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Improving Airborne Lidar Detection of the
Subsurface Phytoplankton Layers via a Monte

Carlo-Based Correction: A South China
Sea Case Study

Mingjia Shangguan , Yirui Guo , Zhongping Lee , Member, IEEE, Xiaoquan Song , and Yan He

Abstract—Phytoplankton layers are the critical
bioenvironmental-coupled dynamic structures in the ocean,
playing an essential role in global marine ecosystem functioning
and biogeochemical cycles by driving the carbon pump,
sustaining energy flow in food webs, and regulating acoustic
properties. With its profile detection capability, high vertical
resolution, and continuous day-and-night observation, lidar has
emerged as an effective tool for detecting phytoplankton layers.
However, existing lidar-based inversion algorithms typically rely
on specific assumptions and are affected by multiple scattering
effects, leading to significant deviations in the inversion results.
As an important marginal sea in the western Pacific, the South
China Sea, with its unique phytoplankton layer structure,
provides valuable insights into regional biophysical coupling
mechanisms. In this study, the typical phytoplankton layer in the
South China Sea was selected as the research target, and four
representative lidar algorithms (i.e., slope method, improved
adaptive phytoplankton layer detection method, Klett method,
and perturbation method) were systematically analyzed for their
effectiveness and applicability in inverting the phytoplankton
layer based on a semianalytical Monte Carlo (MC) model.
Comparative analysis indicates that the perturbation method is
the most effective in extracting key features of the phytoplankton
layer, including its depth of maximum and thickness, although
significant deviations remain in the thickness inversion. To
address this issue, a statistical correction model developed
from the semianalytical MC simulation is proposed to amend
the perturbation method’s results. Airborne lidar experiments
were conducted in spring 2024 to demonstrate that the
correction model significantly improves the inversion accuracy
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of phytoplankton layer thickness, with accuracy improvements
of 94.8%, 78.9%, 74.6%, and 91.0% at four sampling sites (A1,
A2, B1, and B2) in the South China Sea, respectively. This study
provides a novel technology for high-precision lidar inversion
of oceanic phytoplankton layers, and is expected to advance
research on marine primary productivity and carbon cycling.

Index Terms—Lidar, optical parameter inversion, phytoplank-
ton layer, South China Sea.

I. INTRODUCTION

THE marine ecosystem exhibits significant
dynamic complexity [1]. Among its components,

phytoplankton—serving as primary producers—play a critical
role in marine ecosystems [2], [3]. When phytoplankton
aggregate to form thin layers, their photosynthetic activity is
substantially enhanced, promoting carbon fixation and oxygen
release while influencing the cycling and distribution of
nutrients, thereby impacting marine biogeochemical processes
[4], [5]. However, the vertical distribution of phytoplankton
carries rich environmental information, including temperature
[6], salinity [7], and nutrient gradients [8], and also
reflects the distribution of water optical parameters [9].
These environmental factors directly affect phytoplankton
distribution and growth, making the accurate detection of their
vertical distribution essential for unveiling the underlying
mechanisms of marine ecological processes [10].

The traditional methods for detecting phytoplankton, such
as water sampling and net tows, are labor-intensive and time-
consuming and lack sufficient spatial coverage [11]. With
the development of remote sensing technology—particularly
its advantage in acquiring comprehensive global oceanic
information—remote sensing has become an important tool for
monitoring marine phytoplankton [12], [13], [14]. Although
phytoplankton cells are generally small (typically ranging
from less than 1 µm to several hundred micrometers, with
most species belonging to the 2–200 µm size range [15],
their characteristic pigments (e.g., chlorophyll) exhibit dis-
tinct absorption and scattering properties in specific spectral
bands, enabling effective detection and monitoring in remote
sensing imagery [16]. Passive ocean color remote sensing
quantifies surface chlorophyll-a concentrations (Chl) by mea-
suring the remote sensing reflectance and applying radiative
transfer models and bio-optical inversion algorithms, thereby
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estimating the biomass distribution of upper water column
phytoplankton. The provision of long-term, large-scale obser-
vational data has greatly enhanced our understanding of the
spatiotemporal distribution of global phytoplankton and their
ecological impact on primary production and carbon cycling
[17], [18]. However, the passive remote sensing is constrained
by illumination conditions, making observations limited under
low-light or low-sun-angle environments, and it inherently
lacks the capability for vertical profiling measurements [19],
[20], [21].

As an active remote sensing technique, lidar is capable
of providing continuous, day-and-night vertical distribution
information of marine phytoplankton [22], [23], thus serving
as an important complement to passive optical remote sensing
[24]. In recent years, the application of lidar in detecting
phytoplankton layers has garnered extensive attention, with
numerous experimental validations conducted on spaceborne,
airborne, shipborne, and underwater platforms [25], [26], [27],
[28], [29], [30]. However, when detecting phytoplankton layers
characterized by stratification, lidar faces an ill-posed inversion
problem, requiring the simultaneous retrieval of two unknown
parameters: the lidar attenuation coefficient (Klidar) and the
backscattering coefficient (β). To address this challenge, var-
ious methods have been proposed. Although incorporating
additional information, such as Brillouin, Raman, and fluores-
cence signals, can improve inversion accuracy [29], [31], most
lidar systems provide only a single-channel elastic backscatter
signal to reduce system complexity, necessitating the use of
specific assumptions during the inversion process.

