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Algorithm for simultaneous retrieval of methane and temperature

using absorption spectroscopy lidar

LIN Simin'", YUE Bin*', GUO Xiaoya', FANG Jinxian', SHANGGUAN Mingjia'"

(1. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;

2. Suzhou Key Laboratory of Biophotonics, School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China)

Abstract:
Objective As the second most significant greenhouse gas after carbon dioxide (CO,), methane (CH,) exhibits a
100-year global warming potential (GWP) 27.9 times greater than that of CO,. However, current methane
monitoring technologies face limitations in spatiotemporal resolution and multi-parameter synchronization,
hindering precise emission source identification. This study aims to advance the application of absorption
spectroscopy-based spectral fitting inversion techniques for atmospheric CH, detection, enabling simultaneous
high-precision retrieval of methane column-averaged concentration (Xcy,), temperature (7), and water vapor

concentration (Xp,0). The proposed system provides critical technical support for global methane emission
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monitoring and dynamic assessment of carbon neutrality progress.

Methods The retrieval of methane concentration is critically dependent on precise temperature parameters. In
differential absorption lidar (DIAL), a temperature deviation of 1 K results in approximately 14 ppb of methane
concentration retrieval error (Fig.3). Leveraging the absorption spectral characteristics of CH, at the 1645 nm
band, we validated the feasibility of simultaneous temperature inversion using CH, absorption spectra. By
optimizing the methane absorption spectral model —combining a nine-peak Lorentzian profile with a binomial
background (parameters of the nine absorption peaks detailed in Tab.1)—the fitting efficiency and accuracy were
significantly enhanced. The number of fitting parameters was reduced from 30 to 6 key variables. The scanning
strategy was further optimized, with the refined strategy illustrated in Fig.7(a),(b). Systematic errors of the nine-
peak model were analyzed under diverse environmental conditions. Subsequently, numerical simulations
established analytical relationships between retrieval error standard deviations, signal-to-noise ratio (SNR), and
detection distance, offering theoretical guidance for experimental design and advancing high-precision

atmospheric methane detection.

Results and Discussions After optimization of the scanning strategy, the noise-free fitting results and residuals
are shown in Fig.7(c),(d). Under diverse environmental conditions, the nine-peak model demonstrated robust
performance, with retrieval deviations of Xcy,, 7, and Xy,o below 1 ppb, 0.6 K, and 0.05%, respectively.
Backscattered signal spectra were generated under varying SNR and detection distances, with Poisson noise added
to 100 independent datasets. The standard deviations of retrieved parameters were analyzed to derive analytical
expressions for error distributions across optical path lengths and SNR (Fig.8). At an SNR of 10%, retrieval errors
within 1-10 km ranged below 7 ppb for AXcy,, 0.5 K for AT, and 0.01% for AXy,, (Fig.9).

Conclusions This study proposes a novel absorption spectroscopy-based lidar algorithm for simultaneous
retrieval of atmospheric Xcy,, 7, and Xu,0, demonstrating exceptional precision and stability across diverse
environmental conditions and detection distances. The breakthrough enables revolutionary advancements in high-
precision atmospheric methane detection and global carbon cycle research, with significant potential for long-term
climate monitoring missions. This technology serves as a pivotal tool for supporting global methane mitigation
commitments and optimizing carbon neutrality strategies.

Key words: atmospheric detection;  methane (CH,) measurement;  absorption spectroscopy lidar;

temperature detection
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