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摘 要：水体叶绿素 a浓度（Chl-a）作为核心气候参数，其精准的遥感反演对于全球碳循环研究、海洋环境监

测和治理具有重要意义。中国海洋一号系列卫星（HY-1C/1D）搭载的海洋水色水温扫描仪（COCTS），可实现

公里级全球海洋水色监测。研发针对COCTS数据的高精度Chl-a遥感算法，是实现自主卫星数据支撑海洋监测与

气候变化研究的核心前提。本研究基于覆盖全球海域的 2165组实测数据，构建了基于HY-1C/1D COCTS多波段

遥感反射比（Rrs）与环境参数的多层感知器神经网络（MLP-NN）模型，实现全球水体 Chl-a浓度高精度反演。

通过输入因子敏感性分析，最终确定以 412 nm、443 nm、490 nm、520 nm、565 nm、670 nm 波段的 Rrs、纬度、

月份、前月月平均海表面温度和前月气候态光合有效辐射参数构成最优输入组合。验证结果表明，MLP-NN模

型估算的Chl-a浓度 log转换后计算的均方根偏差RMSD （Root Mean Square Difference）为 0.22，中位数绝对百分

偏差MAPD （Median Absolute Percentage Difference）为 29.1%，较NASA业务化标准的水色指数算法（OCI）分别

降低了 0.1 和 16.9%。进一步的卫星与实测数据的匹配验证结果显示，MLP-NN 模型估算的 Chl-a 的 RMSD 和

MAPD分别较OCI算法降低了0.09和9.8%，展现出优异的算法稳健性。本研究为国产卫星在海洋生态监测领域提

供了一种创新方法，显著增强了利用HY-1C/1D卫星观测全球Chl-a浓度的能力。
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1　引 言

叶绿素 a （Chlorophyll-a，Chl-a）浓度是估算

浮游植物生物量和海洋初级生产力的关键指标

（Huot 等，2007），对海洋碳循环、生态系统乃至

全球气候变化都具有深远的影响 （Behrenfeld 等，

2005；Carvalho 等，2013；Henson 等，2010）。准

确获取Chl-a时空分布特征，有助于海洋生态系统

健康评估，并为气候政策制定提供科学依据。近

期，中国自主研制的海洋一号 C 星 （HY-1C） 和

海洋一号 D 星 （HY-1D） 搭载的 COCTS （Chinese 
Ocean Color and Temperature Scanner） 能够获取可

靠的海洋遥感数据 （Chen 等，2021；刘建强 等，

2023），为 Chl-a 浓度和海表面温度等关键参数的

提取提供了重要支持（蒋兴伟 等，2019；史鑫皓 
等，2023）。

传统的Chl-a浓度测量依赖于现场采样和实验

室分析，通常采用分光光度法、荧光法和高效

液相色谱法 （Ritchie， 2006； Holm-Hansen 等，

1965；Holm-Hansen和Riemann，1978；Wright等，
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1991）。尽管这些实测方法测量精度高，但在空间