Klett [32] introduces an iterative inversion method that
assumes a power-law relationship between Klidar and β to
retrieve the Klidar profile. Subsequently, Chen et al. [33] com-
bined the Klett method with the perturbation method—using
the former to invert Klidar and the latter for β—demonstrating
that the inverted Chl closely matched in situ measurements and
revealing the spatiotemporal variability of the phytoplankton
layer. Churnside and Marchbanks [34] proposed a perturbation
method that simplifies the inversion process by assuming
negligible variation of Klidar with depth. While this method
achieves less than 10% error in detecting thin phytoplankton
layers in oceanic regions with Chl < 1 mg/m3, it may
produce larger errors in nearshore waters with higher Chl.
Liu et al. [25] utilized a slope-based approach, extracting the
background signal of the lidar return via exponential regression
and determining the phytoplankton layer from the signal
difference. An airborne experiments in Sanya Bay indicated
significant correlations between the inverted phytoplankton
layer depth and thickness and the in situ Chl layer parameters.

Despite the satisfactory performance of these algorithms
under certain conditions, their overall applicability remains
unverified; the validity of the underlying assumptions depends
on specific environmental conditions, leading to potential
errors that require further correction.

The South China Sea, located in low latitudes with a
geographical range from 23◦N to the equator and 99◦E to
121◦E, is the largest marginal sea in the western Pacific.
Influenced by the East Asian monsoon and ocean stratification,
the surface temperature of the South China Sea exhibits

pronounced seasonal variability. In addition to these physical
forcings, the widely distributed phytoplankton layers further
modulate the thermal structure of the mixed layer through
photothermal absorption effects [33], [35], [36]. Numerous
studies have shown that subsurface chlorophyll maxima (SCM)
are prevalent throughout the South China Sea, with their
formation and vertical distribution regulated by multiple phys-
ical and biogeochemical factors. Mesoscale eddies influence
the vertical structure of the SCM by modulating nutrient
transport [37], whereas submesoscale frontal processes control
the horizontal redistribution of Chl [38]. Coastal upwelling
shoals the SCM and enhances its intensity [39]. In addition,
internal waves significantly affect SCM distribution through
vertical mixing and nutrient fluxes, particularly in the shallow
waters off Taiwan, where internal-wave-induced upwelling
transports deep nutrients into the euphotic layer, thereby
promoting phytoplankton growth [40]. Therefore, the typical
phytoplankton layer distribution in the South China Sea not
only provides a robust basis for assessing the applicability of
inversion algorithms but also offers critical insights into marine
primary production, carbon cycling, and global climate change
[33], [41].

Within this background, the study focuses on a typical
springtime phytoplankton layer in the South China Sea. Ini-
tially, the performance of four representative phytoplankton
layer inversion algorithms was systematically evaluated using
airborne lidar data. Subsequently, to address the significant
discrepancies observed in the results of the best-performing
perturbation method, a statistical correction model was devel-
oped based on semianalytical Monte Carlo (MC) simulations.
Finally, the proposed correction model was validated using
airborne lidar experiments and in situ Chl measurements
conducted in the South China Sea during spring 2024, demon-
strating its effectiveness in enhancing inversion accuracy.

II. OVERVIEW OF PHYTOPLANKTON LAYER INVERSION
ALGORITHMS

The 532-nm Mie scattering lidar equation can be expressed
as

P (z) =
B · S rT 2

a T 2
t Q (z)

(n · H + z)2 · β (z) · exp
�
−2
Z z

0
Klidar (y)dy

�
(1)

where P(z) represents the received signal power, originating
from the scattering of the 532-nm laser wavelength at depth z.
B is a constant independent of detection depth z, encompassing
factors such as laser pulse energy, detector quantum efficiency,
and the transmission efficiency of the optical system for both
emission and reception. S r denotes the telescope’s receiving
area, while Ta and Tt represent the atmospheric and air-sea
interface transmittances, respectively. Q(z) is the geometric
overlap factor, which equals 1 for airborne oceanic lidar. The
refractive index of seawater, n, is taken as 1.33. H denotes the
vertical altitude of the lidar system.

Phytoplankton layers in the water column affect both β
and Klidar. Therefore, retrieving β or Klidar is commonly
used to detect phytoplankton layers [42], [43], [44], and to
extract the depth and thickness of the phytoplankton layer.
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Section II introduces four representative algorithms for retriev-
ing phytoplankton layer signals.

A. Slope Method

The slope method applies an exponential fit to the range-
corrected lidar backscattered signal profile to extract the
background signal and compute its difference, thereby iden-
tifying phytoplankton layer characteristics [25]. The specific
process is as follows.

