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ABSTRACT

Remote sensing reflectance (Rs) is a fundamental property in satellite ocean color remote sensing, which is
critical for retrieving optical-biogeochemical properties and data-driven atmospheric correction algorithms. In
this study, with three criteria applicable to ~91% of the global ocean, we compiled a database of the highest
quality Ry (HQumopisa-Rrs) of oceanic waters based on 20+ years of ocean color measurements by the Moderate
Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite. While removing a large number of
daily “standard” data products, our evaluation showed that the criteria for the highest-quality R,; (CHQR)
improved MODIS R, data consistency with benchmark in situ R, datasets, such as those from MOBY and
AERONET-OC. After applying CHQR, analysis of imagery products in the South Pacific Ocean revealed that the
coefficient of variation (CV) of R,; among pixels reduced from 0.042 (standard quality control) to 0.030, along
with enhanced temporal consistency, which indicates that this approach effectively filters abnormal data
products. While such a dataset played a key role in the development of the cross-satellite atmospheric correction
algorithm (Lee et al., 2024), we here further demonstrate that applications of HQumopisa-Rrs have ~21.0% of
oceanic areas between 50°S and 50°N showing reversed long-term trends of R,; compared to the trend based on
the standard Ry product. We anticipate that this highest-quality R, database would not only improve our
evaluation and understanding of long-term changes in various Rys-derivative bio-optical properties of the global

ocean, but also help to obtain consistent products among various satellite ocean color missions.

1. Introduction

Data play a pivotal role in daily life as well as in scientific research. It
is the base for us to discover new findings, validate theories, and make
sound decisions (Karpatne et al., 2017; Sidirourgos et al., 2013). Espe-
cially in the Al era, a large and representative volume of data is the key
for the development of Al-based algorithms (Whang et al., 2023). In this
context, the ability to effectively collect, store, and manage precise data,
or the establishment of a database, becomes crucial for advancing both
Al-based research and broader scientific inquiries (Carbotte et al., 2022;
Marchuk et al., 2013; Schwing, 2023; Tanhua et al., 2019). Realizing the
importance and necessity of oceanic databases, various data portals,
such as the World Ocean Database (WOD) (Boyer et al., 2013), ESA’s
Copernicus Marine Service (Le Traon et al., 2019), and NASA’s SeaBASS
(Werdell et al., 2002), started decades ago to systematically accumulate
and organize a wide range of oceanic data for ocean sciences. These have
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become indispensable tools and resources for oceanography researchers
and managers worldwide, and have helped to discover numerous
breakthrough findings regarding our oceans and the Earth system
(Behrenfeld et al., 2006; Schmidtko et al., 2017; Zhang et al., 2023).
One of the data products included in many data portals, including
ESA’s Copernicus Marine Service (Le Traon et al., 2019) and NASA’s
SeaBASS (Werdell et al., 2002), is the remote sensing reflectance (Rys,
sr™1), which is a measure of water’s color spectrum. R can be derived
from satellite ocean color measurements (Gordon and Wang, 1994;
Morel and Prieur, 1977), which serve as a key bridge to obtain optical
and biogeochemical properties of the ocean via remote sensing (Lee
et al., 2002; O’Reilly and Werdell, 2019; Wei et al., 2021; Werdell et al.,
2013). In addition, R is an important input of many big-data models
(Huetal., 2021; Wang and Li, 2024). It is thus not surprising to see Rs as
a core product for satellite ocean color missions and that of multi-
mission merged datasets, such as that of OC-CCI (Ocean Colour

Received 24 June 2025; Received in revised form 15 November 2025; Accepted 8 December 2025

Available online 13 December 2025

0034-4257/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.



L. Zhao et al.

Climate Change Initiative) (Sathyendranath et al., 2019).

The available R, data products can be broadly categorized into three
types: those derived from in situ measurements, those obtained through
ocean color satellites, and those from models rooted in radiative trans-
fer. In situ measurements have the advantage of avoiding atmospheric
correction errors, but they are limited in spatial and temporal coverages.
Additionally, many elements of the measurement protocol differ be-
tween observation programmes, such as instrument, measurement ge-
ometry, and data processing (Lee et al., 2010; Ruddick et al., 2019).
These inherent challenges make it difficult to obtain in situ Ry from
different groups with the same quality. While efforts like Valente et al.
(2019) and Lehmann et al. (2023) have successfully compiled in situ data
spanning 1990s-present, covering a wide range of locations in the global
ocean, along with rigorous quality control and standardization, such
datasets are still discrete in space and time. On the other hand, data from
modeling via radiative transfer (Fan et al., 2021; IOCGG, 2006) will
always face the challenge of representativeness of the bio-optical vari-
ations in the real world.