覆盖范围和时效性方面存在一定局限性。相比之

下，星载水色遥感能够大范围、准实时监测海洋

生态环境，可有效弥补现场采样的不足（宋庆君 
等，2025）。卫星反演 Chl-a 浓度主要方法包括经

验算法和半解析模型。其中，经验算法依赖于光

谱波段组合与Chl-a浓度之间的统计关系，常见方

法有波段比值算法、颜色指数算法以及针对特定

区域的经验算法等 （O’Reilly 等，1998；O’Reilly
和 Werdell，2019；Hu等，2012，2019；Volpe等，

2007）。半解析模型基于水体光学辐射传输理论，

通过分解水体的固有光学特性（如吸收和散射系

数）反演Chl-a浓度，与经验算法相比，该方法具

有更强的物理约束性和更广泛的适用性 （Carder
等，1999；Lee等，2002）。

当前针对 HY-1C/1D 卫星的 Chl-a 浓度反演算

法研究多聚焦于CZI （Coastal Zone Imager）传感器

（Chen等，2019；滕越 等，2022）。尽管已有学者

尝试基于COCTS数据开展Chl-a浓度反演研究，但

方法体系主要沿用传统经验算法框架。例如，Ye
等 （2021） 采用 OCI 算法从 COCTS 传感器获得全

球 Chl-a 浓度，并验证了算法的良好性能。此外，

李芝凤等 （2022） 针对中国南海北部海域提出了

基于 4种多波段比值的 Chl-a浓度反演算法，并发

现五波段比值算法的表现较好。尽管传统算法在

开阔海域能够实现较精确的 Chl-a 浓度反演结果，

但在河口和近海等光学复杂水域存在较大误差，

这主要由归因于高浓度的悬浮物和溶解有机物对

水体光学信号的复杂影响（Dierssen，2010；Morel 
和 Prieur，1977）。因此，亟需突破传统经验算法

的局限，开发新的适用于 COCTS 数据的不同水体

类型下Chl-a浓度的反演方法，以提升国产卫星在

全球范围水环境的监测能力。

随着人工智能技术的发展，机器学习在Chl-a
浓度反演的应用受到广泛关注。通过对大量光谱

数据和Chl-a实测数据的训练，机器学习模型能够

更有效捕捉Chl-a浓度与水体光学特性之间的非线

性关系，尤其在悬浮物浓度较高或水体成分复杂的

区域，展现出了更强的适应性和稳健性（Dransfeld
等，2004；Zhang 等，2003）。目前，针对不同遥

感观测数据，已经有多种基于机器学习的Chl-a浓
度反演算法被提出，并在初步验证中展现了较高

的精度。例如， Pahlevan 等 （2020） 通过融合

Sentinel-2 与 Sentinel-3 卫星数据，提出了一种混

合密度网络模型，成功实现了在多样化生物光学

条件下的内陆与沿海水域 Chl-a 浓度的高精度反

演。Cao等（2020）结合 Landsat 8 OLI数据与极端

梯度提升树模型，开发了一种专门针对浑浊湖泊

水体的Chl-a浓度反演算法，验证结果显示该算法

显著优于传统比值算法。李修竹等 （2019） 针对

长江口及其邻近海域，构建了基于支持向量机

（SVM）的 Chl-a 浓度估算模型，展现了 SVM 在复

杂的水体环境中的反演能力。朱云芳等 （2017）
利用GF-1 WFV影像，在太湖区域建立了Chl-a浓
度BP神经网络反演模型，该算法在光学复杂水体

中具有良好适用性与精度。

针对 HY-1C/1D 卫星的海洋水色监测，Yang
等 （2023） 尝试将基于残差网络模型的机器学习

方法应用于 COCTS 波段的 Chl-a 浓度反演。一方

面，该研究中算法仅采用遥感反射比数据进行

Chl-a 浓度反演，未充分考虑环境参数对 Chl-a 分

布的潜在影响；另一方面，其算法训练数据主要

采集自北半球的近岸区域，限制了模型在全球不

同类型水体的适应性（Hu等，2023；Li等，2023；
Zhang 等，2024）。针对上述不足，本研究基于

HY-1C/1D卫星COCTS中心波段遥感反射比，以全

球尺度实测数据为训练样本，结合地理坐标、时

间信息以及海表温度与光合有效辐射等环境参数，

采用多层感知器神经网络，开发了针对 COCTS 数

据的Chl-a浓度反演算法，为海洋生态环境的持续

监测提供了新的算法支持。

2　数据与方法

2.1　数据来源

（1）实测Rrs光谱数据处理：本研究用于Chl-a
浓度算法开发与验证的数据集包括 Valente 数据集

（Valente 等，2022）、Nechad 数据集 （Nechad 等，

2015） 和厦门大学光学海洋学实验室 （OOL） 采

集的实测遥感反射比（Rrs；单位：sr-1）和Chl-a浓
度（mg/m3）数据集。其中，Valente数据集是国际

水色研究广泛认可的全球现场水体生物光学数据

集，汇集了全球多个航次观测计划的实测数据，

但是由于数据来源广泛，该数据集的 Rrs是离散的

多光谱数据；Nechad 数据集中仅在少数波段有 Rrs
观测数据（412.5 nm、442.5 nm、490 nm、510 nm、
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560 nm、620 nm、665 nm、681.25 nm和708.75 nm），
主要采集自欧洲近海和南非西部海域，用于评估

海洋水色算法在沿海水域水质参数（例如，悬浮

物和Chl-a浓度）反演中的准确性；OOL数据集的

样本主要来自中国近海，包括黄海、台湾海峡、

南中国海、西太平洋4个海域的观测结果，其中Rrs
数据采用FOBY漂浮式光谱仪测量（Lee等，2013；
Yu 等，2021），光谱范围涵盖 360—1000 nm，分

辨率为5 nm，Chl-a浓度基于荧光法测量（Catherine
等，2012）。

（2）卫星数据：本研究构建Chl-a反演模型时

引入了 COCTS传感器采集的 2023年 8月 25日以来

的 Level-2A Rrs 数据产品，空间分辨率为 1.1 km，

数据通过中国海洋卫星数据服务系统 （https：//
osdds. nsoas. org. cn/DataRetrieval［2025-03-06］） 获

取。同时，本研究考虑到水温和光照条件对海洋

浮游植物的物候特性（对应Chl-a浓度表征）的驱

动机制，特别选择 MODIS 传感器反演的海表温度

SST（Sea Surface Temperature）和光合有效辐射PAR

（Photosynthetically Active Radiation）数据作为关键

环境变量。其中，MODIS 提供了 SST 和 PAR 的

Level 3级日均值、月均值以及气候态月均值产品。

相关产品的空间分辨率为 4 km，并可通过 NASA 
Ocean Color 数据平台 （https：//oceancolor.gsfc.nasa.
gov/［2025-03-06］）获取。鉴于目前尚无法直接获