First, the lidar backscattered signal undergoes depth
correction and logarithmic transformation, yielding the range-
corrected signal S (z)

S (z) = ln
�
P (z) · (n · H + z)2� . (2)

Next, to mitigate surface interference and account for the
signal-to-noise ratio (SNR), S (z) within the depth range of 2 m
to the truncation point is fit using a linear function to obtain
the background signal S 0(z). The phytoplankton layer signal
S L(z) is then derived as the difference between S (z) and S 0(z)

S L (z) = S (z) − S 0 (z) . (3)

B. Improved Adaptive Phytoplankton Layer Detection
Method

This method utilizes curve fitting and robust estimation
techniques to extract the phytoplankton layer signal [45].
Initially, the slope method is applied to obtain the S L(z) signal.
However, S L(z) may still contain noise from sources, such as
the seabed, other organic debris, bacteria, and inorganic par-
ticles in the water, making it an inadequate representation of
the actual underwater phytoplankton layer. Therefore, further
noise removal is necessary. A filtering process based on the
sample median and absolute deviation is applied to S L(z) to
extract the phytoplankton layer signal.

First, the sample median of SL(z), denoted as LE , is
determined

LE = mediani=1,...,nS Li (z) . (4)

Then, the scale estimate VE is computed as the product of
a correction factor x and the median absolute deviation

VE = x
�
mediani=1,...,n

ˇ̌
S Li (z) − LE

ˇ̌�
(5)

where the correction factor x is set to 1.483 to align the
estimator with the scale parameter of a Gaussian distribution.
The signal S L(z) is then standardized using LE and VE , and
the standardized observations T i(z)

Ti (z) =
�
S Li (z) − LE

�ı
VE . (6)

Next, T i(z) is compared against a cutoff value, with the
difference defining the phytoplankton layer detection threshold
SUB(z)

SUB (z) = |Ti (z)| − Q1 |Ti (z)| (7)

where Q1|Ti(z)| represents the cutoff value, set as the quartile
of the absolute values of the standardized observations Ti(z). A
positive SUB(z) is identified as the phytoplankton layer signal
S U

L (z).

C. Klett Method

The Klett method assumes a stable power-law relationship
between β(z) and Klidar(z), allowing the lidar equation (1)
to be solved and thereby retrieving the Klidar(z) profile [32].
Specifically, β(z) and Klidar(z) are assumed to satisfy the
following relationship:

β (z) = const · [Klidar (z)]k (8)

where const and the exponent k are constants. For elastic lidar,
k is set to 1 [46]. Substituting (8) into (1) yields the following
expression for Klidar(z):

Klidar (z) =
exp {[S (z) − S (zd)]/k}

[Klidar (zd)]−1 + 2
k

R zm

z exp
�

S (y) − S (zd)
k

�
dy

(9)

where zd is the maximum depth after signal truncation, and
Klidar(zd) is the lidar attenuation coefficient at this depth. Its
value is retrieved using the slope method within the interval
(zd − 5 m, zd) based on the backscattered signal.

D. Perturbation Method

The perturbation method divides the two optical parameters,
β and Klidar, into depth-dependent components (perturbation
terms, i.e., β′, K′lidar) and depth-independent components (non-
perturbation terms, i.e., β0,K0

lidar) [34]. The lidar backscattered
signal S Z(z) after distance correction can be expressed as

S Z (z) = P (z) · (n · H + z)2

= C ·
�
β0 + β′ (z)

�
exp

�
−2K0

lidarz − 2
Z z

0
K′lidar (y)dy

�
(10)

where C represents all constant terms in the lidar equation
of (1).

By neglecting the perturbation terms, the background signal
S 0

Z(z) is obtained

S 0
Z (z) = C · β0 exp

�
−2K0

lidarz
�
. (11)

Assuming that K′lidar(z) can be neglected, the profile of β
can be calculated using the following equation:

β (z) =
S Z (z)
S 0

Z (z)
· β0 (12)

where β0 is the nonperturbation term of β(z), and is a constant
that does not vary with depth. Therefore, its value does not
affect the normalized profile shape of β(z), allowing for the
inversion of the phytoplankton layer information.

The S L(z), S U
L (z),Klidar(z), and β(z) obtained using the above

methods represent the vertical distribution of the phytoplank-
ton layer. By extracting the peak positions and widths of
these profiles, the center depth and thickness of the phyto-
plankton layer can be retrieved. However, all four inversion
algorithms rely on specific assumptions: the slope method and
the improved adaptive phytoplankton layer detection method
assume vertical homogeneity of the water column, the Klett
method assumes a power-law relationship between β and Klidar,
and the perturbation method neglects the depth dependence of
Klidar.
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TABLE I
VERTICAL DISTRIBUTION MODEL OF CHL

On the one hand, due to the complexity of water composi-
tion and the high spatiotemporal variability, the applicability
of these assumptions is limited. On the other hand, the
large amount of multiple scattering that occurs during laser
transmission in the water affects both the magnitude and the
relationship between β and Klidar. Studies have shown that
when the backscattered signal is primarily dominated by single
scattering, Klidar approximates the beam attenuation coefficient
(c); whereas, when multiple scattering dominates the signal,
Klidar approaches the diffuse attenuation coefficient (Kd) [47].
Furthermore, even in a homogeneous water column, Klidar
exhibits depth dependence [48], [49]. Therefore, for strati-
fied waters with phytoplankton layer characteristics, all four
inversion algorithms introduce errors, leading to a significant
reduction in phytoplankton layer inversion accuracy.