To overcome these constraints, satellite-derived products offer
extensive spatial and temporal coverage of the global ocean. This need
has driven the establishment of projects like GlobColour and OC-CCI,
which focus on developing long-term bio-optical property records for
oceanic waters. However, as indicated in Lee et al. (2024), there are
inconsistencies between the R, products distributed by GlobColour and
by OC-CCI, likely originated from different atmospheric correction al-
gorithms used, as well as differences in merging methods (van Oostende
et al., 2022). These inconsistencies introduce doubts or controversies on
the response of the oceanic ecosystem under a changing climate
(Pauthenet et al., 2024). It calls for the establishment of a robust,
highest-quality, satellite R,; database that can be considered as the
standard. Such a database will not only be important for a reliable
evaluation of the oceanic ecosystem, but also serve as a benchmark for
other ocean-color missions or agencies to assess or calibrate their Ry
products.

In the late 1990s and early 2000s, the international community put a
series of ocean-color satellites into space, with the SeaWiFS, MODIS-
Aqua, and MERIS the most well-known, along with data products
widely used (Esaias et al., 1998; McClain, 2009; Rast et al., 1999).
Among the three, in addition to the longest period in service, MODIS-
Aqua (MODIS-A hereafter) has a much higher signal-to-noise (SNR)
ratio compared to SeaWiFS and MERIS (Hu et al., 2012), which is critical
for high-quality R, from satellite measurements (Franz et al., 2012).
After years of great effort and investment, the R, product from MODIS-A
has shown superior quality and consistency (Zhang et al., 2022). In view
of these characteristics and strengths regarding MODIS-A, it is thus
natural to develop the “highest-quality” R,s global database from the
20+ years of MODIS-A measurements. Note that the use of the word
“highest”, although subjective to any criteria, is in order to distinguish
the dataset from that filtered with the Level-2 flags (12-flags hereafter)
adopted by NASA’s SeaDAS (see below), where the resulted data are
generally considered as “high quality”. Such a database will not only
serve as a benchmark for other ocean-color missions, cross-satellite
calibration or atmospheric correction (Lee et al., 2024), but also be of
great value for long-term climate research, ecosystem monitoring and
marine resource management.

2. Criteria to determine the highest-quality R, from satellite
measurements

2.1. Criteria for the highest-quality Ry

Due to that a wide range of environmental factors influence the
generation of R, from satellite measurements, and at the same time, Ry
just makes ~20% or less of the top-of-atmosphere signal, the R, product
from an ocean-color satellite is prone to noise or errors (I0CCG, 2010).
As a result, only a fraction of the daily global R,s data can be considered
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valid for scientific applications. Traditionally, the 12-flags of NASA’s
Ocean Color Level-2 products have been used to identify and exclude
questionable data, with the absence of any flags related to data quality
control indicating the high-quality data (Hooker et al., 2003). However,
this traditional method, which relies on predefined flags to exclude
conditions likely to introduce various uncertainties, often fails to ensure
the quality of retained R,; data, leading to the inclusion of noisy Ry
products (Chen et al., 2016; Hu et al., 2013).

To address these shortcomings, two separate approaches were pro-
posed in the past to assess the quality of an R spectrum: the constraint
based on chlorophyll concentration (CBCC) (Hu et al., 2013), and the
quality assurance (QA) system (Wei et al., 2016). CBCC evaluates Ry
quality by comparing the chlorophyll-a value (Chl) derived from band
ratio and band difference algorithms (Hu et al., 2013). If the Chl values
from the two independent algorithms agree within approximately 5%,
the Ry is classified as “error-free”. This method has been widely used in
validating satellite-derived R,; and improving data correction (Chen
et al., 2016; Chen et al., 2023; Chen et al., 2021). However, further
applications found that at times an R, spectrum with poor spectral
quality (e.g., a completely negative R, spectrum) may still have the
band-ratio- and band-difference-calculated Chl satisfying the 5% crite-
rion, thus a stricter constraint for the highest-quality Ry is required to
ensure a robust database.

The QA system developed by Wei et al. (2016), on the other hand,
compares an Ry spectrum to that in an R, database developed from in
situ measurements, which quantifies the spectral similarity of the tar-
geted R, against the R, in the database. The system assigns a score close
to 1 for the highest similarity, subsequently the quality of the target Ry is
quantified based on this score (Wei et al., 2016). This quality assurance
scheme has shown excellent applications in many studies (Liu et al.,
2021; Men et al., 2023). However, this QA system mainly evaluates the
spectral shape of an Ry, thus an Ry spectrum with small bias may still
pass this filter.

