1007-4619(2025)12-3459-16

HY-1C/ID T2 COCTSHiEMFZ aiREREH
HZE MK E R R

TR, RBE®W', ABY, THLE, FEF, HORKR,
N, MR, RN

L ETTR: WYk b 2r 4 S S s, JE ] 361102
2. R T AR H L, dE s 100081

8 OE: KIRMEE T (Chl-a) ENBEORESE, FORUER B BRSO T R IRRAGIARIST | G IR 5
MFNAHBAEEE YL, PEEE—SRZFTE (HY-1C/1D) #HFAE K QKRR (COCTS), nJseil
N B A BRI R AN . BB X COCTS Bl A9 =i A B Chl-ad@ B VL, JESCHLH 32 DR B e v i 5
SMEEACIFFT RO TR . ASHIF 9T 3 T 7 35 A BRI 2165 4l S0 Bl , MIEE T 3T HY-1C/1D COCTS £ 3% B
BIRSETEE (R) SHESENZZ BN ML M4 (MLP-NN) #5, STELABROKAK Chl-a ¥ B 20k B 52 3
A U, AR ELL412 nm, 443 nm. 490 nm. 520 nm. 565 nm. 670 nmIFERIR | G
Aby . 1T A A3 TR R AT A SRS A A SRS S B R i A A . IiESE R R W], MLP-NN
FUAGSE ) Chl—a ¥e JE log #5405 1135 A0 34 5 AR 1l 22 RMSD (Root Mean Square Difference) 4 0.22, A 504654 5 43
{2 MAPD (Median Absolute Percentage Difference) 4729.1%, %5 NASA k55 fbFRUERIK B8 EEE L (OCD 4351
FEAIE T 0.1 #116.9%. #F— 25 1) T AL 55 S A4 1) VG e 56 TE 25 5 8%, MLP-NN #2814 519 Chl-a ) RMSD Al
MAPD 73 5138 OCIBA L FEAR T 0.09 F19.8%, eI AR S S ettt . ARy ™ TR ARV A 28 S ) 45 el 2
LT —Rh R, W TR HY-1C/1D T W43k Chl-a ¥ ¥ B9 AE
KW M FKa (Chl-a), BRI, REHAD, HY-1C/1D DR, M4, COCTS, KM
FESES: P2
SRR FXE,ZRBH,BE T, TEE,FBTF, HOE, /N, A, £/0E .2025.HY-1C/1D B E COCTS #IEH R & a ik
EREWREMEEETR . BEFER,29(12): 3459-3474
Wei M Y,WuJY,Zheng L F, Wang D S, Lee Z P, Shang S L, Ye X M, Lin G and Yu X L. 2025. Retrieving

Chlorophyll-a concentration by using a neural network for COCTS sensors aboard HY—1C/1D satellites. National
Remote Sensing Bulletin, 29(12) :3459-3474[ DOI: 10.11834/jrs.20255079 ]

National Remote Sensing Bulletin & & 5 4

15 5

%% % a (Chlorophyll-a, Chl-a) ¥k 2148
T AT W) A4 0 o R I ) R 7 T I G B A A
(Huot 5%, 2007), XFHEHMIGH . EBRAE 12
SRR AR AR AT BRI 52 0 (Behrenfeld 45,
2005; Carvalho 4%, 2013; HensonZ%, 2010).
HIARBL Chl-a 25 A3 A 45 1E, BB T ES RS
R REPEAL , IF M BOR ) e R 2 A . i
B, E A ER R EE -5 CAE (HY-1C) #l

im HEA: 2025-03-06; FENZAR: 2025-06-24

#E—"5 D2 (HY-1D) 52/ COCTS (Chinese
Ocean Color and Temperature Scanner) FE W% 3k B A
5 B E R IRBE  (Chen %8, 20215 XIEE R 45,
2023), g Chl-a ¥ B2 1 2 11 B2 25 5C 8 S50
Pl TR B SRy (A 5F, 2019; S ZEAG
&8, 2023),

e GE R Chl—a i B2 I RO BLI7 RAE IS 56
T, SR OB R L PO AR AL
W HH 12 4% B (Ritchie, 2006; Holm—Hansen &% ,
1965; Holm—Hansen 1 Riemann, 1978; Wright %,