III. ASSESSMENT OF FOUR TYPICAL INVERSION
ALGORITHMS

To compare and analyze the performance of the four inver-
sion algorithms, particularly their inversion performance in
stratified waters with phytoplankton layers, it is first necessary
to construct the lidar backscattered signal. The MC method
generates many random samples and performs statistical prob-
ability analysis, enabling accurate modeling and performance
evaluation of complex lidar systems [50], [51], [52], [53], [54].
This method has been experimentally validated and shown to
effectively simulate the backscattered signals of ocean lidar
systems with significant multiple scattering [55], [56], [57].
Traditional MC simulation methods treat photons as indepen-
dent particles, simulating their behavior after interacting with
the water before reaching the lidar receiver. However, since
many photons are required to achieve robust results, the com-
putational demand is extremely high. To improve efficiency,
the semianalytical MC method was proposed. Therefore, this
study adopts the semianalytical MC simulation method, using
the widely applied Petzold scattering phase function. For
each scattering event, the expected values are calculated and
recorded to obtain the lidar backscattered signal [58], [59],
[60]. For details on the simulation method, refer to our
group’s previous related research [57]. This study focuses on
the phytoplankton layer in the South China Sea, using the

representative Chl vertical Gaussian distribution model as an
example [61]. The standard distribution model is as follows:

Chl (z) = fp exp

"
− (z − zm)2

2
�
FWHM

ı
2.355

�2

#
+ fk · z + fb (13)

where fp is the Chl peak value, zm is the peak position of Chl,
fb represents the Chl baseline value, fk is the slope of linear
variation, and FWHM is the full width at half maximum of
the Gaussian model, which corresponds to the thickness of the
Chl layer. The specific parameters of the two example models
are shown in Table I.

To simplify the modeling, case-1 water type is selected [62].
Based on the Chl vertical Gaussian distribution model, the
inherent optical properties (IOPs) of the water are calculated
using a bio-optical model, which are then used as input
parameters for the MC simulation. The formula is as follows:

c (λ,Chl) = a (λ,Chl) + b (λ,Chl) (14)

where c, a, and b represent the beam attenuation coefficient,
absorption coefficient, and scattering coefficient, respectively,
and λ is the emission wavelength, taken as 532 nm. The
absorption coefficient a consists of the pure water absorption
coefficient aw, phytoplankton absorption coefficient aph, and
yellow substance absorption coefficient ay, while the scattering
coefficient b includes the pure water scattering coefficient bw

and the particulate scattering coefficient bp. The empirical
models for each optical parameter at 532 nm are shown in
Table II [63]

a (532,Chl) = aw (532) + 0.06A (532) · Chl0.65

+ ay (532,Chl) (15)
b (532,Chl) = bw (532) + bp (532,Chl) . (16)

In fact, the profile P(t) measured by the ocean lidar is the
result of the convolution between the lidar’s response function
L(t) and the water body response function W(t), and can be
expressed as

P (t) = L (t) ⊗W (t) (17)

where ⊗ denotes the convolution operator, and W(t) represents
the response of the water body to the laser during its propa-
gation through the water, which can be obtained through MC
simulations. L(t) is the lidar’s response function, including the
effects of pulsewidth, detector response time, and sampling
rate of the acquisition card, and can be obtained from the
lidar’s irradiation on a plane.

An airborne lidar system is employed in this study, with
its key parameters listed in Table III. The emitted laser
pulse waveform L(t) follows a Gaussian distribution with a
width of 8 ns. The system response W(t) is obtained through
MC simulations. By combining the simulated W(t) with the
known L(t), the lidar profile P(t) is constructed based on (17).
During the MC simulation of W(t), to simplify the model and
improve computational efficiency, the sea surface is assumed
to be calm, and specular reflection from the water surface is
neglected.

The measurement dynamic range is limited to 60 dB,
meaning signals attenuated to below 10−6 are truncated. To
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TABLE II
BIO-OPTICAL MODELS OF MC SIMULATION

TABLE III
KEY PARAMETERS OF LIDAR SYSTEMS

improve the SNR of the simulated signal, the simulated W(t)
is fit using polynomial functions, as shown in Fig. 1 (a-1)
and (b-1). Using the fit W(t), P(t) is calculated based on
(17). Then, four inversion algorithms are applied to derive
S L(z), S U

L (z),Klidar(z), and β(z), respectively. To mitigate sur-
face interference, the depth range for linear fitting of the
background signal is set from 2 m to the truncation point for
the slope method, the improved adaptive phytoplankton layer
detection method, and the perturbation method. In the Klett
method, the reference depth zd is set to the truncation point.