In view of the incompleteness of the above schemes, we propose the
following criteria for the highest-quality R,s (termed CHQR in the
following), shown in Fig. 1, which includes the following three aspects:
1) filtering based on observation condition or failure in data processing,
2) high assurance in spectral shape, and 3) minimum to no residual
errors. Specifically, these aspects are:

1) Filtering based on observation condition or failure in data process-
ing: Any Ry product having the following level-2 quality-control

Filtering based

on observation High assurance
condition in
or failure

. spectral shape
in data processing = 3

Highest-quality
Rrs

Minimum to
no residual errors

Fig. 1. Criteria for the highest-quality R,; (CHQR).
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flags (12-flags) are excluded: ATMFAIL (1), LAND (2), HIGLINT (4),

HILT (5), HISATZEN (6), STRAYLIGHT (9), CLDICE (10), COCCO-

LITH (11), HISOLZEN (13), LOWLW (15), CHLFAIL (16), NAVWARN

(17), MAXAERITER (20), CHLWARN (22), ATMWARN (23), and

NAVFAIL (26). In the past, data products after being screened by

these flags were considered high quality and further used for the

generation of Level-3 products.

Spectral shape consistency: The QA system will be applied to a target

Ry spectrum, and only QA = 1 will be kept. This helps ensure the

data product represents realistic waters.

3) Minimum to no residual errors: Numerical constraints similar to
CBCC will be employed to filter out data with residual errors. The
commonly used CBCC is limited to oceans where Chl is less than
~0.2 mg/m?, covering roughly ~70% of the global ocean. Recently,
a new algorithm based on band differences of R, for estimating the
absorption coefficient at the 443 nm band (a(443)) was developed,
and it was found that this algorithm could be applied to ~91% of the
global ocean (Lee et al., 2023). Since a(443) from the band-
difference algorithm (Lee et al., 2023) is insensitive to spectrally
covarying errors in an Ry spectrum, while a(443) from the band-ratio
algorithm (Lee et al., 1998) is sensitive to such a disturbance in Ry,
we can implement a constraint (termed as CBAC) based on the dif-
ference of a(443) obtained from the two algorithms to screen “error-
free” Ry;. Details of CBAC are presented in Section 2.2.

2

—

2.2. Development of the constraint based on absorption coefficient
(CBAC)

For the estimation of the total absorption coefficient at 443 nm (a
(443)), Lee et al. (1998) developed a band-ratio algorithm, which is
modified to meet the MODIS spectral bands and updated with more
available data. Specifically, the band-ratio algorithm for a(443) (a
(443)gR) is expressed as:

a(443),, = 10%7 rz7@ PR3 pas+aapls (1a)
_ R(443) _ R,5(488)
pas = logl0 |:Rrs(547):| ,pss = log10 {&;(547) (1b)

where ag_4 are the fitting coefficients (Lee et al., 1998).
On the other hand, the band-difference algorithm for a(443) (a
(443)]3])) is:

547 — 443
MBDRgrs(443) = Rys (547) — {Rrs(443) +m (Rrs(667) — R,5(443) )
(2a)
a(443)BD — 10/ EXP(ﬁz MBDRYS(MSJ) (2b)

with f,_, the fitting coefficients (Lee et al., 2023).
To obtain the coefficients of ag_4 and f,_,, the R, data from the
BIOSOPE (Claustre et al., 2008) and NOMAD (Werdell and Bailey, 2005)
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datasets were combined and utilized. As in Lee et al. (2023), the a(443)
values obtained by the quasi-analytical algorithm (Lee et al., 2002) were
considered as the ground “truth” for the derivation of the fitting co-
efficients. As these data were generally collected in oceanic waters
where Raman scattering can make strong contributions in the longer
wavelengths (Hu and Voss, 1997; Morel et al., 2002), a correction of the
Raman contribution was carried out first (Lee et al., 2013) before
implementing the quasi-analytical algorithm. The resulted fittings are
presented in Fig. 2 a and b, with the coefficients for the band-difference
algorithm as f, = — 2.12, ; = 0.91, and p, = 247.38; whereas the
coefficients for the band-ratio algorithm are aqy = — 0.883, a; = —
0.955, a2 = —0.010, 23 = — 0.450, and a4 = 0.345. Fig. 2¢ shows that
there is a high consistency between a(443)pp and a(443)gr for these
data, where the upper limit of the absorption coefficient is 0.1 m™},
effectively covering ~91% of the global ocean.

Following the CBCC scheme (Hu et al., 2013), the relative difference
between a(443)gp and a(443)gR is calculated as:

a(443)p — a(443) |

8a(443) = | a(443),,

©))

To screen the highest-quality R, it is necessary to determine a
threshold for 8a(443). A larger value of 8a(443) for the threshold might
compromise data quality, while a lower value might be overly stringent,
filtering out a large amount of reasonable or good-quality data. An
appropriate threshold helps ensure the credibility of the data while
maintaining its richness.