HEWB . FEZRE LS AITR (45 :2022YFC3104900, 2022YFC3104903 )
FE—EE® AN HXW, U7 ) K GIERE, E-mail: mywei@stu.xmu.edu.cn
BEEEEN: &/NE, 5 K @GNS H . B-mail: xlyu@xmu.edu.cn
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1991) o S I S S 7 i A B v, (A 25 (]
5 70 R R RO AR A — o SR R .
T, BEOK R BRSNS L o S W
RIS, ATABORAN R RN CRKRE
45, 2025), LA Chl-a W ¥ T8 7 k5 £
SRR AR TR . o, AR Tk
T B A Chl-aWREEZ MG R, # W
AT W B LB S L B s B 1 LR X R
X I 22 36 389545 (O Reilly %, 1998; O’ Reilly
1 Werdell, 2019; Hu%%, 2012, 2019; Volpe 5%,
2007) o 2 fiff AR L T oK RO 2 4 B AL EELIE
T T R KR I A R 2R R (AR R &R
) R Chl-a ¥, 5S40 MLL, kA
A HE R ) ) B2 SRR AR T2 & A (Carder
4, 1999; LeeZ, 2002),

MFTEF X HY=-1C/1D TR Y Chl-a ¥ B 57 78 5
EM R Z R AET CZI (Coastal Zone Imager) 15JE%#%
(Chen %%, 2019; ik 4, 2022), RECAH¥H
SR IETF COCTS BRI FE Chl-a ¥k ¥ I A 5Y, 1H
TER R R HE G AR ITIRMESR . flin, Ye
4 (2021) SR OCIE 2 )\ COCTS 14 i 4115 4>
BR Chl-a ¥R )%, JFE0UE T 5k 0 R ERE . ULAk,
2R NEE (2022) X b E e G A T
BT 4R LU B Y Chl-a ¥ RO, IR
PR B U B i R I, R R R A
T IV 6 355 B 0% S B0 A 10 114 Chl—a V4 B 2 285 2R
EAE] F R T 4 G B 2 K A R R iR 25
X 2 pl U PR v R 1) AV R A A B X
KBS E S I E 24450 (Dierssen, 2010; Morel
Fl Prieur, 1977)., W, T RBEL G LK H L
B JRI B, & 3T B T COCTS B0d B AN [R] Ak 44
AT Chl-a ¥ A SO ik, LURTHE ™ T ARAE
SERYE K PR BT W I B

BEE N TR RBE R M &R, Hlis2% I 7€ Chl-a
WS RV 1 A2 B T 00 . Tl a6 R G
B AN Chl-a SCMVECHE 1125, HLAS 2% 2 BRI fg
AT RAHHE Chl—a W6 B 55 K RO e e 2 0] i Al 2k
PERR, JUHAERIE YR B A UK AR Lo 52 451
DXk, I T R A N P AR A (Dransfeld
45, 2004; Zhang %%, 2003). HAT, £ XFAS[E
B EE , C2H 2T F 2T 1Y Chl-a
FE R AE AR, IR ERI S R R I T R
B9 AS BE . I 40, Pahlevan 5 (2020) i@ i fl &