Based on the retrieved profiles of S L(z), S U
L (z),Klidar(z), and

β(z), the peak position (zm), and FWHM of the scattering
layer can be extracted. Taking the β profile as an example, the
specific method is illustrated in Fig. 2. Since the Chl profile
follows a Gaussian distribution with a baseline and a linear
term, as shown in (13), the values of β at the starting and
truncation positions are first used for linear fitting, as shown in
Fig. 2(a). The linear component is then removed, as shown in
Fig. 2(b), followed by baseline subtraction to obtain Fig. 2(c).
The resulting data is normalized, and the depth corresponding
to the maximum value of the normalized β is identified as zm,
while the width at half maximum corresponds to the FWHM.
Using this method, the phytoplankton layer distribution pro-
files S P, S U , S K , and S β,derived from S L(z), S U

L (z),Klidar(z),
and β(z), are compared with the Chl(z) profile, as illustrated
in Fig. 1 (a-2) and (b-2).

As shown in Fig. 1 (a-2) and (b-2), when the Chl profile
follows a Gaussian distribution, all four inversion algorithms
can retrieve the phytoplankton layer information in the water.

Fig. 1. Vertical Chl distribution profiles and MC-simulated C(t).
(a-1) Case with low fb and shallow zm. (b-1) Case with high fb and deep
zm. (a-2) and (b-2) Corresponding phytoplankton layer retrieval results for
(a-1) and (b-1), respectively. GT denotes the ground truth, while S P, S U , S K ,
and S β represent the normalized results from the slope method, the improved
adaptive phytoplankton layer detection method, the Klett method, and the
perturbation method, respectively.

However, the retrieved phytoplankton layer center depth (zm)
and thickness both deviate from the true values to varying
degrees. Specifically, for water bodies with a low fp and
shallow zm, as shown in Fig. 1 (a-2), the four inversion
algorithms exhibit the following characteristics: the perturba-
tion method achieves the highest accuracy in retrieving zm,
with results closest to the true value. In contrast, the slope
method and the improved adaptive phytoplankton layer detec-
tion algorithm tend to underestimate zm, primarily because the
background signal S 0(z) inevitably includes part of the actual
phytoplankton layer. On the other hand, the perturbation and
Klett methods generally overestimate zm, due to the influence
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Fig. 2. Schematic of the method for extracting the zm and FWHM of the phytoplankton layer: (a) original and normalized β(z) profiles, (b) β(z) profile with
the linear term removed, and (c) β(z) profile with both the linear term and background value removed. Chl and β(z) profiles are shown in green and purple,
respectively.

TABLE IV

PARAMETERS FOR MC SIMULATION

of multiple scattering effects and the limitations of their
underlying assumptions.

In terms of FWHM retrieval, the slope method and the
improved detection algorithm underestimate the phytoplank-
ton layer thickness, yielding narrower results than the true
values, while the perturbation and the Klett methods tend to
overestimate the thickness. Similarly, for water bodies with
a high fb and deep zm, as shown in Fig. 1 (b-2), the four
algorithms exhibit the same deviation trends. However, the
extent of the deviation increases further due to the enhanced
impact of multiple scattering effects.

To further evaluate the performance of the four inversion
algorithms, this study uses the Gaussian distribution model
described in (13) to construct Chl vertical profiles. By vary-
ing the parameters, multiple phytoplankton layer distribution
scenarios are simulated, covering depths from shallow (0 m)
to deep (60 m), concentrations from low (0.1 mg/m3) to high
(10 mg/m3), and thickness ranging from 1 to 60 m. The
detailed parameter settings are listed in Table IV. Although
all four algorithms exhibit certain deviations in their retrieval
results, considering that corrections can be applied subse-
quently, the following statistical analysis focuses primarily
on whether the algorithms can successfully extract the phy-
toplankton layers.

Statistical analysis, as shown in Figs. 3 and 4 reveal the
notable differences in the performance boundaries of the four

Fig. 3. Effective inversion ranges of four methods for phytoplankton layer
detection at fb = 0.01 mg/m3: (a) Perturbation method, (b) Klett method,
(c) slope method, and (d) improved adaptive phytoplankton layer detection
method. Blue dots and shaded areas represent effective inversion regions.

retrieval algorithms. Overall, the perturbation method exhibits
the broadest applicability, successfully retrieving phytoplank-
ton layer parameters in 80.82% of the simulated cases, with
failure occurring only under extreme conditions where zm is
very shallow (<2 m). In contrast, the Klett method achieves a
coverage rate of 57.55%, but performs poorly for phytoplank-
ton layers with large FWHM (>10 m). The slope method and
the improved adaptive phytoplankton layer detection method
both achieve a coverage rate of 62.45%. Compared to the
Klett method, they show improved performance under high-
fp conditions but remain ineffective for thick phytoplankton
layers.