取 COCTS 传感器的 SST 气候态月均值产品和 PAR
产品，本研究采用MODIS的PAR和 SST数据产品，

以保障模型训练与分析中对时空连续性和参数完

备性的要求，后续开发的 Chl-a 反演模型可根据

HY系列卫星提供的SST和PAR数据进行更新。

2.2　数据预处理

表1展示了本研究使用的现场观测数据集（具体

空间分布详见 https：//zenodo. org/records/15683396
［2025-03-06］中图A1所示），涵盖了全球范围内不

同类型的水体，划分为训练集、测试集和独立验

证集。具体预处理步骤包括 （1） 光谱数据匹配，

（2）卫星数据与实测数据匹配和（3）训练和测试

划分。

（1） 实测光谱数据处理：由于不同实测数据

集中 Rrs的波长差异，我们采用了不同的策略获取

与 COCTS 传感器的波长等效的实测 Rrs 数据集。

Valente 数据集提供离散的多光谱 Rrs，我们根据其

论文推荐的标准方法通过在±6 nm范围内取Rrs数据

的平均值 （Valente 等，2022） 以匹配 HY-1C/1D
卫星中心波长 （包括 412 nm、443 nm、490 nm、

520 nm、565 nm 和 670 nm）。对于 Nechad 数据集，

其光谱仅包含几个波段（见 2.1 节），与 COCTS 的

中心波长较接近，因此采用线性插值（linear）来

获取 COCST 对应波段数据。OOL 数据集中提供的

是高光谱 Rrs测量数据，则通过光谱响应函数卷积

获得COCTS相应波段的数据。

（2） 卫星观测与实测数据匹配：本研究中，

与 COCTS Rrs匹配的实测数据来源于 OOL 数据集，

时间范围为 2019年—2024年。为获取更多有效匹

配样本，每个实测站点的卫星 Rrs数据匹配采用以

站点为中心的 5×5像元窗口。若窗口内有效像元数

量达到设定阈值（≥5），且 Rrs （565）的变异系数

CV （Coefficient of Variation） 小于 30%，则选取窗

口内数据的中位数作为该站点的匹配值。对于 SST
和 PAR 参数，由于其空间分辨率较大，匹配时采

用 3×3 像元窗口，其他条件与 Rrs的匹配方法保持

一致。

（3） 训练和测试划分：本研究中共获取到

2165 组实测数据用于模型的训练、测试和验证。

训练集和测试集由 Valente、Nechad 和 OOL （台湾

海峡） 3 个数据来源混合而成，共 1980 组数据，

其中 85% 用于模型的训练过程，15% 的数据用于

测试模型的性能。独立验证集选用了 OOL 数据集

中的黄海、西太平洋和南中国海 3个海域的观测数

据，共 185组，专用于评估模型的泛化性能。选择

表 1　本研究使用的现场观测数据集概况

Table 1　　Summary of the in-situ datasets utilized in this study

数据源

Valente
Nechad

OOL
OOL

时间范围

1997年—2019年

2002年—2010年

2003年—2018年

2003年—2017年

站位分布

全球海域

欧洲近海和南非西部海域

台湾海峡

黄海、南中国海、西太平洋

数据用途

85%训练、15%测试

85%训练、15%测试

85%训练、15%测试

独立验证

样本数

1278
278
424
185
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该 3 个海域观测数据主要是因为其观测的 Chl-a
浓度基本覆盖了训练数据集 Chl-a 浓度的范围，

因此有较好的代表性。图 1 （a）展示了本数据集

中包含多种水体类型特性的 Rrs的光谱及其对应的

Chl-浓度。图 1 （b）则呈现了Chl-a浓度的分布情

况，Chl-a浓度范围为0.02—95 mg/m³，其中有146个
站位的 Chl-a浓度大于 20 mg/m³，充分反映了不同

水体条件下的生物光学特征。

2.3　神经网络模型

（1） 模型选择：为了实现更佳的模型性能

和稳健性，本研究对多种被广泛应用的机器学

习模型进行了比较分析，最终选定基于多层感

知器MLP（Multi-Layer Perceptron）的神经网络NN
（Neural Network）模型（简称MLP-NN）用于Chl-a
浓度反演。因为 MLP-NN 模型能够通过调整网络

层数和节点数适配多种特性的数据集（即高灵活

性），从而能够有效捕捉环境数据中的非线性关系

（Hecht-Nielsen，1992；Kim 和 Adali，2002），这

对提高Chl-a浓度估算精度起到关键作用。其他参

与候选的模型包括：支持向量回归（SVR）、长短

期记忆网络 （LSTM）、随机森林 （RF） 和通过遗

传算法优化的反向传播神经网络（GA-BP），模型

对比结果见3.1节（表3）。

（2） 模型设置：为了提高模型的泛化能力，

所有输入数据在训练前进行了标准化处理（Sola和
Sevilla，1997），以消除不同特征之间的量纲差异，

确保各特征对模型的影响处于相同的尺度，从而

加速模型的收敛并提高模型训练的稳定性。定义

的网络结构包括一个输入层、两个隐藏层（包含

6个和 3个神经元）以及一个输出层。由于数据集

较小，本研究选择 LM （Levenberg-Marquardt） 算

法作为优化方法，该算法结合了梯度下降法和牛

顿法的优点，能够高效地优化网络权重并加速模

型的收敛速度（Bilski等，2020；Hagan和Menhaj，
1994）。LM 算法具备可变和自适应特性，能在有

限样本情况下避免过拟合，确保训练稳定性与快

速收敛 （Mukherjee 和 Routroy，2012）。在模型训

练过程中，本研究采用 K 折交叉验证法 （Arlot 和
Celisse，2010）以增强模型稳健性。交叉验证通过

多次训练和验证，保证模型在不同数据子集上的

表现一致性，进而提升其泛化能力，并避免因数

据划分不均导致的性能波动。此外，训练过程中

引入了正则化和早停机制 （Srivastava 等，2014；
Zheng等，2018）以提升模型性能。正则化通过对

过大权重进行惩罚，简化模型结构并提升其泛化

能力；而早停机制则在验证集误差连续迭代 5次不

再改善时终止训练，从而防止模型过度拟合训

练集。

（3） 模型输入：本研究构建的模型在输入参

数设计上采用多维度特征融合的策略：除 COCTS 
6 个波段的 Rrs以外，引入 Rrs波段比值以增强水体

光学特征区分度，同时整合地理坐标（经纬度）、

（a） Rrs光谱曲线

（a） Spectral curves of Rrs

（b） Chl-a浓度分布范围

（b） Distribution range of Chl-a concentration
图1　实测数据集的Rrs光谱特征及Chl-a浓度分布统计

Fig. 1　Spectral Rrs and the distribution of Chl-a concentration in the in-situ datasets
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时间信息 （月份） 及不同时间尺度的 SST 与 PAR
数据，各因子的定义和计算公式如表 2 所示。其