Sentinel-2 5 Sentinel-3 T E%(¥E, #H T —FiRE
B SRR IS T R 2 AR oA
ZF T Y N Bl 55 9 T K B8 Chl—a Y BE Y 750 45 I
., Cao%% (2020) %54 Landsat 8 OLI %R 5 4% 3t
B FE SR TR AL . FF & T —Fh L 1 AT XV O A
IR Chl-a ¥R 8 R, BESS F sz vk
BERTERELMER L. Z2EM%E (2019) £XT
KV R AR g 1, M T 3 F SRR ) AL
(SVM) 1 Chl-a ¥R EAG SRR, JEILT SVM £
Fe W KR IR EE TR ) R AR T . R D5 A (2017)
FIH GF-1 WFV 5248, 72K IXIE ST T Chl-a i
JE BP 28 W 246 S AR AR B A AR R K A
HEA RAE TSR
EFXTHY-1C/1D B A W FEK @ UEI, Yang
8 (2023) SR AL 4R 25 W 48 B AL B ML 2 )
J7 0 FF COCTS % Bt 1) Chl—a ¥ ) 3 . — 7
T, A FE P AR B R R S E RO R AT
Chl-a ¥ JE S8, K 5050 7% I BT 2800 Chl-a 53
SR 55— 5w, Ak ge gt = 22
KA A ACEERA I X, BRG] TR S BROR
ALK AR RS R (Hu, 2023; Li%, 2023;
Zhang %5, 2024) . #F%F EiR R, AR ET
HY-1C/1D T A& COCTS Hhut i Brig i g e, L4
BRRUEE S0 B A ke As, 454 bR AR AR | B
)45 B DA S 1 B 5066 A SR T SF AR S
KHZ ZRAZRM MY, & T 5% COCTS 5k
P Chl-a ¥k B RS, MR A S IR BRI R
IR TR 0 S SRR

2 BdE 55k

2.1 HIERIE

(1) SE R DJEIEEEAL B . AWM T Chl-a
W BT 5 B R B 2R AL 4 Valente B4E 4R
(Valente 2§, 2022) . Nechad 504 (Nechad 5%,
2015) MUE[TR=AIE#MHFFALEE (O0L) %
FM MBS (R5 AL o) FIChl-a¥
B (mgm®) BIEE . HA, Valente Fidia & 2 [ 5
IKEFFE ] Z AT B 42 BRI 7K M A 1 0 2 Bt
B, AR T Bk A AT IO ] Y S8 A
2 TR RNz, ZEARER R JE BT
Z I EE ;. Nechad $04iE 4 T AULE D B BOA R,
SN g (412.5 nm, 442.5 nm, 490 nm, 510 nm,
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560 nm. 620 nm. 665 nm. 681.25 nm#1708.75 nm),
FEORAE [ WO T T AR AR VY AR, T TR
VR K AR TE Ui K oK Bi 280 (fFilan, BT
PRI Chl-a ¥k B2 ) Sisd R s OOL Bds 5 my
HAFZOR A EITE, GiEE. a5k,
PR PR 4N B N A5 R, R R,
Ktk H FOBY IR FOLIEAUIE (Lee 55, 2013;
Yu &, 2021), JGil ¥ 5 360—1000 nm, 7>
HEEM 5 nm, Chl-aVkEEIET9E0EEME (Catherine
4, 2012),

(2) TRBE: AOFFEHE Chl-a SE ALY
SIAT COCTS f e R 2 1 2023 4F 8 H 25 H IR
() Level-2A R FHa ™ dtr, =5 (6] 50 BFR 4 1.1 km,
B b B DR E RS RS (hups://
osdds. nsoas. org. cn/DataRetrieval [2025-03-06]) 3k
W, (R, ASHIFGE 25 1 3 7K I RO R 2% A X 1 v
TEIEAE DI A RE T (X0 Chl-a W BERAE) AYEK
SHPLH, RSB EERE MODIS & J8R 25 52 V8 119 165 4 Tl
SST (Sea Surface Temperature) FIGEAA GRS PAR