To determine a reasonable threshold for 5a(443), we constructed a
high-confidence R,s dataset from MODIS-Aqua. This dataset (approxi-
mately 1.37 million data points), which also represents “highest qual-
ity”, was generated from measurements in February 1, 2007 and was
selected from very clear open-ocean waters (Chl < 0.2 mg/m®) using a
combination of three criteria: 12-flags, QA score = 1.0, and CBCC. We
calculated 5a(443) of this dataset, with its distribution shown in Fig. 3. It
is found that approximately 99% of the samples have 5a(443) less than
0.15. Based on this result, we set the 5a(443) threshold for CBAC as 0.15.
This value is aimed at achieving an optimal balance between main-
taining high data quality and ensuring data inclusivity, although it could
be updated after gaining more insights from the database.

3. Evaluation of the criteria for the highest-quality R,
3.1. Evaluation using high-quality field observations

For robust criteria, the screened highest-quality R,s should be
consistent with data or knowledge that is already known or determined.
Therefore, we first used the data measured at the MOBY (Marine Optical
Buoy) site as one of the evaluation procedures of the above-proposed
criteria for the highest-quality R, due to the recognized reliability
and wide applications of MOBY R, in ocean color studies (Clark et al.,
2002; Clark et al., 2003). In this research, we exclusively selected those
marked “high-quality” R, from MOBY, spanning from 2003 to the

a b c
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Fig. 2. Fitting results for the band ratio algorithm and the band difference algorithm for a(443). The units for RMSE and Bias are m™~".



L. Zhao et al.

5

g H10 125
i lopn &
2 \ 20 £
2 ) g
£15¢ 15 R~
= =
= =
g 17 110 =
© E
0.5 x 15 £

0 : — 0

0 0.1 0.2 0.3
da(443)

Fig. 3. Distribution of 5a(443) of a MODIS-Aqua dataset satisfying no 12-flags,
QA score = 1.0, and CBCC, measured in January 2007. The red line indicates
the probability density function (PDF) of the 5a(443) values. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

present, using data downloaded from NOAA’s CoastWatch (https
://coastwatch.noaa.gov/cwn/products/ocean-color-radiances-mo
by-field-observations.html), which resulted in 2304 “high-quality” Ry
spectra.

As shown in Fig. 4a, approximately 81% of the high-quality MOBY
data points satisfied CHQR, suggesting a general mutual consistency of
the two independent schemes in determining the quality of an Ry
spectrum. For the excluded 19% by CHQR, it was found that a portion
(~5%) of these spectra were rejected due to QA scores slightly below
1.0. Another portion (~14%) was excluded because the 6a(443) values
exceeded the 0.15 threshold, even though the actual differences be-
tween the two a(443) estimates were small. This is primarily because
MOBY samples very clear oceanic waters, where a(443) values are
inherently low.

Further, it was found that most of the excluded cases were concen-
trated in 2020 and 2021 (see Fig. 4a), a period during which the Ry
values were substantially lower than those in other years. For example,
Fig. 4b presents the CHQR-rejected Ry spectrum (the red line, at the
MODIS bands) measured by MOBY on April 29, 2021, which was clas-
sified as “good data” by MOBY’s procedure. However, this R,s spectrum
is considerably lower across all bands compared to the climatological
mean (2003—2020) R, spectrum in April (the blue line). In addition, this
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w
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rejected Rys spectrum is also much lower than the MODIS-A Ry of the
same day (the green line), which is an average over an area of 3 x 3
pixels centered on the MOBY site. Note that the green line matches well
with the blue line, meaning that the MODIS-A R, spectrum aligns very
well with the climatological monthly mean R, obtained by MOBY. These
observations indicate that some of the MOBY R, spectra for the period
around 2021, although marked as “good data”, are indeed showing some
abnormality, which were picked up by the CHQR system.

Furthermore, we assessed the effectiveness of our criteria using
matchup datasets between MODIS-A R, and high-quality in situ obser-
vations. While the MOBY dataset primarily represents a single site in
very clear oceanic waters, we complemented this analysis with matchup
data from the Aerosol Robotic Network — Ocean Color (AERONET-OC)
program. AERONET-OC is known for its rigorous calibration and vali-
dation protocols and offers broader spatial coverage, encompassing a
wider range of water conditions (Zibordi et al., 2021). These matchup
data were obtained through NASA’s official Ocean Color Matchup
Search Tool (https://matchup.oceancolor.gsfc.nasa.gov/), ensuring
consistency in the selection procedure and quality control. The tool
applies a series of default filtering criteria to ensure the reliability of
satellite-to-in situ comparisons, including:

1) minimum valid satellite pixels of 50%,

2) maximum solar zenith angle of 75°,

3) maximum satellite zenith angle of 60°,

4) maximum time difference between satellite overpass and in situ
measurement of 3 h,

5) maximum coefficient of variation for satellite pixels of 0.15,

6) maximum irradiance difference between measured and modeled
values of 20%,

7) maximum wind speed of 35 m/s.