As fb increases, for example, to 0.1 mg/m3 (see Fig. 4),
the effective retrieval region for all algorithms shrinks due
to the enhanced impact of multiple scattering, compared to
the lower fb condition of 0.01 mg/m3. The success rates
for the perturbation method, Klett method, slope method,
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Fig. 4. Effective inversion ranges of four methods for phytoplankton layer
detection at fb = 0.1 mg/m3: (a) Perturbation method, (b) Klett method,
(c) slope method, and (d) improved adaptive phytoplankton layer detection
method. Blue dots and shaded areas represent effective inversion regions.

and improved adaptive method decrease to 79.59%, 46.94%,
62.04%, and 61.22%, respectively. Further analysis indicates
that under higher fb, for deep (zm > 40 m), low fp (<1 mg/m3)
layers, peak signals are more likely to be submerged by back-
ground noise, reducing the effectiveness of the slope method,
the improved adaptive method, and, to a lesser extent, the
perturbation method. For the Klett method, accurate retrieval
is only achieved in a limited number of cases where the
FWHM is small (<10 m) and fp is high (>1 mg/m3). Overall,
the perturbation method demonstrates the widest applicability
and superior performance in retrieving phytoplankton layer
characteristics. Accordingly, the perturbation method will be
applied to airborne lidar data, and a correction model will be
established.

IV. DEVELOPMENT OF THE CORRECTION MODEL

A. Site Description

In May 2024, an airborne lidar flight experiment was
conducted in the adjacent sea area southeast of Hainan Island,
along with in situ fluorescence-based measurements of the
vertical distribution of Chl. Two observation sites, A and B,
were selected for the experiment (indicated by pentagrams in
Fig. 5). Site A was observed on May 17, while site B was
observed on May 18. The aircraft performed small-scale back-
and-forth flights within the areas around sites A and B. The
flight trajectories are shown as solid lines in Fig. 5, with arrows
indicating the start and end points. The background color in
the figure represents the monthly average Chl retrieved from
ocean color satellite data for that month, providing a reference
for the regional Chl background.

The in situ Chl data reveal that the vertical distribution
profiles at fixed observation points A1 and B1, located at
sites A and B, respectively, exhibit the typical Gaussian-
shaped patterns (see Fig. 6), with Chl averaged every 0.1-m
interval. At site A1, the phytoplankton layer exhibited a peak

Fig. 5. Distribution of field experiment sites. Pentagrams indicate site
locations. Red and black solid lines represent flight trajectories over sites
A and B, respectively. Hollow circles and squares denote the start and end
points, with arrows indicating flight direction. The background shows the
monthly average Chl retrieved from ocean color satellite data.

Fig. 6. In situ vertical Chl profiles at stations (a) A1 and (b) B1. Dots
correspond to the measured data, while the solid lines show the fit profiles
based on a Gaussian distribution model.

depth (zm) of approximately 46.9 m with a FWHM of about
20.7 m. In comparison, the phytoplankton layer at site B1 is
deeper (zm ≈ 54.5 m) and slightly thicker (FWHM ≈ 22.4 m).
It should be noted that, according to previous studies, the
slope for the linear term was generally found to be below
zero [68]. However, in our case, the vertical Chl profiles
exhibited positive slopes, with fk of both sites approximately
0.003 mg/m−4. On the one hand, upwelling currents near the
northern coast of the South China Sea promote nutrient uplift
[69]; on the other hand, as shown in Fig. 6, the limitation
of sampling depth (0–80 m) may result in incomplete capture
of the deep chlorophyll maximum feature. Similar effects of
limited sampling depth have also been reported in previous
studies [70]. Based on these in situ Chl measurements, a
phytoplankton layer correction model for the South China Sea
is subsequently developed using MC simulation.

B. Phytoplankton Layer Correction Model for the South
China Sea

Although the perturbation method offers the broadest appli-
cability for extracting the phytoplankton layer, its inversion
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Fig. 7. (a) Relationship between the retrieved phytoplankton layer peak
position z′m and the true peak position zm under different FWHM conditions.
(b) Relationship between the retrieved phytoplankton layer thickness FWHM′
and the true thickness FWHM under different zm conditions. Dots represent
MC simulation results, and dashed lines indicate fit curves.

Fig. 8. Polynomial fitting relationships between parameter (a) k1, (b) k2, and
the FWHM.

results still exhibit deviations, necessitating the development
of a corresponding correction model. To this end, based on
the vertical Chl distribution characteristics measured in situ at
the South China Sea station, a Gaussian Chl profile as defined
in (13) is adopted. The background Chl fb is uniformly set to
0.1 mg/m3, and the surface Chl fp is set to 0.7 mg/m3. The
peak depth zm varies between 35 and 60 m, and FWHM ranges
from 5 to 40 m. MC simulations are conducted to analyze
the distribution pattern of deviations between the perturbation
method inversion results and the true values.

In the simulation, the MC-derived signal W(t) and the
known L(t) are first used in (17) to obtain the lidar profile
P(t). After correcting for the lidar tilt angle, the perturbation
method described in (10)–(12) is applied to retrieve the vertical
scattering coefficient profile β(z). Then the phytoplankton layer
profile S β is obtained through the processing, as shown in
Fig. 2. The depth corresponding to the maximum of S β is
defined as the retrieved phytoplankton layer peak position zm

′,
and its thickness is taken as the retrieved FWHM (FWHM′).
The relationships between zm

′ and zm, as well as FWHM′ and
FWHM, are then analyzed. The results are shown in Fig. 7.