(Photosynthetically Active Radiation) H(HEAE A 55k
WEEAs b, o, MODIS 4244 T SST #l PAR #Y
Level 380 HMH . H BME LIRSS H S48 o
RS it (925 18] 73 BE 4 4 km, FF 7T 3 i NASA
Ocean Color (#5F 5 (https://oceancolor.gsfc.nasa.
gov/[2025-03-06]) FRHL. % HEwJCk 4R
L COCTS f& i /Y SST A 245 H 4 {EL7™ it /1 PAR
77, ASHFSE R I MODIS () PAR 1 SST AR 7= i
PAPR A RN 2 55 23 B o X ik s 1 22 1 IS 405E
MMM EOR, RS IT R Y Chl-a S E A AL AT AR 4
HY Z41) TR AR ALY SST AT PAR $dis 47 537

2.2 HiEWmALE

TR TABE R B AR (B4
75 [8] 43 43 T UL https://zenodo. org/records/15683396
[2025-03-06 AT A1 Fi7) , i T 4Bk A
[ 2RI AR, X5 IRt . a4 Rl 7 55
IEAE . HARTAL FELBRESE (1) JGIEEE L,
(2) TEHIES S EHEEECA (3) YIZRFAMIL
5y

F1 AR ERIA LR LR R

Table 1 Summary of the in—situ datasets utilized in this study

B e [a] 75 ] il Bl g AL
Valente 1997 4F—20194F BRI 85% W%k . 15% Mk 1278
Nechad 2002 4F—20104F T UM S e A P =l G S 1 3 85% Y% . 15% Mk 278
00L 2003 4E—2018 4F [ERCAEIVS 85% Y%k . 15% Mk 424
00L 2003 4E—20174F N L NN NS B ST ETIE 185

(1) S e ya b B . R R ) 52 I 50
LR IR 2ZS, FRATRH T AR 1) 5 1 3K
5 COCTS 1% J& 2% 1) I 4 55 200/ 520 R BiHi 46 .
Valente £U48 42 FE (I BS WU 20655 R, FRATHR 48 L
W SCHEAZ (BRI 7 V538 1 AE +6 nm YR LR B
BV {E (Valente 25, 2022) PAVCHE HY-1C/1D
TREP LK (403% 412 nm, 443 nm. 490 nm.
520 nm. 565 nm 1670 nm) ., XfT Nechad £{#E4E ,
HIGEAE S ILA BB (IL2.175), 5 COCTSHY
R KB, R SRS (linear) 2R
AREL COCST X 1y % B &M . OOL i 4% rh S ik iy
ST R B, V)3 A ' e N R R
FRA% COCTS HH I i B 1 34k o

(2) T3 E WM 55 52 0 & DE e . A BF5E
5 COCTS R, VE L i) S0 £ 48 ok U5 T OOL B4l 4 |
AsF 1] 905 BT oA 2019 4F—2024 4 . 3R 24 3¢ It

BCREAS B S Iw a A9 T R K08 DC E R HT LA
i s RO SXSAROTE . AR H A SR TR
HIRFIBCERIE (5), HR, (565) 785 RE
CV (Coefficient of Variation) /NT 30%, NJEHUE
FI PR 1 b 6 B o il s I VE B . X T SST
FIPARZHL, i THAS M F PR ER, VEECI R
A 3x3 480t 1, HABSAT S R A VEEC 7 25 PR 4F
—E

(3) YIZRFNM LR 73 AHEFE b L 35 )
2165 21 S B s T AR B YIS L 03 R0 963
Y255 A 5 B Valente . Nechad #100L (575
TR ) 3B SR URR G g, 3k 1980 ZH A
Horh 85% TR I ZRid 2, 15% B98s T
MPAR A B PERE . A7 S R AR BE ] T OOL #4542
TP PG T R R R 3 4 S ) O N £
i, 1854, LHIT IRz Mtk pe . Hds
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23 A U SOOI B 32 202 P O FEULIAY Chl-a
We T LA BT G T U 2R K0 B Chl-a ¥R 19 Y [,
PRI B RARRE. K1 (a) R T AR SE
Tl & Z ORI ZE RURAPE R R B9 B X1 Y

0.10 100
0.08
10
0.06
z 1
o
0.04
Z 0.1
0.02 B8
0 0.01
450 500 550 600 650
Wee/mm
(a) R GiE 2R

(a) Spectral curves of R,

Chl-a/(mg/m?)