To ensure compatibility with our oceanic screening framework, we
further constrained the dataset by requiring MBDgys(443) < 0.0005 st 1 a
necessary condition for applying the band-difference algorithm to esti-
mate a(443) (Lee et al., 2023). Notably, for AERONET-OC, only obser-
vations from stations located in optically clear waters were used,
specifically the USC_SEAPRISM and Venice sites, as they satisfy both the
required spectral coverage (across all MODIS ocean color bands) and
water-type criteria.

To evaluate the Ry consistency between MODIS-Aqua and in situ
observations, the Type-I regression (ordinary least squares) was used to
calculate the coefficient of determination (Rz), where errors were pri-
marily assumed in MODIS-A measurements. Further, root mean square
difference (RMSD), mean absolute percentage difference (MAPD), and

0.015 T T T T T
+ Mean £+ SD
—&— Outlier sample
—b— MODIS-matchup
0.01 1
—'x-
=
4
~
0.005 - §
0 . \ \ .
400 450 500 550 600 650 700
Wavelengths (nm)

Fig. 4. (a) Yearly distribution of data points of MOBY high-quality R,s data and those after applying CHQR. (b) An example (measured on April 29, 2021) illustrates a
CHQR-rejected MOBY R, spectrum (red) compared to the multi-year average (+ standard deviation, SD) obtained in April (blue), along with the MODIS-A product
(green) of the same day. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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bias were calculated as follows:

RMSD = [~ le (i — x4 @

1 n
Bias = — i — X
ias n;(y x)# (5)
1y — x
MAPD:HM 1 < 100%# (6)

where x; and y; represent in situ and MODIS-A measurements,
respectively.

Using R;5(443) as an example, Fig. 5 shows the consistency measure
between MODIS-A and in situ measurements (from MOBY and
AERONET-0Q). Before applying the CHQR criteria, the matchup dataset
contained 1318 samples. The agreement between MODIS-A and in situ
R,5(443) was reasonable, with RZ = 0.91, RMSD = 0.0010 sr~!, MAPD =
11.9%, and bias = 0.0001 sr1 (Fig. 5a), but it is more than two times the
5% desired uncertainty for these blue waters at the blue bands (Brown
et al., 2007; Cazzaniga and Zibordi, 2023). After applying the CHQR
criteria to both satellite and in situ data, 492 high-quality matchups
remained. While this dual-filtering process substantially reduced the
sample size, it resulted in a notable improvement in the agreement of
R;(443) between satellite and field measurements (see Fig. 5b), espe-
cially the MAPD dropped to 7.4%, a value that is very close to the
desired 5% uncertainty for blue waters. In contrast, the subset data
excluded by CHQR showed clearly much wider disagreement (MAPD =
14.6%; Fig. 5¢), confirming that lower-quality or abnormal observations
were effectively and objectively removed.

To highlight the improvements obtained with CHQR, Fig. 6 (also see
Table 1) presents the statistical comparison across all spectral bands
using matchup data between MODIS-A R, and high-quality in situ ob-
servations (including both MOBY and AERONET-OC), constrained by
MBDgys(443) < 0.0005 st~ L. The comparison includes R2, RMSD, MAPD,
and bias values before and after applying the CHQR criteria. The results
show that R%, RMSD, and MAPD consistently improved across all bands
after applying CHQR, indicating enhanced agreement between satellite-
derived and in situ R,s measurements. This is in particular evidenced by
the reduction of MAPD at the 412 nm band, changed from 15.3% to
~8.6%, indeed showing the high quality of MODIS-A R products after
strict quality control, as the 8.6% (or the 7.4% at 443 nm) difference
including contributions of the inherent imperfect “matchups” in time
and space between satellite and field measurements.

It is necessary to point out that the initial matchup dataset was
already filtered using various quality control measures—such as limits
on viewing geometry, pixel variability, and solar conditions—ensuring
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that only relatively reliable matchups were included. The fact that
CHOQR still significantly improved the agreement, particularly in
reducing MAPD, underscores the value and necessity of implementing
more stringent criteria for identifying the “highest-quality” R, products.