中，Rrs波段比只选取 3个波段的比值，主要考虑了

水体中 Chl-a 浓度对蓝光波段 （412、443、490）
和绿光波段 （565） 的敏感性 （Tran 等，2023）。

针对经纬度与月份数据的特殊属性，引入正弦—余

弦编码方式（Rußwurm等，2024；Yang等，2022），
实现周期性信号的连续性表征，避免不同输入特

征存在数量级差异，有效平滑周期数据，确保相

邻周期值在数值上更为一致，从而提高模型的学

习效率。考虑环境变量的时序依赖性规律，本模

型引入了 SST与PAR的 5种时间尺度数据：包括天

平均（当天）、月平均（当月）、气候态月平均（当

月）、月平均 （前月） 和气候态月平均 （前月）。

其中，天平均数据有助于模型捕捉温度的实时变

化；月平均和气候态月平均分别表示某一月内所

有有效观测数据的平均值，以及基于 2002 年 7 月

到 2024 年 6 月期间所有月度观测数据计算得到的

长期平均值，分别提供了区域短期和长期的气候背

景；前月月平均数据可用于应对Chl-a受SST、PAR
的影响可能存在滞后效应 （Dunstan 等， 2018；
Trombetta 等，2019）。由于 Chl-a 浓度的量级差异

较大，因此在模型输出前对其进行对数转换，以

缩小数据范围，提升模型训练的稳定性和反演精

度。为明晰各参数对模型输出的贡献度，本研究

分析了各参数对输出数据的敏感度（见3.2节）。

2.4　评价指标

为全面衡量模型的算法性能，本研究采用了

多个评价指标，包括相关决定系数 R2 （Coefficient 
of Determination）、均方根偏差 RMSD （Root Mean 
Square Difference）、中位数绝对百分比偏差 MAPD
（Median Absolute Percentage Difference） 和无偏百

分比偏差 UPD （Unbiased Percentage Difference）。

所选评价指标已广泛应用于Chl-a浓度的遥感反演

与评估工作中 （张亭禄和贺明霞，2002；Ye 等，

2021；Shahvaran等，2024）。具体计算公式如下：

R2 = 1 - ∑
i = 1

n

( )log10( )est i - log10( )obs i

2

∑
i = 1

n ( )Mean ( )log10( )obs i - log10( )obs i

2
， (1)

RMSD =
∑
i = 1

n

( )log10( )est i - log10( )obs i

2

n
(2)

MAPD = Median ( )é

ë
ê
êê
ê ù

û
ú
úú
ú|

|
|
||
||

|
|
||
| est i - obs i

obs i

× 100%
i = 1，2，3，…，n

  (3)

UPD i = (ChlaNN )i - (ChlaOCI )i

0.5 × ( )( )ChlaNN i
+ ( )ChlaOCI i

× 100%   (4)

式中，esti表示反演得到的Chl-a浓度，obsi表示实

测的Chl-a浓度；ChlaNN和ChlaOCI分别表示基于MLP-
NN模型和NASA业务化运行OCI算法（https：//www.
earthdata. nasa. gov/apt/documents/chlor-a/［2025-03-
06］）反演得到的 Chl-a 浓度，UPDi则衡量任意给

定网格单元 （i），本研究方法与 OCI 算法在 Chl-a
浓度估算结果上的差异。

3　结果和讨论

3.1　不同机器学习模型对比

本研究通过系统性的模型筛选实验，评估了

包括 SVR、LSTM、RF、GA-BP和MLP-NN等在内

表 2　各输入参数的定义

Table 2　　Definitions of the input parameters

参数

R1
R2
R3

Lon（lon1， lon2）

Lat（lat1， lat2）

Month（m1， m2）

SSTd
PARd
SST0
PAR0

SST0clim
PAR0clim

SST1
PAR1

SST1clim
PAR1clim

描述

Rrs （412）/ Rrs （565）
Rrs （443）/ Rrs （565）
Rrs （490）/ Rrs （565）

经度的正弦值 lon1=sin (2π 经度
360 )

经度的余弦值 lon2=cos(2π 经度
360 )

纬度的正弦值 lat1=sin (2π 纬度
180 )

纬度的余弦值 lat2=cos(2π 纬度
180 )

月份的正弦值m1=sin (2π 月份
12 )

月份的余弦值m2=cos(2π 月份
12 )

天平均SST
天平均PAR

月平均SST（当月）

月平均PAR（当月）

气候态月平均SST（当月）

气候态月平均PAR（当月）

月平均SST（前月）

月平均PAR（前月）

气候态月平均SST（前月）

气候态月平均PAR（前月）

注： 参数选取依据：COCTS波段比值的选择参考了Kim等（2022）
的研究；空间信息（经纬度）依据了Zhang等（2024）的方法；季节信息

的选取参照了Hu等（2023）的研究；环境变量（SST和PAR）的使用依

赖于Hu等（2023）和Li等（2023）的分析。
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的 5 种机器学习算法在 Chl-a 浓度反演任务中的