Chl-#¢FE. 1 (b) MBI T Chl-a ¥ BE M4 1h
B, Chl-a ¥V RIA 0.02—95 mg/m®, HAH 1464~
S ALY Chl—a ¥ BE K T 20 mg/m®,  Fo43 KB T A [H]
IKPRZEAETT B LE WD A AR AE

300

0.1

0.5 1 5
Chl-a/(mg/m?®)

(b) Chl-a ¥ 534 7 il

(b) Distribution range of Chl-a concentration

10 50 100

1SS AR R DEHERHIE & Chl-a W A4t

Fig. 1 Spectral R and the distribution of Chl-a concentration in the in—situ datasets

2.3 MHEMKEE

(1) BERIe e, b 1 92808 A ny A L fig
RS, AW 5T X 2 Fh gl ) 2 N AL A% 5
BRI BEAT T B A, AR E T 2R
HI#SMLP (Multi-Layer Perceptron) 5/ 2% NN
(Neural Network) ##) (f&# MLP-NN) H]F* Chl-a
We B R, R A MLP-NN A58 28U G 6% 38 4o 78 48 1) 4%
JE BRI S BOE e 2 AR B0 Bl g (BRI R3S
PE), DT BEUE AT A5 A 1 A5 B g AR et G &%
(Hecht—Nielsen, 1992; Kim 1 Adali, 2002), iX
X R Chl-a W JEAE TG B B AR T . HAbS
SRE BRI LS . SCFE AR (SVR) . KA
WHCtZe Mg (LSTM) . BEFLERAK (RF) Filil id 15
PLFIEAL I S AL FE v 2 M 2% (GA-BP), A5l
XA 3.1 (323).,

(2) FERIUCE . T iR E B R Rz T BE
JT A AR AR ZRAT AT 1 bR fEALAL P (Sola HiI
Sevilla, 1997), DIJHBRARIFEIEZ [ 4022 57,
B PR A R TR A A (19 52 i A T R ] 9 RUBE - DTG
Insg AR AW SO B AR 2R R E M. E X
[ 1 26 S AR L4 — A2 L A TREZ (e
6 M3 MEIT) Dle— iR, TR

BN, ARWFIEERE LM (Levenberg—Marquardt) -
BAERNRALTTE , RS TR 4
Tk DG AR, BE A = R0l A A 1) 48 AS i o s A
RURCBOE (Bilski %5, 2020; Hagan £l Menhaj,
1994) . LM 531 BA& m] 8 M F & R IE, BETEA
FRAEA B0 A 05, B DR IR ASE P 5 P
H I EL (Mukherjee 1 Routroy, 2012) . £ 13l
ZratfErh, AWFRCR M K28 LR (Arlot il
Celisse, 2010) LAMGsmARIRSfEME . 52 )OSR im o
Z WG UL, PRUERRLEA [R) B ds 146 i
R B, ST HIZ AR Ty, Ik g R AL
Pk o AN R B TERED B oAb, UIZRid e
FIA T IENWAL A HLH] (Srivastava 55, 2014;
Zheng 7, 2018) DIFRTHEEAUPERE . 1E 0 Al i Xt
B RACE AT, R AR B 54 I 5 Tz Ak
AET 5 TSRS L ] DO 7 0 i R 158 22 1 B340 5 O
P I 2R Y2, DT B 1k A R e B 405 I
gtk