3.2. Evaluation with satellite images

We further evaluated CHQR using MODIS-A R, data products in the
open ocean, as water properties in such regions have low spatial varia-
tion due to limited to no impacts from human activities and land runoffs,
therefore, the highest-quality R,s product of such a region should show
minimal spatial variances. To examine the spatial variability of Ry
before and after the application of CHQR, we selected data from an area
in the South Pacific Gyre (120° W to 110° W and 25° S to 35° S). This
region is known for having some of the clearest natural waters on Earth,
with generally uniform spatial distribution and stable seawater condi-
tions over short periods (Morel et al., 2007).

As an example that was randomly selected, Fig. 7 shows the spatial
distribution of the coefficient of variation (CV) of R;(547) of April 6,
2005, which was calculated for all boxes having 3 x 3 pixels. Four
different screening methods were compared: (a) 12-flags alone, (b) QA =
1.0 alone, (c¢) the CBAC scheme with 6a(443) < 0.15 alone, and (d) the
CHQR system. Fig. 7e presents the probability density function (PDF) of
the CV values for each method. As illustrated in Fig. 7e, and further
confirmed by our analysis of the pixel-wise CV distribution, more than
10% of the pixels screened by QA = 1.0 alone exhibit higher spatial
variability (CV > 0.1), compared to ~6% by 12-flags alone, and ~ 5% by
CBAC alone. In contrast, the CHQR method results in fewer than 1% of
pixels with CV > 0.1, indicating a marked improvement in spatial
coherence.

Meanwhile, Table 2 provides complementary statistics on the mean
and standard deviation of CV values, showing that the CHQR system
yields the lowest average CV (0.030) and the lowest variability (stan-
dard deviation of 0.016), again reflecting a sizeable improvement in
spatial homogeneity. These results confirm that CHQR offers the
highest-quality and most spatially consistent R,s products among the
methods evaluated, which are also found for the other ocean color bands
(see Table S1 in the Supplementary Information).

In addition to the evaluation of the relationship between spatial
coherence and screening methods, we further analyzed the relationship
between temporal consistency of Rys and screening methods for waters in
the South Pacific Gyre, as it is well known that water properties in these
ocean deserts vary very slowly, or remain nearly a “constant”, from day
to day (Claustre et al., 2008; Morel et al., 2007). To evaluate short-term
stability, we extracted daily R,(547) values from a small region (120°W
to 118°W and 32°S to 30°S) during a one-month period from April 1 to
May 1, 2005. The daily values were also generated using four different
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R* =091 . .7 R* =095 - #t R*=0.87 P .
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Fig. 5. Comparison of R,(547) between MODIS-A and in situ measurements. (a) Before the application of CHQR; (b) After the application of CHQR; (c) Results for the

data excluded by CHQR.
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Fig. 6. Statistical measures assessing the consistency between MODIS-A R, and in stu data across various bands before and after applying the CHQR criteria. The

parameters include R2, RMSD, MAPD, and bias (a-d).

Table 1

R2, RMSD (sr~ 1) MAPD (%) and Bias (10> st ') of MODIS-A Rs compared with in situ observations from MOBY and AERONET-OC, before and after CHQR filtering.

Wavelength R? before R? after RMSD before RMSD after MAPD before MAPD after Bias before CHQR Bias after CHQR
(nm) CHQR CHQR CHQR (st CHQR (sr™1) CHQR (%) CHQR (%) 10°sr™h) (107°sr™h)

412 0.92 0.96 0.0013 0.0010 15.3 8.5 12 32

443 0.91 0.95 0.0010 0.0007 11.9 7.4 12 27

488 0.84 0.91 0.0007 0.0005 10.9 7.2 —4 13

531 0.17 0.27 0.0004 0.0002 13.1 8.6 -8 3

547 0.25 0.42 0.0003 0.0002 14.6 10.9 0.6 9

667 0.00 0.03 0.0001 0.0001 55.9 34.2 -7 -2

screening methods: 12-flags alone, QA = 1.0 alone, CBAC alone, and
CHQR.

As shown in Fig. 8 and summarized in Table 3, all methods yielded
similar monthly mean values, but their day-to-day variability differed
significantly. Among them, CHQR yielded the lowest standard deviation
(0.00011 sr™Y), indicating the highest temporal consistency. The CBAC
method alone also showed low variability (0.00012 sr™ 1), slightly higher
than CHQR, while 12-flags and QA = 1.0 methods alone, resulted in
noticeably higher variability (0.00024 sr~! and 0.00025 sr™?, respec-
tively). The much higher standard deviations are results of the abnormal
highs on April 3, April 15, etc. (See Fig. 8), which were objectively
filtered out by CHQR.