适用性（表 3）。研究中所有模型均基于统一划分

的训练集与测试集进行训练和验证。结果表明，

MLP-NN模型在 R2、RMSD和 MAPD等评估指标上

均显著优于其他模型，这突出展现了 MLP-NN 模

型在处理非线性关系和小样本数据方面的优越性。

其他对照模型虽然也展现出可比的性能，但存在

模型解释性不足和对样本数据要求高等问题。例

如，LSTM模型虽然擅长处理时间序列数据，但在

小样本数据上训练时容易受到长时间依赖问题的

影响，从而限制了其对数据中非线性特征的捕捉

能力，影响了模型的表现。基于以上分析，本研

究选择基于MLP-NN模型作为COCTS传感器Chl-a
浓度反演算法的核心架构。

3.2　输入因子分析

本研究采用控制变量法定量评估输入参数

Chl-a浓度反演精度的贡献，以选择最优的神经网络

模型输入因子，避免冗余信息对模型性能的干扰。

以 6 个波段 （412 nm、443 nm、490 nm、520 nm、

565 nm 和 670 nm）的 Rrs为基准模型，逐一引入候

选因子（表 2）。选择因子的依据为引入候选因子

后的MAPD的变化：MAPD差值越大，表示该因子

对模型性能的正向贡献越显著；反之，表示该因

子对模型带来负向干扰特性。

从图 2可以看出，不同输入因子对模型性能的

影响存在显著差异。引入 Lat、SST1或 PAR1clim后，

模型性能显著提升，表明这些因子对模型贡献较

大。其中，Lat在周期性编码后有效捕捉到了空间

变化特征，并且作为地理空间参数，其本质上反

映了不同纬度带太阳辐射的角度和强度。SST1 反

映了前月海表温度的动态变化及其对Chl-a浓度的

滞后效应，这一影响可能揭示了海洋生态系统对

温度变化的响应延迟，为模型训练提供了更稳定

的环境参考。同时，作为气候变化的重要指标之

一，有助于提高模型估算Chl-a浓度的准确性（Hu
等，2023）。PAR1clim通过前月的气候态光照条件，

提供了浮游植物光合作用能力的解释，并利用气

候态背景所呈现的空间基本模式，有效消除年际

异常波动，从而稳定地描述了光学特性对Chl-a浓
度的调控作用。Month作为反映季节性变化的重要

时间因子，尽管对性能提升有限，但能够有效表

征和捕捉模型中浮游植物生长与消退的物候特征。

对于其他因子，PAR0clim的引入导致模型性能

下降，可能是由于当月气候态光照的短期波动干

扰了对Chl-a浓度的估算。短期水温变化（如 SSTd
和 SST0）对模型性能产生负面影响，可能是由于

其波动性较大，无法稳定描述 Chl-a 浓度的变化；

Rrs波段比未能显著改善模型性能，说明 Rrs数据已

包含波段相关信息，因此未纳入作为输入因子，

避免潜在冗余；SST0clim虽具有一定贡献，但考虑

SST1 已包含关键的水温信息，因此也未被选用。

需要指出的是，引入环境参数虽然能够提升模型

的反演精度，但也可能带来副作用。例如，多源

参数的耦合可能增加模型的复杂性，使其对训练

数据过于敏感，尤其是在数据量较小的情况下，

容易导致过拟合风险的增加。此外，月平均的 SST
和 PAR 具有较为粗糙的空间分辨率，其输入误差

可能通过模型传递至Chl-a反演结果，导致误差的

传递效应。因此，在引入环境参数时，必须综合

评估其对模型性能的正负面影响，以确保模型的

准确性和适用性。本研究通过评估不同环境参数

对 MLP-NN 模型的敏感性（图 2），选出最优的输

入参数，确保其有助于 Chl-a 遥感估算的精度提

升。综合以上分析，本研究的MLP-NN模型选择了

以下因子作为输入参数：412 nm、443 nm、490 nm、

520 nm、565 nm 和 670 nm 波段的 Rrs、SST1、Lat、
PAR1clim和Month。
3.3　模型性能评估

本研究通过占总数据集的 15% 的测试数据

（2.2 节） 分别对 MLP-NN 模型与 OCI 算法进行测

试，评估了两种反演模型在Chl-a浓度估算中的精

度和稳健性。图 3为MLP-NN模型与OCI算法估算

的 Chl-a 浓度与实测浓度之间的散点图，可见

MLP-NN模型在各评价指标均优于OCI算法，表现

出与实测数据更高的一致性。

表 3　不同机器学习模型对于 Chl-a 浓度反演的性能比较，

使用表 2 中所有特征参数作为模型输入

Table 3　　Comparison of different machine learning models 
for Chl-a concentration retrieval. All parameters in Table 2 

were used as model inputs

机器学习模型

SVR
LSTM

RF
GA-BP

MLP-NN

R2

0.85
0.85
0.88
0.86
0.89

RMSD
0.27
0.27
0.23
0.25
0.22

MAPD
34.2%
40.0%
33.4%
33.3%
30.8%
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如图 3 （a） 所示，MLP-NN 模型的反演结果

大多数数据点紧密分布在 1∶1线附近，R²为 0.89，
表明该模型能够较好地再现实测 Chl-a 浓度的分

布。相比之下，OCI算法的R²为 0.77 （相差 0.12），

在高值区域出现低估、低值区域出现高估的现象

较明显 （图 3 （b））。在精度指标方面，MLP-NN
模型误差较低，RMSD 降低了 0.1，MAPD 降低了

16.9%。与之相比，OCI算法的散点分布较为离散，

不同浓度范围内误差波动较大，精度低于 NN 模

型。以上结果进一步表明，MLP-NN 模型在不同

浓度水平下的稳定性较强，能够较好地适应不同

范围的Chl-a浓度变化。

本研究从测试集中筛选出包含悬浮物 TSM
（Total Suspended Matter）浓度数据的样本（共45个），

评估模型在不同 TSM 浓度下的模型的性能表现

（图 4 （a）、（b））。图 4 （c）展示了测试集中 TSM
浓度的分布范围 （0—100 mg/L），平均浓度为

20.26 mg/L。根据图 4 （a）和 4 （b）的结果，MLP
模型和 OCI 算法在不同 TSM 浓度下均表现出了

较为良好的拟合性能。然而，与 OCI 算法相比，

MLP-NN模型在不同TSM浓度条件下对Chl-a浓度

的估算结果更为稳定，其 MAPD 值比 OCI 算法低

10.5%。由于数据集中高浊度 （TSM > 100 mg/L）
样本较少，而神经网络的性能依赖于训练数据中

各参数的范围，因此在高浑浊水体中模型的性能

仍需进一步验证。

为进一步评估模型的泛化能力，本研究通过

独立数据集（N=185）对比分析了MLP-NN模型与

OCI算法的泛化表现（图 4）。对于图 4 （a）—（b），

散点的颜色表示 440 nm 处有色溶解有机物 CDOM
（Colored Dissolved Organic Matter） 的 吸 收 系 数

（ag（440））。图4（f）则显示了ag（440）的直方图分布

（0—0.6 m-1），其平均值（±标准差）为0.06（±0.07）m-1，

高CDOM （ag（440）≥ 0.1m-1）的样本仅 27个，因此

模型在估算高溶解有机物吸收系数下水体的Chl-a
浓度仍存在较大不确定性。图 4 （a）、（b）显示，

MLP-NN 模型不仅在训练数据和测试数据上具有

较好的拟合能力，在独立数据集上同样展现了在

图2　不同输入因子对模型性能的影响（MAPD的相对变化）

Fig. 2　Impacts of different input parameters on the 
performance of MLP-NN model （Indicated by the relative 

