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Abstract

Algal blooms pose significant threats to marine ecosystems and human health. Accurate forecasting of chlorophyll-a
(Chl-a@) concentration is critical for effective control of harmful algal blooms (HABs). This study proposes a novel
approach for enhancing Chl-a concentration forecasting by integrating the AdaBoost algorithm with long short-term
memory (LSTM) neural networks. We developed a strong forecasting model by combining adaptive boosting
(AdaBoost) with LSTM models in Xiamen Bay, China. This model achieved higher correlation coefficients and lower
root mean square errors than individual weak models. The AdaBoost-optimized model increased the frequency of low
absolute errors while decreasing the occurrence of high absolute errors, which indicated improved overall prediction
accuracy and reliability. Moreover, the model effectively reduced performance fluctuations, which are frequent in deep
learning models. The application of a non-uniform initial weighting scheme within the AdaBoost framework further
enhanced model performance for high Chl-a concentration values, which are critical for detecting HABs. The
optimization effect of AdaBoost was validated by applying it to data collected from the Ningde area. A robust
framework is provided in this study to improve Chl-a concentration predictions and offer valuable insights for
managing coastal ecosystems facing the challenges of algal blooms.
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1 Introduction ty of fish, and contamination of seafood with harmful tox-

ins (Tester and Stumpf, 1998; Anderson et al., 2010;

Harmful algal blooms (HABs) are significant environ-
mental events occurring in coastal waters worldwide.
They are driven by nutrient enrichment, hydrodynamic
changes, and climatic factors (Moline et al., 2004; Taka-
hashi et al., 2009; Saba et al., 2014). They pose serious
threats to marine ecosystems, coastal economies, and hu-
man health through degraded water quality, mass mortali-

Wang et al., 2014; Yu et al., 2018). Effective prediction of
HABs is crucial for mitigating their adverse impacts and
providing early warnings to enable timely intervention.
Chlorophyll-a (Chl-a), a proxy for phytoplankton
biomass, has become a key indicator for monitoring and
forecasting algal bloom events (Strutton et al., 2011;
Sarangi, 2012; Harding et al., 2016). Rapid increase in
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Chl-a concentration is often correlated with the initial
stages of bloom formation (Siegel et al., 2002), making
accurate Chl-a concentration forecasting crucial for HAB
early warning systems (Vahtera et al., 2007; Nausch et al.,
2012; Tian et al., 2019). However, traditional forecasting
models, including physical and statistical methods, have
limitations in addressing the complex, nonlinear relation-
ships between environmental variables that drive algal
blooms (Stumpf et al., 2009; Anderson et al., 2010; Lee
and Lee, 2018). These models often fail to predict ex-
treme events, including rapid increases in Chl-a levels,
which are critical for timely HAB predictions.

In recent years, machine-learning and deep-learning
techniques have emerged as powerful tools for overcom-
ing these limitations, offering enhanced capabilities to
model complex interactions in environmental data (Tian
et al., 2019; Barzegar et al., 2020; Jin et al., 2021). Long
short-term memory (LSTM) networks have emerged as a
highly effective tool for time series forecasting, particular-
ly in ecological systems where temporal dependencies are
critical (Lee and Lee, 2018; Yussof et al., 2021). LSTM
networks have been successfully applied in various eco-
logical forecasting scenarios, such as water quality predic-
tion (Gao et al., 2023), hydrological modeling (Cho and
Kim, 2022), and HAB forecasting (Liu et al., 2022). They
are well suited for predicting Chl-a concentration due to
their capacity to capture both long-term dependencies and
short-term variations in environmental data. These charac-
teristics improve a model’s ability to forecast bloom
events with greater accuracy.

While LSTM models offer significant advantages,
their performance can be further enhanced through ensem-
ble learning techniques. Ensemble learning is a machine
learning paradigm that combines multiple base (weak)
learners to improve predictive performance by aggregat-
ing their outputs (Hu et al., 2021; Zhang et al., 2022).
Common ensemble learning methods, such as bagging,
stacking, and boosting, can significantly improve the ro-
bustness and predictive power of machine-learning mod-
els (Alfaro et al., 2013; Talukder et al., 2022; Mohammed
and Kora, 2023; Chen et al., 2024).