For comparison, the R, product at 560 nm (R,(560)) produced by
the Ocean Colour Climate Change Initiative (OC-CCI, (Sathyendranath
et al., 2019) is also included, which is a merged dataset combining Ry
observations from multiple satellite missions (e.g., SeaWiFS, MODIS,
MERIS, VIIRS). Despite the multi-source merging and gap-filling pro-
cedures (Sathyendranath et al., 2019), it is found that this product has a
higher standard deviation (0.00017 sr~1) than that of MODIS-A R(547)
product after applying the CBAC or CHQR schemes, indicating a prop-
agation of abnormal R, product from individual missions to the merged
R;s products (see the sharp R,(560) peak on April 28, 2005). These

results underscore the effectiveness of CHQR in delivering temporally
consistent and high-quality R,s products. The abnormal values, if not
filtered out, will not only be propagated to the merged product, but also
significantly impact the evaluations of the long-term trend in the ocean’s
bio-optical properties.

3.3. Impact on data volume by CHQR

For satellite remote sensing, it is not just the quality of a data product
that matters, but also the volume of high-quality data products, as the
volume affects the effectiveness of such a high-cost platform. CHQR, as it
takes multiple filtering criteria (see Fig. 1), inevitably will remove more
satellite observations than the individual schemes. To get a measure of
the impact of CHQR on data volume, we compared the retained products
for data showing in Fig. 7. It is found that, among the four schemes, QA
= 1 alone retained the most (~584 thousand), with CHQR retained
~415 thousand, which is just about 29% less than that of QA = 1 (or,
~25% less than that of 12-flags). To further assess CHQR’s impact on a
global scale, we collected 158 level-2 MODIS-Aqua images acquired on
February 1, 2007, totaling approximately 46 million R, spectra. After
applying CHQR, ~ 14.6 million data points were kept as the “highest”
quality, which is ~60% of the data points when the 12-flags scheme was
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Fig. 7. Spatial distribution of the coefficient of variation (CV) of MODIS level-2 R,{(547) on April 6, 2005, after applying four different screening schemes. (a) by 12-
flags alone, (b) by QA = 1.0 alone, (c) by CBAC alone, and (d) by CHQR. (e) The probability density function (PDF) of CV values resulting from the four
screening methods.

atmospheric correction under high solar zenith angles, fog, and other
factors (He et al., 2018; Khanal and Wang, 2018), indicating a necessity
to further improve the data products for such regions by the community.

Table 2
Spatial variability of R(547) in the South Pacific Gyre (120° W to 110° W and
25° S to 35° S) from April 6, 2005, after applying different screening methods.

Screening Mean Coefficient of Standard Number of Data
methods Variation (CV) Deviation of CV Points retained
12-flags 0.042 0.039 559,855
QA=1.0 0.050 0.048 584,198
CBAC 0.040 0.027 546,280 Table 3
CHQR 0.030 0.016 415,029 Statistics of R,(547) for data in Fig. 8.
Data after different screening Mean R,(547) Standard deviation of
. . . 11 . s 1. methods st Ry(547) (st~
applied (which retained ~24.6 million data points). These results indi- or ) =(547) Gr )
cate that CHQR achieves a reasonable balance between data quality and 12-flags 0.0018 0.00024
data volume, with a sufficient number of the “highest” quality satellite SQA?: Lo g'ggig g'gggfz
observations retained for further applications. On the other hand, as CHOR 0.0017 0.00011
would be expected, more data (~70% of the filtered-out data) were 0OC-CCI (560 nm) 0.0013 0.00017
excluded in high-latitude regions (>60° N/S) due to challenges in
-3
35 x10
—e—12-flags
—e—QA Method
— 3 ——CBAC
5 ——CHQR
52.5 —=—OCCCI(560 nm)|
< @
v
5 ::.
E
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Fig. 8. Time series of R,;(547) in the South Pacific Gyre after applying different screening methods.
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4. Examples of using the products

There could be many valuable applications of this highest-quality R
database, such as its use in developing the cross-satellite atmospheric
correction algorithm (Lee et al., 2024). Here, another example is pre-
sented. Utilizing the monthly composite R,s data product from MODIS-A,
covering the period from July 2002 to July 2024, we derive time series
products from the original R, data product distributed by NASA and
after applying CHQR, respectively. As case studies, we randomly
selected two small areas in the Pacific Ocean, specifically 40-42°N,
140-138°W and 32-30°S, 124-122°W. To be consistent with the influ-
ential analysis presented in Cael et al. (2023), we also limited our study
to the period of 2002 to 2022.