(3) BRI A . RO A S
Bt bR ] 2 4E B2 R AR RS Y SR . BR COCTS
6 MBI R LIAL, 51 AR B LA LU s K Ak
AR T B, AR5 B AR bR (R4 |
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WS B () KA R ] RUBE (9 SST 5 PAR
By, &P FrE A mE 2 iR, H
t, ROBB HIE MBI, FEEIE T
JKAR R Chl-a ¥ B2 X BEDOEHEBE (412, 443, 490)
2R Jei Be (565) MUBUEAE (Tran 55, 2023) ¢
XL 5 A M BIRMRRIE T, TIAEZ—&R
Z4its 7 (RuBwurm %%, 2024; Yang®, 2022),
SRR T RO HELEERAE kAN R AR
MEAFTERCR R 22 57, A RO 18 JE S, w0 Al
R SAIAEAERUE B —3, T2 s AL Y 2
SRR B R IREE AR & B AR AL, AN
RIGIT SST 5 PAR (1 5 R[] RUBEEHE . (45K
(R AP CGHH) . AUESHAFEY (4
A AP B H) mAEES A (B ) .
Horbr, ROV 80E AT By TR A i il B A S R
s H RS 1 3 50 R om e — A B
AT A ROWL I B /21, DL AR T 2002 4R 7 A
) 2024 4 6 W 1a] pir A 5 8 00 00 B80diE T 5 A 2 1Y
KIATIME, oS3 AL T XS A R i S ey
S5 B HFE %R AT AT RN Chl-a %2 SST, PAR
B 5% ) AT BB A7 7E i J5 200 (Dunstan 4, 2018;
Trombetta 55, 2019). H T Chl-a ¥ 425 7
B, PRI EASE AL 1 0 R AT 0 B e, LU
/R TE L, SR TR BN e ) RS P N B TR
o S WY A S RO A AL i A DT B, AR
3N T B SEON G R R B (WL3.2719).
24 IFMIERR

R 4 T R G SREMERE . ARWTTER T T
ZAVEM R, ARG E RELR (Coefficient
of Determination) . ] /5 # fii 22 RMSD (Root Mean
Square Difference) . {37 %5 266 X 43 LAl 22 MAPD
(Median Absolute Percentage Difference) F1JCIR B
41 b 22 UPD  (Unbiased Percentage Difference) o
PR d6bn C 712 W T Chl-a ¥ B B 28 2% 5
S T AR GRERRABIE, 2002; Ye 4,
2021; Shahvaran%¥, 2024), BEARGFEAKXUWT
i(logm(esti) - logm(obs,.))2

R=1-_ 1 ()

n

z(Mean(IOg]()(Obsi)) — log,( obsl.))

i=1

i(logw(est,.) - logw(obsl.))2
RMSD = | =1 @)

n

est, — obs;

MAPD = Median

|

UpD, = (Chlay), = (Chiagc),

0.5 x ((Chlay), + (Chlag) )
o, est, TR S IEHAF ] Chl-a ¥, obs, 7R 5K
A Chl-a ¥ 5 Chlay, A1 Chla,,, 730 528 5T MLP-
NN HAUFI NASA ML 5543217 OCIE L (hitps://www.
earthdata. nasa. gov/apt/documents/chlor—a/[ 2025-03-
06]) JZHAFE Chl-a ¥ &, UPD Ui i AL 2 45
SEFIREBOG (D), ABEFETTEES OCTIA A TE Chl-a
W ARSI 2S5

R2 BENBEMENX

Table 2 Definitions of the input parameters

i

x 100%] ) 3)
i=1,2,3,,n

x 100% (4)

R1 R_(412)/R_(565)
R2 R_(443)/R_(565)
R3 R_(490)/R_(565)

2303

255 14 1E 5% 4 lon1=sin (27 360

)
Lon(lonl, lon2) o
G FE AR i lon2=cos (2 L )

360
ﬁ%rﬁ@zmmalauzsin(zﬂ%>

Lat(latl, lat2)

Ch B 19 AR 3% 1 Tat2=cos (2 ?ﬁf )

J RO TE 341 m 1 =sin(2m ﬂgﬁ )

1

Month(ml1, m2)
H AR m2=cos(2m 1)
SSTd R-#SST
PARd RFHPAR
SSTO JFSsTCY )
PARO A PARCHA)
SSTO,,,. A A SSTCER)
PARO,, RS H P PARCH )
SST1 AP SSTCHTA )
PARI JIF-¥ PAR(RT )
SST1,,, RS H I SST(HTA)
PARI,,, SRS A PARCETH )

T BHGEBUKIRE : COCTS I B LB A S % T Kim %5:(2022)
FORFST 5 28 (45 B (G B )RS T Zhang 46 (2024) WY 71 207 5 B
RIBEIS T Hu %5 (2023) FYBIFSE s A4RAS 5 (SST AT PAR) Y FHAK
# T Hu 25 (2023 ) 1 Li 5 (2023) 19437 .