From Fig. 7(a), under different FWHM conditions, zm
′ and

zm exhibit a consistent monotonic increasing trend. When
FWHM is small, the relationship between zm

′ and zm is closer
to the 1:1 line; as the FWHM increases, the response of zm

′ to
zm becomes more gradual, and the fit curve gradually deviates
from the 1:1 line, indicating that the inversion error increases
with zm and becomes more pronounced under larger FWHM

Fig. 9. Polynomial fitting relationships between the coefficients of the
quadratic fit of FWHM and FWHM′ (a) m1 and m2 and (b) m3 and zm.

conditions. To address this, linear fitting is first performed
between zm

′ and zm, followed by analyzing the relationship
between the fitting parameters and FWHM:

zm =
�
z′m − k2

�
/k1 (18)

where k1 and k2 represent the slope and intercept of the fit
linear function, respectively, and both exhibit a coefficient
of determination (R2) of 0.99. Further analysis reveals a
relationship between k1 and k2, and the thickness (FWHM),
as shown in Fig. 8. The fit relationships are as follows:8̂̂̂<̂
ˆ̂:

k1 = 0.96 + 0.02 · FWHM − 2.04 × 10−3 · FWHM2

+ 3.12 × 10−5 · FWHM3

k2 = 4.16 − 0.61 · FWHM + 6.97 × 10−2 · FWHM2

−1.09 × 10−3 · FWHM3.
(19)

As shown in Fig. 7(b), FWHM′ increases with FWHM,
exhibiting consistent trends across different zm values
(35–60 m) with only minor variations. The relationship
between FWHM′ and FWHM under each zm condition is fit
using a second-order polynomial. The fit expressions are as
follows:

FWHM =
−m2 +

q
m2

2 − 4m1
�
m3 − FWHM′

�
2m1

(20)

where m1,m2, and m3 are fitting coefficients, with R2 values
of 0.81, 0.90, and 0.99, respectively. Further analysis reveals
relationships between these coefficients and zm, as shown in
Fig. 9. The fit relationships are as follows:8̂<̂
:

m1 = −0.03 + 5.48 × 10−4 · zm − 4.28 × 10−6 · z2
m

m2 = 2.91 − 0.07 · zm + 6.12 × 10−4 · z2
m

m3 = −16.73 + 1.00 · zm − 8.00 × 10−3 · z2
m.

(21)

Using (18)–(21), the inverted zm
′ and FWHM′ can be

obtained as 3-D fit surfaces corresponding to zm and FWHM,
respectively, as shown in Fig. 10. As illustrated in Fig. 10(a),
when the phytoplankton layer is thin, zm

′ and zm approximately
follow a 1:1 relationship, indicating that the perturbation
method can accurately predict the phytoplankton layer depth
under thin layer conditions. As FWHM increases, zm

′ gradu-
ally becomes smaller than zm, suggesting that the error caused
by the simplified assumptions in the perturbation method
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Fig. 10. (a) Relationship of z′m with zm and FWHM calculated using (18)
and (19). (b) Relationship of FWHM′ with zm and FWHM calculated using
(20) and (21).

Fig. 11. Flowchart of the correction process.

increases with increasing phytoplankton layer thickness. Fur-
thermore, Fig. 10(b) shows that when the phytoplankton layer
thickness is fixed, zm has a minor effect on FWHM′, indicating
that FWHM′ is mainly influenced by FWHM rather than zm.

To validate the accuracy of the phytoplankton layer correc-
tion model, the airborne lidar measured data will be inverted
using the perturbation method, followed by correction with
(18)–(21) to obtain the corrected parameters (FWHMC and
zC

m). The correction results are then validated by comparison
with in situ Chl data. The detailed process is shown in Fig. 11.

V. FIELD MEASUREMENTS

The raw signals measured by the airborne lidar at sites A
and B are shown in Figs. 12(a) and 13(a), respectively. The β
profiles inverted using the perturbation method are presented in
Figs. 12(b) and 13(b). The phytoplankton layers extracted from
the β profiles, along with the corrected phytoplankton layers
obtained through (18)–(21), are shown in Figs. 12(c) and 13(c).
The red line segments indicate the in situ measurements at
fixed sites A1, A2, B1, and B2.

From Figs. 12(c) and 13(c), after correction using the statis-
tical model, the inverted phytoplankton layer center position
(zC

m) and thickness (FWHMC) are more consistent with the
in situ observations. Specifically, the correction based on
the inversion results indicates that both zm and FWHM of the
scattering layer have decreased. After correction, the upper
boundary of the layer structure remains stable, while the lower

Fig. 12. Field experiment results from airborne lidar at site A. (a) Raw
lidar signal S (z). (b) β profile retrieved using the perturbation method.
(c) Phytoplankton layer before and after correction. The red shaded area
represents the phytoplankton layer derived from the β profile; the blue shaded
area shows the corrected phytoplankton layer based on (18)–(21), and the red
lines indicate in situ measurements at stations A1 and A2.