Adaptive Boosting (AdaBoost), a widely used boost-
ing algorithm, transforms weak learners into strong ones
through an iterative process that gives higher weights to
misclassified samples. This mechanism allows AdaBoost
to focus on difficult-to-predict cases, producing more ac-
curate predictions overall (Jiang et al., 2019). AdaBoost
has been successfully applied in various fields, including
image recognition and financial forecasting (Wu and Gao,
2018; Hu et al., 2020), but its potential for enhancing
deep-learning models in ecological time-series forecast-
ing, particularly in marine ecosystems, remains underex-
plored. AdaBoost has shown promise in improving model
performance in environmental applications including rain-
fall-runoff prediction (Liu et al., 2014) and air quality
forecasting (Liang et al., 2020), yet its integration with
LSTM networks for forecasting Chl-a concentration in
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marine ecosystems is a novel approach that has not been
thoroughly investigated.

Xiamen Bay is a semi-enclosed bay that is located on
the western coast of the Taiwan Strait. It frequently expe-
riences algal blooms as a result of nutrient loading from
the Jiulong River (Chen et al., 2013). The unique hydro-
dynamic conditions and anthropogenic pressures in the
bay make it highly susceptible to eutrophication and
HABs (Wang et al., 2018; Chen et al., 2021). Accurate
forecasts of Chl-a concentration in Xiamen Bay are cru-
cial for developing effective management strategies given
the significant ecological and economic risks posed by
these blooms. Ding et al. (2022) demonstrated that LSTM
models could successfully forecast Chl-a concentration in
Xiamen Bay. However, their study highlighted the need
for further optimization, particularly in improving the ac-
curacy of high Chl-a concentration predictions indicative
of imminent algal bloom events.

In this study, we investigated the application of the
AdaBoost algorithm to optimize the performance of LSTM
models for Chl-a concentration forecasting in Xiamen Bay.
By combining multiple weak learners, the AdaBoost-en-
hanced LSTM model improves Chl-a concentration fore-
casting accuracy, particularly during periods of elevated
bloom activity. AdaBoost provides significant enhance-
ment in model performance by focusing on the most chal-
lenging cases, resulting in more reliable predictions for
both low and high Chl-a concentration. The primary obje-
ctive of this research is to evaluate the effectiveness of
AdaBoost in optimizing LSTM-based Chl-a concentration
forecasts for Xiamen Bay. We hope to provide an improved
forecasting tool for mitigating the effects of HABs and
supporting the sustainable management of coastal ecosys-
tems by combining deep learning with ensemble learning.

2 Material and methods

2.1 Data

Environmental data were collected from a buoy locat-
ed in Xiamen Bay. The data span the period from January
2008 to June 2021, with a gap from January 2019 to Au-
gust 2020 due to equipment downtime. Additionally, we
collected monitoring data from the Ningde area from
September 2017 to July 2018 to validate the model’s per-
formance in other regions. The dataset included four key
parameters: water temperature, dissolved oxygen (DO),
pH, and Chl-a concentration. Measurements were record-
ed every 30 min, resulting in 48 data points per day. These
parameters were measured using the YSI EXO2 platform,
a water quality monitoring system designed for continu-
ous data collection under dynamic environmental condi-
tions. This dataset was provided by the Xiamen Marine
and Fisheries Research Institute. Anomalies in the dataset
occurred occasionally due to equipment malfunctions
caused by conditions such as wind, waves, currents, or
biofouling on the instrument probes. Quality control of the
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monitoring data was performed following the methods
outlined by Zhang et al. (2009).

Buoy data and daily average meteorological data were
collected for the same period from a nearby meteorologi-
cal station. The meteorological parameters included pre-
cipitation, average air pressure, average air temperature,
average relative humidity, sunshine hours, minimum air
pressure, minimum air temperature, maximum air pres-
sure, maximum air temperature, average two-minute wind
speed, and maximum wind speed. These data were ob-
tained from the National Meteorological Information Cen-
ter (https://data.cma.cn). For the locations of the ecologi-
cal buoy and the meteorological station please refer to
Fig. 1 in Ding et al. (2022). The statistical characteristics
of all collected parameters are summarized in Table 1.