3 GERMNE

3.1 AREWERZFIEENT

AW L R G A R e S, PR T
£fJ$5SVR. LSTM. RF. GA-BP fI MLP-NN %:7E N
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[ 5 R AL A 27 > SR TE Chl—a Y 2 ST 55 P (1Y
WA (R 3) . BF5EH B R 2 2 T 48— %) oy
AU R4 5 AR BEAT N R NIk o S5 2R R,
MLP-NN 8 7 R* . RMSD Fl MAPD %P Al fi 4 -
T HABRE AL, 358 R B T MLP-NN £
TUTE Ak AR 2 5 28 A/ N A R8s I 1 1) s
HC Al X R AY B AR R B i PT L PR RE , BAFAE
FR IR figp A A R AR X A A Sl R v A5 TR 191
W, LSTM Y SRR b PR (8] F 51 8, (HA7E
AINEEAS B B G ek 7 ) 52 3R R ] AR ) A2
SO, DA PR TR B P AR LM R A A A 4
REJT, R T RARAYR L. BT LI LT, AR
FEPEREHE T MLP-NN 54 2 COCTS f£ /845 Chl-a
WP S SR B DR o

#£3 ARENEBEZFIEETTF Chl-a ik B REMMERELE,

ERAR 2P EFLESEIEAEREAN

Table 3 Comparison of different machine learning models

for Chl-a concentration retrieval. All parameters in Table 2

were used as model inputs

HLs 27 > Ay R RMSD MAPD
SVR 0.85 0.27 34.2%
LSTM 0.85 0.27 40.0%

RF 0.88 0.23 33.4%
GA-BP 0.86 0.25 33.3%
MLP-NN 0.89 0.22 30.8%

32 WANREFOH

A 5T R F 45 ) AR 3 VE Al A 24
Chl-a V& BE SOERE EE A BTk, DAERERR ALY ph 22 2%
AL AR, B TUARAT BB P RE A T4
PL6 B (412 nm. 443 nm. 490 nm. 520 nm.
565 nm 1670 nm) [ R AFEMEBIAL, &H—5] AfE
PR T (F22). BEEEH T IMRYE BT AL R T
J5 1 MAPD 197284k . MAPD 2Z{l ik, FniZH 7
XA PR R A IE ) DTk 0 2 Rz, RNz
AR A R A ] AR

ME 20T LA, AN [al4 A PR XA R 1 R 1
W EAE % 2% 5. 5] A Lat, SST18{PARI,, )7,
BRI g o 25 T, 2R WA 2L PR AR AR BT ik A
Ko Horr, Lat 76 B4 5 5 A S #2217 25 7]
AARERAE, I EAE B 2s [A] 2850, HARR B
W1 A [+) 45 8 O BH 68 S35 1) R BE RIS BE o SST1 R
W1 T Vi SR 1) 2 A58 A S X Chl-a Wk B2 1Y
WA, X — ] fedE R TR EAE LSRG

U 2 AR Ak By e 6 SR, ARSI R R AL T R A
WIS, [, VRS E LR RZ
—, AT HREEREE Chl-a A WERPE (Hu
4, 2023). PARI1,, &L {7 H AL IR R,
el 7RI G A E BRI R R, JERIHIR
o A5 S I 23 (B AR, A ROH BRAEPR
SRS, EE MR T 6 2E R PEXT Chl-a ik
BE RV VE ] o Month 4 A 52 e 2545 1A Ak i) o 22
BF R, RAEXT PR A R, (HRRaE A AR
TR PEAR Y PR YA ) A K TH AR I RRAE -