Fig. 13. Field experiment results from airborne lidar at site B. (a) Raw
lidar signal S (z). (b) β profile retrieved using the perturbation method.
(c) Phytoplankton layer before and after correction. The red shaded area
represents the phytoplankton layer derived from the β profile; the blue shaded
area shows the corrected phytoplankton layer based on (18)–(21), and the red
lines indicate in situ measurements at stations B1 and B2.

boundary has risen significantly. As shown in Fig. 12(c), the
in situ FWHM values at sites A1 and A2 are 20.7 and 20.4 m,
respectively. After correction, the estimated thicknesses are
substantially reduced from 26.5 and 25.6 m to 20.4 and 19.3 m,
with inversion accuracies improved to 94.8% and 78.9%.
Similarly, Fig. 13(c) shows that the in situ FWHM values
at sites B1 and B2 are 22.4 and 20.2 m, and the corrected
thicknesses decrease markedly from 27.9 to 26.9 m to 21.0
and 19.6 m, achieving inversion accuracies of 74.6% and
91.0%, respectively. The corrected layer thicknesses closely
match the in situ observations, validating the reliability and
accuracy of the correction model. Overall, the proposed model
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Fig. 14. Density distribution of the relationship between phytoplankton layer
results before and after correction at sites A and B. (a) Comparison of
FWHMC and FWHM′ at site A. (b) Comparison of zC

m and z′m at site A.
(c) Comparison of FWHMC and FWHM′ at site B. (d) Comparison of zC

m
and z′m at site B.

significantly improves the estimation accuracy of phytoplank-
ton layer parameters and shows strong potential for application
in oceanic phytoplankton layer detection. It is worth noting
that the corrected SCM layers in Figs. 12 and 13 both exhibit
wave-like oscillations, with the amplitude in Fig. 13 being
notably larger than in Fig. 12. Such wave-like variations
may be caused by the following factors. On the one hand,
internal waves (particularly nonlinear internal waves) are a
known physical mechanism that can lead to wavy structures
in scattering layers [71]. On the other hand, wind-induced
sea surface undulations or sea level anomaly (SLA) variability
may also contribute to these oscillations. When the laser beam
is incident on a sloped sea surface formed by wind or local
SLA variations, the scattering path is deflected, resulting in the
observed wave-like height variations of the detected scattering
layer [72]. The exact causes of these variations will be further
investigated in future experiments.

To better illustrate the correction results, Fig. 14 presents the
density distributions of the corrected zC

m and FWHMC against
the uncorrected zm

′ and FWHM. As shown in Fig. 14(a)
and (c), the relationship between FWHMC and FWHM′ is
significantly below the 1:1 line under low zm

′ conditions, and
FWHMC aligns well with the in situ measurements, indicating
that the correction of phytoplankton layer thickness using (20)
and (21) is effective. Before correction, the phytoplankton
layer thickness ranged between 13 and 35 m; after correction,
it narrowed to 5–40 m. In addition, at sites A and B, the
phytoplankton layer thickness before correction is mainly
concentrated between 20 and 25 m, while after correction it
is mostly within 5–15 m. As shown in Fig. 14(b) and (d), the
relationship between zC

m and zm
′ generally falls slightly below

the 1:1 line, with the phytoplankton layer depth distribution
consistent before and after correction, ranging from 35 to
60 m. Specifically, the phytoplankton layer center at site A
is concentrated between 35 and 45 m, whereas at site B it

is relatively deeper, mostly between 40 and 50 m. This trend
agrees well with the in situ measurement results.

VI. CONCLUSION

This work compares four typical algorithms for extracting
ocean phytoplankton layers, including the slope method, an
improved adaptive phytoplankton layer detection method, the
Klett method, and the perturbation method. Their applicability
to typical scattering-layer water bodies in the South China
Sea was evaluated. The results show that all four algorithms
exhibit retrieval biases, among which the perturbation method
demonstrates the broadest applicability for retrieving the depth
and thickness of Gaussian-distributed phytoplankton layers.
To correct the retrieval biases of the perturbation method, a
phytoplankton layer correction model specific to the South
China Sea was developed based on a semianalytical MC
approach. The effectiveness of this model was validated using
airborne lidar measurement data. Although the present study
does not encompass all possible types of chlorophyll stratifi-
cation, the proposed technical framework remains applicable
for correcting the chlorophyll layer information retrieved by
lidar.

This work provides a new technical pathway for detecting
phytoplankton layers in water bodies, though some limitations
remain. For example, in highly turbid waters, the influence
of multiple scattering effects on retrieval accuracy is not yet
fully understood, which restricts the model’s applicability
in complex environments. However, the proposed correction
model is primarily based on data from the South China Sea,
and its generalizability to other regions needs further valida-
tion. Future work may integrate multispectral lidar and ocean
color remote sensing data to further optimize the correction
model, improve retrieval accuracy, and expand its scope of
application. Overall, this study offers important theoretical and
methodological support for the application of lidar technology
in marine ecological monitoring and holds significant theoret-
ical significance and application potential.
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