change in MAPD）

（a） MLP-NN反演结果与实测值对比散点图

（a） MLP-NN retrievals vs. in situ observations
（b） OCI反演结果与实测值对比散点图

（b） OCI retrievals vs. in situ observations
图3　不同Chl-a浓度反演模型的性能评估： MLP-NN，OCI

Fig. 3　Evaluation of the retrieved Chl-a concentration by MLP-NN and OCI
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不同CDOM范围下模型的稳健性。然而，OCI算法

虽然与独立验证数据集的相关性与MLP-NN模型相

当，但误差方面明显更高（尤其是MAPD相比MLP-
NN高出了 19.8%），表明MLP-NN模型对复杂水体

表层 Chl-a 浓度估算的适应性更强。值得注意的

是，对于部分样品，MLP-NN和OCI的部分反演结

果均表现明显高估，遥感估算 Chl-a 是实测值的

5—10倍，这些数据主要采集自于长江口和黄海沿

岸海域相对浑浊和高 CDOM 水体。究其原因，在

于两个算法的训练数据集相对缺乏代表这类型水

体的样本，导致反演Chl-a不确定性增加。

3.4　基于 COCTS 匹配数据的验证

考虑到 COCTS 标准 Rrs产品在近海可能存在较

大不确定性，本研究通过构建站点观测的Rrs数据、

Chl-a浓度与COCTS标准Rrs产品的匹配数据集，评

估 COCTS Rrs 数据的精度 （图 5），并进一步验证

MLP-NN 模型在 COCTS 上估算 Chl-a 浓度的能力

（图 6）。最终共获得 21 个实测—卫星匹配样本，

由于部分实测站点含有Chl-a浓度，但是Rrs数据缺

失，因此二者的样本数量存在一定差异。

根据实测Rrs对COCTS的验证结果显示，总体而

言，6个波段（412 nm、443 nm、490 nm、520 nm、

565 nm 和 670 nm）的 Rrs与实测数据相比存在较大

差异，整体拟合效果欠佳，与韩冰等 （2023） 研

究结论一致。尤其是在蓝光波段 （如 412 nm 和

（a） MLP-NN反演结果与实测值对比

（a） MLP-NN retrievals vs. 
in situ observations

（d） MLP-NN反演结果与实测值对比

（d） MLP-NN retrievals vs. 
in situ observations

（b） OCI反演结果与实测值对比

（b） OCI retrievals vs. in situ observations

（e） OCI反演结果与实测值对比

（e） OCI retrievals vs. in situ observations

（c） TSM浓度的分布范围

（c） Distribution range of TSM concentration

（f） 440 nm处 ag的分布范围

（f） Distribution range of ag at 440 nm

图4　不同TSM和CDOM浓度下MLP-NN和OCI模型反演Chl-a的独立验证对比（其中（a）和（b）中散点颜色表示TSM浓度，

（d）和（e）中散点颜色表示440 nm处CDOM的吸收系数（ag（440）））
Fig. 4　Independent validation of the retrieved Chl-a concentration by MLP-NN and OCI for samples with different TSM and CDOM 

concentrations （The color of scatter points in （a） and （b） represents the TSM concentration， while represents the absorption 
coefficient of CDOM at 440 nm （ag（440）） in （d） and （e））
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443 nm）， MAPD 值分别高达 119.9%、 76.7% 和

46.1%，表明 COCTS Rrs产品在这些波段与实测值

之间存在显著偏差。相对而言，COCTS 在绿光波

段的 565 nm 处误差较小，MAPD 值为 12.9%。图 6
显示了 MLP-NN 模型与 OCI 算法基于 COCTS Rrs估

算Chl-a浓度与实测值的对比，验证结果表明，两

种算法估算的Chl-a浓度与实测数据具有较好的相

关性（R² ≥ 0.76），但误差表现出显著差异。相较

于 OCI 算法，MLP-NN 模型在整体反演精度上更

优，其 MAPD 值降低了 9.8%，提供了更为准确的

Chl-a浓度估算结果。

图5　6个波段（412 nm、443 nm、490 nm、520 nm、565 nm、670 nm）COCTS的Rrs与实测Rrs对比

Fig. 5　Comparison of Rrs from COCTS and field-measured Rrs at 412 nm， 443 nm， 490 nm， 520 nm， 565 nm and 670 nm

（a） MLP-NN反演结果与实测值对比散点图

（a） MLP-NN retrievals vs. in situ observations
（b） OCI反演结果与实测值对比散点图

（b） OCI retrievals vs. in situ observations
图6　基于COCTS Rrs估算的Chl-a浓度与实测值对比

Fig. 6　Comparison of Chl-a concentrations estimated based on COCTS Rrs with field measurements
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尽管 MLP-NN 模型在 Chl-a 浓度估算中优于