For the construction of the LSTM Chl-a concentra-
tion forecasting model the data were divided by date into
training and testing datasets. The training dataset consist-
ed of monitoring data from 2008 to 2018, while the test-
ing dataset included data from September 2020 to June
2021. Prior to input into the LSTM models, all data were
normalized using the following equation:

, Xi—X
X= g (1

where x; is the normalized value, x; is the original para-

19

meter value, X is the mean of the parameter, X = - Z Xi,
i=1

n is the number of data, and S is the standard deviation,

Previous studies have suggested that evaluating bloom
dynamics based on biomass change rates, rather than ab-
solute concentration, can improve forecasting accuracy
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(Sverdrup, 1953; Behrenfeld and Boss, 2014). Tian et al.
(2017, 2019) used the Chl-a concentration change rate
(AChl) in their machine learning model to improve Chl-a
concentration forecasts and Ding et al. (2022) used the
relative Chl-a concentration change rate (ARChl) in their
LSTM model. In this study, we adopted the approach of
Ding et al. (2022) and used ARChI as the output for the
LSTM model to generate forecast results.

2.2 LSTM model

LSTM networks, a specialized variant of recurrent
neural networks (RNNs), are designed to overcome key
limitations of traditional RNNs, particularly the vanishing
gradient problem, which makes learning long-term depen-
dencies in time-series data difficult (Hochreiter and Sch-
midhuber, 1997). LSTMs incorporate memory cells and
gating mechanisms—the input, forget, and output gates—
that enable them to effectively capture both short-term and
long-term temporal dependencies. Differently from stan-
dard RNNs, where the influence of earlier inputs fades
over time, LSTMs use these gates to control the flow of
information, enabling them to retain relevant information
across longer sequences. The gating mechanisms are de-
fined as follows:

input value: z = tanh(W[h;—1, x;]) —z = tanh(W_[h;—1, x¢]),
(2)

input gate: I = sigmoid(W;[h,—1, x]), 3)

forgotten gate: f = sigmoid(Wy[h._1, x:]), )

output gate: o = sigmoid(W,[h,_1, x;]), 5)

Table 1. Statistical summary [mean, standard deviation (SD), minimum (Min), and maximum (Max)] of the observa-
tional variables
Parameter Unit Mean SD Min Max r
Water temperature T 22.8 5.9 11.5 322 0.06**
Dissolved oxygen/% - 97.7 16.1 66.7 199.4 0.57*%*
pH - 8.0 0.2 7.5 8.7 0.36**
Chl-a concentration pg/L 3.5 5.6 0.1 91.0 1.00%*
Precipitation mm 3.7 12.2 0 172.7 —-0.02
Average air pressure hPa 997.5 6.5 968.6 1017.2 —0.06**
Average air temperature T 21.6 6.1 39 319 0.07**
Average relative humidity - 75.4 12.8 23.0 100.0 0.04*
Sunshine hours h 53 4.1 0 13.0 0.12%*
Minimum air pressure hPa 995.2 6.5 948.9 1013.2 —0.06**
Minimum air temperature T 19.0 6.1 1.1 29.3 0.06**
Maximum air pressure hPa 999.5 6.6 973.6 1019.7 —0.06**
Maximum air temperature T 25.7 6.3 7.8 38.5 0.08**
Average 2-min wind speed m/s 2.6 1.0 0.6 9.8 —0.05%*
Maximum wind speed m/s 5.2 1.6 2.1 36.4 0

Note: The correlation coefficient with Chl-a concentration (7) is also shown. * means p < 0.05, and ** means p < 0.01. — means

no unit.
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new state: ¢, = f-c-1 +1 -z, (6)

output value: i, = 0 - tanhcy, 7

where W.[-,-], Wi[-,-], Wy[-,-], and W,][-,-] are four pa-
rameter matrices; sigmoid function is defined as
sigmoid(a)=1/(1+e4); x, is the input at time £, &,_, is the
hidden state from the previous time step; z is the candi-
date cell state at time step #; /, f, and o are the input gate,
forget gate, and output gate at time step ¢, respectively;
and c, is the cell state at time step 7.