Fig. 9 shows the time series of monthly averaged R,s(547) before and
after CHQR screening for the two selected 2° x 2° regions. For each case,
only months in which more than 30% of the 4 km pixels contained non-
missing R,s; values were retained for the analysis. Interestingly, as
illustrated in Fig. 9, it is found that the long-term trends of R,(547)
obtained from the original data are completely opposite to those derived
from the highest-quality data. Specifically, in Fig. 9a, the trend of
R,(547) from the original data is —3.0 x 107% g1 yr’1 (P > 0.05),
while the trend from the highest-quality data is 2.1 x 1078 s yr 2,
although both show no statistical significance (P > 0.05). Similarly, in
Fig. 9b, the original data trend is —0.6 x 1077 st yr™! (P > 0.05),
contrasting with a trend of 9.0 x 1077 sr ! yr™! (P > 0.05) for the
highest-quality data. Although these differences are not statistically
significant (P > 0.05), the trend reversal highlights the potential for bias
in long-term analyses due to the inclusion of low-quality or abnormal
data. Note that the decreasing trends of both locations found with the
original data are also presented in Cael et al. (2023). In calculating these
trends, we employed the Cochrane-Orcutt method (Cael et al., 2023) to
address autocorrelation issues, thereby enhancing the reliability of these
results. The time series of R;;(547) showing in Fig. 9 a and b suggest that
the contrasting trends are a result of low-quality or abnormal data
(especially the extremely high peak around 2006 for the North Pacific)
embedded in the originally distributed R,s data products, which then
result in biased signals and impact the reliability of long-term trend
assessments.

Importantly, this pattern of opposing trends is not limited to a few
specific areas. A broader analysis within the 50°S-50°N latitude band
was conducted, where the highest-quality data are sufficient for long-
term trend analysis. Based on long-term trend calculations of R,(547)
at a 2° x 2° grid resolution (Cael et al., 2023), 21.0% of the grids
exhibited opposing trend directions before and after applying CHQR.

3
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This percentage was calculated relative to the total number of grids that
contained more than 10 years of valid highest-quality data for trend
analysis. Among trends with the same direction and exhibiting statistical
significance (P < 0.05), the average relative difference in trend magni-
tude reached 20.3%, and 2.2% of these had the difference exceeding
100%. Such substantial variations—especially when averaged across
large regions and over many days—can collectively distort large-scale
interpretations of long-term oceanic changes. These findings empha-
size that the abnormal values included in the original data products
could introduce serious biases in long-term trend analyses.

5. Summary

In this study, we combined three filtering criteria for the determi-
nation and compilation of the highest-quality R, products, collectively
termed as CHQR: 1) filtering based on observation condition or failure in
data processing, 2) spectral shape consistency, and 3) minimum to no
residual errors. These criteria, when applied jointly, ensure the selection
of the highest-quality R,s product. We thus applied CHQR to 20+ years
of MODIS-Aqua measurements and compiled a global database of the
highest-quality Ry, termed as HQpopisa-Rys (three formats: daily, 1 km
resolution; 8-day, 4 km resolution; and monthly, 4 km resolution).
Compared to databases created from in situ R, in addition to avoiding
the consistency issue in data quality among the R,; measurements by
different methods, HQpopisa-Rrs has enormously larger spatial and
temporal coverages. The availability of such an R,s; database will be of
great value for many studies in oceanography and ocean color remote
sensing, such as the response of phytoplankton to climate change and
cross-satellite calibration or atmospheric correction. With HQuopisa-Rrs,
trending results in the literature obtained from data products without
the application of CHQR could be reversed. These highlight the critical
role of data quality in long-term trend analyses and underscore the
importance of employing more rigorous quality control methods.

On the other hand, it is necessary to keep in mind that CHQR is
designed for clear-ocean waters (a(443) < 0.1 m~!; ~91% of the ocean)
and removes more (~25-40%) data products compared to the present
NASA operational 12-flags. For the other ~9% of global water, mostly
coastal and highly productive waters, criteria to determine the highest-
quality R, from MODIS-A measurements are lacking. In addition, the
HOQwmobpisa-Rrs database excludes data collected under unfavorable
observational conditions, such as high solar zenith angles. This limita-
tion particularly affects high-latitude regions, where high-quality data
are relatively scarce. A truly global coverage HQwopisa-Rrs database
demands great efforts for the development of robust criteria for
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Fig. 9. Time series of R,(547) for two localized areas in the Pacific Ocean: (a) 40-42°N, 140-138°W; (b) 32-30°S, 124-122°W.
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objective determination of the highest-quality R, in coastal and high-
latitude waters from MODIS-Aqua. Further, in the era of hyperspectral
satellite ocean color remote sensing (e.g., PACE, HY-1E), it is necessary
and useful to expand the multi-band HQyopisa-Rrs data to a hyper-
spectral R, product. This would enable the extension of present-day
hyperspectral observations back to earlier decades, offering long-term
and continued hyperspectral data for ocean color studies.
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