying seagrass across various
tidal conditions (FSG rates ranging from 13.3% to 16.5%),
underscoring its strong capability in generating consistent and
accurate time-series seagrass mapping products in LAL.

The misclassification rates, ranging from ~13% to ~20%
for seagrass and sand substrates, can be attributed to three main
factors. First, uncertainties in the ground-truth data from field
surveys played a role. A 0.1-m threshold for seagrass canopy
height was used to identify seagrass substrates from the sonar
measurements (Section II-B), which may misclassify seagrass
canopies shorter than this height as sand substrates, such
as juvenile seagrass or seagrass tilted by tides. Additionally,
pixels with macroalgae may exhibit similar spectral signals to
those of seagrass in remote sensing data; however, these pixels
were also classified as sand in the ground-truth data. These
factors contribute to the relatively high misclassification rates
of the sand substrate by SCM_SVM for the two SuperDove
images (Table III).

Second, each satellite observation (~9 m?) could corre-
spond to multiple ground-truth records from sonar, potentially
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Fig. 5. Independent validation of seagrass detection algorithms using field survey measurements. (a) True-color composite image of SuperDove, acquired
under relatively high tide on November 5, 2022. (b)-(d) Substrate distributions derived from SCM_SVM, WAVI, and SSII, respectively, where green, light
yellow, and light blue patches represent seagrass, sand, and ODW, respectively. (e)—(g) Classification results of the three methods against ground-truth data.
Green, light yellow, cyan, and red colors represent correctly identified seagrass (True Seagrass, TSG), correctly identified sand (True Sand, TS), seagrass
misclassified as sand (False Seagrass, FSG), and sand misclassified as seagrass (False Sand, FS), respectively.
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Fig. 6. Same as Fig. 5, but for the SuperDove image acquired under low tide on November 13, 2022.

causing discrepancies between satellite observations and
ground-truth data, particularly in areas with mixed substrates.
In general, the bottom reflectance of a sand substrate is signif-
icantly stronger than that of seagrass. Therefore, pixels with
sparse seagrass may be misclassified as sand substrate from
remote sensing, even though the ground-truth data categorize

them as seagrass. As a result, misclassification primarily
occurred in pixels with mixed substrates, such as those located
at the edge of the seagrass meadows or the boundaries of
ODW. Finally, the adjacency effects from land may distort
0rc(A) in nearshore pixels, which could partially explain the
misclassification observed in some nearshore regions.
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TABLE III

STATISTICS FOR THE CORRECTED AND INCORRECTLY RECOGNIZED PIXELS FOR SUBSTRATES DERIVED BY SCM_SVM, WAVI, AND SSII COMPARED
TO THE GROUND-TRUTH DATA FOR THE TWO IMAGES ACQUIRED ON NOVEMBER 5 AND 13, 2022. P- AND T- STAND FOR PREDICTED AND TRUE
SUBSTRATES, RESPECTIVELY

Nov. 5t Nov. 13t
T-Seagrass T-Sand T-Seagrass T-Sand
P-Seagrass 2326 3236 2240 4130
SCM_SVM P-Sand 357 16685 443 15791
PA 86.69% 83.76% 83.49% 79.27%
P-Seagrass 64 637 280 551
WAVI P-Sand 2619 19284 2403 19370
PA 2.38% 97.80% 10.44% 97.23%
P-Seagrass 115 836 1212 3028
SSII P-Sand 2568 19085 1471 16893
PA 4.29% 96.80% 45.17% 84.80%
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Comparison of seagrass distribution in LAL from SuperDove images acquired under high and low tides. (a)-(d) Show the true-color composited

image acquired on March 7, 2023, March 14, 2023, November 18, 2023, and November 23, 2023, with the tide levels labeled in the textbox. (e)—(h) Display
the retrieved seagrass distribution by SCM_SVM for the corresponding image, along with the computed seagrass area.

C. Performance of SCM_SVM Under Various Tide
Conditions

As the contribution of seagrass reflectance to the
water-leaving radiometric signal would be significantly
damped with increasing tide levels, tide levels have long
been a significant limiting factor in the remote identification
of seagrass in nearshore shallow waters [22]. Therefore, the
robustness of a developed remote sensing model for seagrass
detection and classification needs to be evaluated for its

performance on images acquired under varying tidal condi-
tions. In this study, we applied the SCM_SVM model to four
SuperDove images captured under high and low tides in March
and November 2023, respectively.

As illustrated in Fig. 7, SCM_SVM predicts consistent
seagrass distribution for images acquired during low and high
tides. For instance, the interpreted seagrass distribution on
March 7 by SCM_SVM, corresponding to a relatively low tide
with a tide level of 69 cm, closely matches the result of March
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Fig. 8. Time series of the estimated seagrass area in LAL using SCM_SVM from SuperDove images acquired in (a) March and (b) November and December
2023. The tide levels at the time of each image acquisition are also included for comparison and aligned with the right y-axis.