ST HABKE T, PARO,,, B 51 A 5S8R RE
TR, FTREJE R T4 H S SO0 A 0 3l T
P T XS Chl-a ¥R BEROAG R . AR S/ (41 SSTd
FISSTO) X HLAUME R = A fE s i, Al BEJE i T
HP s, ToikfeE ik Chl-a Wk B 22 4k ;
R B KRR W s A AR RE , BT R B
WP BARER, B AR ALE i A K+,
W AE A s SSTO,, B H A — sk, (1% &
SST1 &AL & SC B KR AR B, Pt Rk .
AR B, SIARESHR SRR 1 T
M RERG R, B B ORRIME . Bilan, 2
SHR A AT RERG IS A A2 ek, A A 2k
Bt TR, UHEERIERER/NER T,
5 FEGEI A KB B3 . sk, HAF¥Y SST
FIPAR HA B HLRS 1 25 (8] 40 HER , Hoi AR 22
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Abstract: Chlorophyll-a (Chl-a) concentration is an essential climate variable and fundamental to global carbon cycle studies and ocean
environmental monitoring. HY-1C/1D satellites, equipped with the Chinese Coastal Ocean Color and Temperature Scanner (COCTS), enable
global ocean color monitoring at kilometer-scale resolution. High-accuracy remote sensing algorithms for Chl-a concentration on the basis
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of COCTS data need to be developed to fully leverage these Chinese autonomous satellites for ocean monitoring and climate research.

This study developed a Chl-a retrieval algorithm on the basis of a multilayer perceptron neural network (MLP-NN) for the COCTS
sensor. The model inputs included remote sensing reflectance (R,,) at COCTS center bands and environmental variables, such as geolocation,
Sea Surface Temperature (SST), and Photosynthetically Active Radiation (PAR). The model was trained using 2,165 in-situ measurements
collected from the global ocean. After a comparative analysis of mainstream machine learning models, MLP was selected as the core
architecture for the NN framework. A multidimensional feature fusion strategy was implemented to construct the MLP-NN model. Given
that multidimensional inputs could introduce redundancy, sensitivity analysis was conducted to quantify the contribution of each input,
identify the optimal input set, and improve the model’s efficiency and generalization.

The sensitivity analysis identified the following optimal combination for MLP-NN: R  at 412, 443, 490, 520, 565, and 670 nm; latitude;
month; average SST from the previous month; and climatological PAR from the previous month. Validation indicated that Chl-a estimated
by MLP-NN achieved a Root Mean Square Difference (RMSD) of 0.22 and a Median Absolute Percentage Difference (MAPD) of 29.1% for
log-transformed Chl-a, which are 0.1 and 16.9% lower than those estimated by the NASA operational Ocean Color Index (OCI) algorithm,
respectively. Further validation using satellite and in-situ matchups confirmed that MLP-NN outperformed OCI, reducing RMSD and
MAPD by 0.09 and 9.8%, respectively, highlighting its improved robustness. In China’s Bohai Sea, both algorithms effectively captured the
spatial distribution patterns of Chl-a. However, OCI exhibited systematic bias, underestimating Chl-a concentrations at high and low
extremes. By contrast, the MLP-NN model demonstrated high accuracy in retrieving extreme Chl-a values.

Overall, the MLP-NN model developed in this study substantially improves the estimation of Chl-a concentrations from HY-1C/1D
satellite observations. It offers valuable algorithmic support for leveraging domestic satellites in ocean ecological monitoring.

Key words: Chlorophyll-a (Chl-a), remote sensing reflectance, retrieval algorithm, HY-1C/1D satellites, neural network, COCTS, ocean
color
Supported by National Key Research and Development Program of China (No. 2022YFC3104900, 2022YFC3104903)