OCI算法，但在高浓度近岸区域，模型估算结果与

实测数据仍存在差异，主要源于近海水色遥感观

测的固有不确定性及卫星与站点数据匹配时的时

空错位。一方面，本研究使用的卫星 Rrs数据经过

COCTS 标准大气校正算法处理，但在近海区域该

算法的校正精度可能受到大气条件的显著影响

（例如，较为复杂的气溶胶类型），进而导致Chl-a
浓度的估算值与实测数据之间出现系统性误差

（Nazeer 等， 2021； Shen 等， 2020；王道生 等，

2023）。另一方面，本研究设定时间窗口为一天进

行卫星与实测数据的匹配，空间窗口设置为 5×5像

元，旨在尽可能提高样本匹配数量。如果时间窗

口设置过短，匹配数据量会显著减少，进而影响

统计分析的有效性和结果的可靠性。譬如，若采

用±3 h、±6 h 时间窗口进行卫星 Rrs 和现场测量

Chl-a数据匹配，仅能匹配到 0个、8个匹配样品。

而若采用更小的空间匹配窗口，如 3×3窗口，有效

匹配数据仅剩余9个。

此外，必须强调的是近岸海域水体受到潮汐、

风速等多种环境因素的共同作用，表现出明显的

时空异质性 （Lin 等，2022；Laignel 等，2023），

尤其是在较短的时间尺度内，水体状态的快速变

化可能难以被遥感观测数据完全捕捉。本研究中，

SST、PAR数据和实测点的空间匹配窗口与Rrs数据

匹配窗口在空间尺度上的差异不可避免地对Chl-a
浓度的遥感估算结果产生一定影响。为降低这种

空间尺度差异带来的不确定性，本研究对匹配窗

口内的水体特征进行了像元均匀性质量控制（即

窗口内Rrs （565）有效数据的变异系数小于 30%），

在一定程度上缓解了窗口内水体异质性对遥感估

算结果的干扰。

针对目前应用于 COCTS 传感器 Rrs数据的大气

校正算法所带来的不确定性，未来需要进一步开

展与HY-1C/1D卫星过境同步的现场观测，以系统

性地扩充实测 Rrs数据样本。同时可通过设计敏感

性实验，系统评估匹配时空窗口与样本数量之间

的权衡关系，以优化卫星观测与地面监测数据的

匹配和验证策略。值得参考的是，已有研究利用

卫星传感器获取的 Rrs数据反演 Chl-a 浓度 （Smith
等，2021），在一定程度上能够将大气校正误差隐

含于模型之中，减少其对反演精度的直接干扰。

然而，受限于当前配对样本数量的严重不足（本

文仅 21个卫星—实测 Chl-a匹配样本），尚无法支

撑具备良好泛化能力的神经网络模型构建，因此

该方法在本研究中尚不具备实际应用条件。随着

HY 系列卫星的持续观测以及实测样本数量的积

累，可进一步探索以 COCTS获取的 Rrs为输入、实

测Chl-a浓度为输出的神经网络模型。此外，直接

使用卫星测量的瑞利校正反射率和大气顶层反射

率等参数 （Cao 等，2020；Soomets 等，2022） 也

是实现高精度Chl-a浓度反演的一种可行路径。未

来研究应进一步优化大气校正算法，特别是在近

海复杂水体环境下，同时结合高分辨率气象数据，

以提高大气校正精度。

3.5　中国渤海 Chl-a 浓度空间分布

为比较本研究开发的MLP-NN模型与现有OCI
算法反演Chl-a浓度在空间分布上的差异，本研究

以 2019 年 8 月 30 日 HY-1C/1D 卫星数据为例，对

渤海 Chl-a 浓度空间分布开展对比分析 （黄渤海

区域的完整空间分布对比图见 https：//zenodo.org/
records/15683396［2025-03-06］中的图A2）。该日期

的选择综合考虑云量和数据覆盖率等因素，有助

于确保图像清晰度以及提高Chl-a浓度反演的稳健

性。具体来说，2019年 8月 30日的 HY-1C/D 卫星

影像在渤海区域云量较少，一方面有效观测比较

多，另一方面受云和杂散光影响的像元相对更少，

卫星数据质量更高，基于卫星数据不同Chl-a浓度

反演结果的对比更直观。

结果表明，MLP-NN 模型和 OCI 算法估算的

Chl-a 浓度在空间分布特征上具有较高的一致性

（图 7 （b）、7 （d））。二者均显示出渤海区域Chl-a
浓度整体较高，并呈现由内海向外海递减的梯度，

与现场观测数据的空间格局一致 （朱碧泓 等，

2021）。尽管 MLP-NN 和 OCI 算法估算的 Chl-a 浓

度整体空间分布模式趋同，但在不同区域数值上

仍存在显著差异。空间差异分析表明，在高Chl-a
浓度的浑浊水体区域（渤海湾和莱州湾沿岸）和低

Chl-a浓度的渤海海峡，MLP-NN 模型的估算值明

显高于OCI算法，其UPD的大致范围为80%—100%
（图7（c）），表明MLP-NN模型对Chl-a浓度的高值

和低值的捕捉能力更强。相反，在渤海大部分区域，

MLP-NN 模型的估算值普遍低于 OCI 算法，对应

UPD的大致范围为-20至-60%（图7（c））。该差异

可能源于两种算法对水体光学特性的敏感性不同
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以及与 MLP-NN 训练数据中浑浊水域样本占比有