14, which was acquired under a relatively high tide with a tide
level of 98 cm [see Fig. 7(e) and (f)]. The estimated seagrass
areas for the two images are also comparable (1.24 versus
1.45 km?). Similarly, the November 2023 case demonstrates
consistent seagrass mapping by SCM_SVM, in terms of both
spatial patterns and estimated areas, for images acquired under
different tide conditions [see Fig. 7(g) and (h)]. Despite a
substantial tidal difference of 66 cm, the estimated seagrass
area between the two images differs by only ~0.05 km?.
These results suggest that SCM_SVM can retrieve consistent
seagrass distribution for images acquired across different tidal
conditions.

In addition, SCM_SVM was applied to a series of cloud-free
SuperDove images in the LAL in March, November, and
December 2023. The time-series variations of the estimated
seagrass area and tidal changes are shown in Fig. 8. These two
periods were selected to represent two distinct tidal types: a
neap tide in March 2023 and a spring tide from November to
December 2023. It is essential to note that each selected period
encompasses at least one complete tidal cycle (see Fig. 8),
enabling a reliable assessment of SCM_SVM’s performance
under varying tidal conditions. As shown in Fig. 8, the
predicted seagrass areas within the two respective periods are
overall consistent despite variations in tide levels, demon-
strating the robust and stable performance of SCM_SVM
under various tidal conditions. In general, larger seagrass area
estimates are observed for images acquired under relatively
low tides and vice versa. This is reasonable, as higher tide
levels could reduce the contribution of seagrass reflectance to
pre(A), potentially leading to failed seagrass detection from
remote sensing and an underestimation of seagrass area.

Nevertheless, the variations in the calculated seagrass
area were relatively small in the two examples shown in
Fig. 8. For instance, the remotely estimated seagrass area was
1.5 & 0.3 km? for the 11 SuperDove images acquired between
March 2, and 17, with tide levels ranging from 69 to 98 cm
[see Fig. 8(a)]. Notably, despite significant tidal variations
from 20 to 120 cm between November 2, 2023 and December
17, 2023 [see Fig. 8(b)], the estimated seagrass area by

SCM_SVM was averaged at 1.8 km? for the 14 SuperDove
images, with a standard deviation of only 0.4 km?. These
relatively small standard deviations underscore the robustness
of SCM_SVM in identifying seagrass across varying tidal
conditions.

D. Trend in Seagrass Area From 2021 to 2023

The high revisit frequency of SuperDove enables sufficient
observations, allowing for high spatial and temporal resolution
monitoring of seagrass distribution. This capability facilitates
the study of seagrass evolution and trend analysis in LAL, pro-
viding valuable insights for the assessment and conservation of
seagrass ecosystems. In this study, we applied SCM_SVM to
157 cloud-free SuperDove images acquired between January
2021 and January 2024. The monthly variations in the esti-
mated seagrass area are presented in Fig. 9. Note that there are
relatively fewer images available during the summer months
due to the rainy season.

As shown in Fig. 9, seagrass in LAL exhibits a seasonal pat-
tern, with higher abundances in boreal spring and winter and
relatively lower abundances in boreal summer. This seasonal
pattern is likely modulated by the combined impacts of light
intensity and water temperature [60], with similar patterns also
reported in other seagrass meadows in tropical regions [59],
[61]. The standard deviations of the estimated seagrass area
in most months are relatively small, confirming the robust
and stable performance of SCM_SVM across images acquired
within each month. However, some months, such as September
2021, exhibit relatively large standard deviations in the esti-
mated seagrass area. During these months, SCM_SVM failed
to identify the seagrass substrate in some images, which could
be attributed to thin haze and wind- or tide-driven sediment
resuspension. On the one hand, a thin haze may not be
easily ruled out by visual inspection of cloud-free images and
could confuse the SCM_SVM system. On the other hand,
for pixels with strong resuspension, the predicted substrate
by SCM_SVM is either sand or ODW. These factors may
contribute to the relatively large standard deviations in certain
months.
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Fig. 9.

Monthly variations in estimated seagrass area in LAL from January 2021 to January 2024. The blue circle represents the averaged seagrass area

computed from all available SuperDove images acquired within each month, while the error bar indicates the standard deviation. The bar chart, aligned with
the right y-axis, shows the total number of SuperDove images used in each month.
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Fig. 10. Relative changes in seagrass distribution in LAL between 2021 and 2023. (a) and (b) Probability distribution of seagrass (P) in 2021 and 2023,
respectively. (c) Relative changes in seagrass between 2021 and 2023, which is defined as the difference of P between 2023 and 2021. In (c), green represents
no change in seagrass, red indicates a decrease, and dark blue signifies an increase.