关。需强调的是，通过不同日期的验证结果证实，

上述差异性特征具有普遍性，尽管在不同日期和

不同区域该差异的幅度存在波动性，表明该现象

与算法之间的差异存在关联。

4　结论和展望

本研究通过评估多类机器学习模型的性能表

现，成功为HY-1C/1D卫星构建了基于多层感知器

神经网络（MLP-NN）的 Chl-a 浓度反演方法，并

与常规OCI算法的反演结果进行了对比评估。通过

输入参数特征筛选，最终确定最佳模型输入组合

为：412 nm、443 nm、490 nm、520 nm、565 nm和

670 nm 波段的 Rrs、纬度、月份、前月月均 SST 和

前月气候态月均PAR，该结论为Chl-a浓度反演的

机理研究提供了一定参考。独立验证结果表明，

MLP-NN模型的估算精度整体优于OCI算法，其中

对于高Chl-a浓度区域的反演优势尤为明显，MAPD
显著降低了 19.8%。卫星匹配数据集验证结果表

明，相较于 OCI 算法，MLP-NN 模型的 RMSD 和

MAPD 实现了 0.09、9.8% 的精度提升。以中国渤

海Chl-a浓度空间分布为例，两个算法均可有效反

映中国渤海Chl-a浓度的分布格局，但前者呈现出

（a） 真彩色影像

（a） True color composite image

（c） MLP-NN与OCI算法估算Chl-a的无偏百分比偏差（UPD）
（c） Unbiased percentage difference （UPD） of estimated Chl-a 

by MLP-NN and OCI algorithm

（b） MLP-NN模型结果

（b） MLP-NN retrievals

（d） OCI算法结果

（d） OCI retrievals

图7　基于HY-1C/1D卫星COCTS观测的2019年8月30日渤海Chl-a浓度空间分布对比

Fig. 7　Comparison of Chl-a concentration distributions from MLP-NN and OCI for Bohai， China using the COCTS image acquired 
on August 30， 2019
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在极高值和低值区均偏低的差异特征，表明MLP-
NN模型对极端浓度值的捕捉能力更优。

现有数据规模的限制可能影响 MLP-NN 模型

的外推适用性和空间泛化能力。建议未来研究重

点拓展以下几个方向：（1）加强训练数据集规模，

拓宽实测数据的采样范围和多样性，尤其需要扩

大高浓度的悬浮物和高有色溶解有机物数据样本，

以进一步提高模型的全球水体适用性；（2） 训练

方案的设计上考虑引入多源卫星传感器、辐射传

输模型和海洋模式的Chl-a浓度产品等数据；（3）纳

入风速和营养盐等辅助环境变量作为模型的协同

输入；（4） 构建深度学习模型，采用更高级的神

经网络架构（如深度前馈神经网络），能够进一步

提升反演精度。值得关注的是，2023年11月16日成

功发射的海洋一号 E 星 （HY-1E） 搭载的第二代

水色水温扫描仪（COCTS2）在紫外—可见光波段

实现了光谱分辨率的升级，这不仅印证了中国自

主海洋水色卫星的持续发展与观测能力，更为本

研究成果业务化应用创造了优越的条件，进一步

显示了本研究在水色遥感领域的实践潜力与发展

前景。

志 谢 特别感谢国家海洋卫星中心提供的

HY-1C/1D原始数据，以及Valente等、Nechad等

整理和发布全球海洋的实测生物光学数据。同时，

感谢所有航次参与人员在现场数据采集过程中所

付出的辛勤努力。本文研发的Chl-a算法程序可从

ZENODO 公开获取：https：//zenodo.org/records/
15683396［2025-06-18］。
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Retrieving Chlorophyll-a concentration by using a neural network for 
COCTS sensors aboard HY-1C/1D satellites
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Abstract： Chlorophyll-a (Chl-a) concentration is an essential climate variable and fundamental to global carbon cycle studies and ocean 

environmental monitoring. HY-1C/1D satellites, equipped with the Chinese Coastal Ocean Color and Temperature Scanner (COCTS), enable 

global ocean color monitoring at kilometer-scale resolution. High-accuracy remote sensing algorithms for Chl-a concentration on the basis 
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of COCTS data need to be developed to fully leverage these Chinese autonomous satellites for ocean monitoring and climate research.

This study developed a Chl-a retrieval algorithm on the basis of a multilayer perceptron neural network (MLP-NN) for the COCTS 

sensor. The model inputs included remote sensing reflectance (Rrs) at COCTS center bands and environmental variables, such as geolocation, 

Sea Surface Temperature (SST), and Photosynthetically Active Radiation (PAR). The model was trained using 2,165 in-situ measurements 

collected from the global ocean. After a comparative analysis of mainstream machine learning models, MLP was selected as the core 

architecture for the NN framework. A multidimensional feature fusion strategy was implemented to construct the MLP-NN model. Given 

that multidimensional inputs could introduce redundancy, sensitivity analysis was conducted to quantify the contribution of each input, 

identify the optimal input set, and improve the model’s efficiency and generalization.

The sensitivity analysis identified the following optimal combination for MLP-NN: Rrs at 412, 443, 490, 520, 565, and 670 nm; latitude; 

month; average SST from the previous month; and climatological PAR from the previous month. Validation indicated that Chl-a estimated 

by MLP-NN achieved a Root Mean Square Difference (RMSD) of 0.22 and a Median Absolute Percentage Difference (MAPD) of 29.1% for 

log-transformed Chl-a, which are 0.1 and 16.9% lower than those estimated by the NASA operational Ocean Color Index (OCI) algorithm, 

respectively. Further validation using satellite and in-situ matchups confirmed that MLP-NN outperformed OCI, reducing RMSD and 

MAPD by 0.09 and 9.8%, respectively, highlighting its improved robustness. In China’s Bohai Sea, both algorithms effectively captured the 

spatial distribution patterns of Chl-a. However, OCI exhibited systematic bias, underestimating Chl-a concentrations at high and low 

extremes. By contrast, the MLP-NN model demonstrated high accuracy in retrieving extreme Chl-a values.

Overall, the MLP-NN model developed in this study substantially improves the estimation of Chl-a concentrations from HY-1C/1D 

satellite observations. It offers valuable algorithmic support for leveraging domestic satellites in ocean ecological monitoring.

Key words： Chlorophyll-a (Chl-a), remote sensing reflectance, retrieval algorithm, HY-1C/1D satellites, neural network, COCTS, ocean 

color
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