Despite substantial seasonal variations, a declining trend
in the seagrass area was observed during the investigated
period at a rate of —0.15 km?/yr (Fig. 9). This linear trend
is statistically significant, with a p-value of 0.012 (p < 0.05).
The seagrass meadows maintained a relatively high extent in
2022, with an annual mean area of 1.76 km2, but decreased to
an average of 1.33 km? in 2023, resulting in a 24% reduction.
Since July 2022, the seagrass extent has remained relatively
stable for almost a year until August 2023 when it then
increased toward the end of the year.

To analyze the spatial-temporal variations in seagrass extent
in LAL, we generated the probability distribution maps of
seagrass for 2021 and 2023, respectively [see Fig. 10(a)
and (b)]. The probability distribution of seagrass (P) for a
specific pixel can be expressed as

P = N, Seagrass (7)
N valid
where Ngeagrass T€Presents the number of images with detected
seagrass at this pixel and N, represents the total number of
images used in each year [62], [63].

Note that for each year, we have employed over 50 images
from different seasons (see the histogram in Fig. 9) to ensure
that the calculated P accurately reflects the actual frequency of
seagrass presence at each pixel. The relative change in seagrass
for each pixel is categorized into three classes: no change,
decrease, and increase. This classification is based on the dif-
ference in P values between 2023 and 2021. Specifically, if the
P difference falls within £0.25, the pixel is considered to have
no significant change in seagrass. A P value difference greater
than 0.25 indicates a confident increase, while a difference less
than —0.25 suggests a confident decrease in seagrass.

As shown in Fig. 10(c), notable spatial changes in seagrass
extent were observed, with only a few isolated nearshore
locations showing slight increases, while widespread losses
occurred across the lagoon between 2021 and 2023. Statis-
tically, approximately 1.30 km? of seagrass remained stable,
whereas 0.40 km? was lost. The most substantial reductions
happened in the eastern and northwestern regions of LAL.
Seagrass coverage has generally declined in the southern
region, with widespread reductions along the outer edges of
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previously seagrass-dense areas. The decline of seagrass could
be primarily attributed to nearshore aquaculture activities and
the construction of a theme park in the northwestern part of
LAL since 2022 [59], [64]. Similar patterns have been reported
in other coastal ecosystems, where urban expansion, coastal
infrastructure development, and pollution can contribute to
seagrass degradation [32], [65].

On the one hand, the construction activities directly removed
or buried seagrass meadows in the northwest LAL and
adjacent areas. On the other hand, dredging and land recla-
mation increased sediment resuspension, which smothered
seagrass meadows and blocked sunlight essential for pho-
tosynthesis, ultimately inhibiting their growth [37], [66].
Nevertheless, these results highlight the importance of remote
sensing techniques in monitoring seagrass evolution at high
spatial-temporal resolution, as well as in understanding its
responses to human activities.

IV. CONCLUSION

This study introduces a novel framework for accurate and
consistent seagrass detection across varying tide conditions.
The success of this framework stems from the innovative
construction of a large training dataset, which pairs confident
ground-truth substrate information from low-tide images with
radiometric measurements from a range of images spanning
low to high tides. This compilation is only possible due to
the high revisit frequency of SuperDove, where most low-tide
images can be easily matched with multiple low-to-high-tide
images within a short period, ensuring a sufficient number
of matchups to train the machine learning model. Validation
with field sonar measurements indicates that the proposed sub-
strate classification model (SCM_SVM) achieves a satisfactory
accuracy of ~85% in detecting seagrass substrates for both
relatively high- and low-tide images. Applying SCM_SVM
to time-series SuperDove images further confirmed its reli-
ability for consistent mapping seagrass distribution in LAL
under varying tidal conditions. Thus, SCM_SVM effectively
addresses the longstanding limitation of traditional index-
based algorithms, which could only map seagrass under
low-tide conditions.

More importantly, the development of SCM_SVM,
including the compilation of training data and machine
learning-based substrate classification, provides a valuable
reference framework for seagrass mapping in other regions.
Future advancements in seagrass remote sensing may focus
on two aspects: 1) expanding the training dataset to classify
seagrass species and extending the application of SCM_SVM
to diverse geographic regions and 2) integrating multisource
high-resolution imagery, such as Sentinel-2 and the Land-
sat series, to ensure consistent and long-term monitoring
of seagrass distribution. The latter is especially crucial for
understanding seagrass responses to anthropogenic pressures
and climate change while supporting conservation efforts,
habitat protection, and blue carbon assessments.
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