In this study, we constructed an LSTM model with
seven layers, consisting of a sequence input layer, two
LSTM layers, two dense (fully connected) layers, a
dropout layer, and a regression output layer (Fig. 1). The
model outputs ARChl, which is then used to calculate the
Chl-a concentration for the following day based on the
current day’s concentration. Dropout is a regularization
technique that prevents overfitting by randomly dropping
units (along with their connections) during training (Mur-
phy et al., 2014; LeCun et al., 2015). To minimize the risk
of overfitting we applied dropout between the two LSTM
layers. The structure of this LSTM model has demonstrat-
ed strong forecasting performance in Chl-a concentration
predictions in several studies (Ding et al., 2022; Zhang
etal., 2024).

2.3 AdaBoost algorithm

AdaBoost is an ensemble learning algorithm that com-
bines multiple weak learners to form a strong learner (Fre-
und and Schapire, 1997). It works by iteratively training
weak learners, with each new model focusing on the in-
stances that have been misclassified or poorly predicted
by the previous models. The predictions from all weak
learners are then combined to produce a final model that
delivers improved performance. AdaBoost has been wide-
ly applied to enhance the accuracy of machine-learning
models across various applications (Walker and Jiang,
2019; Sun et al., 2020; Wu et al., 2020).

In this study, we explored how the AdaBoost algori-
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thm affected the LSTM model’s performance for Chl-a
concentration forecasting. The architecture of the Ada-
Boost-enhanced LSTM model is shown in Fig. 2. The Ada-
Boost algorithm improves forecasting accuracy by combi-
ning multiple LSTM models, each trained on reweighted
versions of the data. The LSTM Chl-a concentration fore-
cast model served as the base (weak) learner in this study.

A common strategy in forecasting is to average the re-
sults of multiple predictions to reduce the influence of
random errors. While this approach helps minimize the
occurrence of extreme mispredictions, it may also down-
play exceptionally accurate predictions. In contrast, Ada-
Boost improves forecasting accuracy by using a weighted
average that prioritizes the predictions made by stronger
models. The key feature of the AdaBoost algorithm is its
ability to assign weights to each weak learner based on its
individual training errors, allowing the model to focus
more on difficult cases and improve overall performance.

The ultimate goal of training a machine learning model
is to minimize the discrepancies between the forecast re-
sults and actual observations. However, minor discrepan-
cies often exist in practice. When implementing the Ada-
Boost algorithm, it is critical to assess the accuracy of the
forecast results based on the training data. We established
a threshold for the absolute error of these forecasts. If the
absolute error was less than this threshold, the forecast was
deemed correct; otherwise, it was considered incorrect.

As shown in Fig. 3, the majority of absolute errors
from the weak forecast model’s training data results were
below 0.05 pg/L, with a probability of 83.8% (34.1% +
49.7%). Even when a model is adequately trained, some
forecast results may still exhibit errors greater than
0.05 pg/L. The AdaBoost algorithm is designed to reduce
this type of underperformance. Therefore, we set 0.05 pg/L
as the threshold. When the absolute error of the training
data forecast result was below this threshold, the forecast
was considered correct; if it exceeded this value, the fore-
cast was deemed incorrect.

2.4 Model optimization process

The detailed optimization process using the AdaBoost

parameter sequence
Chl, | --- | Chl_, | Chl,
_ == =
DO, , DO, , DO, > ARChl,,, => Chl,.,
—_— > >
Vies Viea V. !
input 1 dense dense output
Input layer LSTM layer dropout LSTM layer laver laver )
(200) (0.5) (200) Y Y

(10) M

Fig. 1. Architecture of the LSTM model for Chl-a concentration prediction. Chl,, DO,, and V, represent the Chl-a con-
centration, dissolved oxygen, and average 2-min wind speed at time ¢, respectively. / denotes the length of the input
time series. Numbers in parentheses indicate the number of nodes in each layer [e.g., LSTM layer (200) denotes 200
units), except for the dropout layer, where (0.5) represents the dropout rate].
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Fig. 3. Distribution of training data forecast absolute er-
rors of the LSTM Chl-a concentration forecast model.

algorithm is illustrated in Fig. 4. It consists of the follow-
ing steps:

Step 1. Training data preprocessing

All training data was standardized and organized into
a time series format suitable for input into the LSTM
model, as described in Section 2.1.

Architecture of the AdaBoost—enhanced LSTM model for Chl-a concentration forecasting. w; represents

) +1 denotes the Chl-a concentration at time ¢ + 1 predicted by the M-th

Step 2. Initialize sample weight

Each training sample was assigned an initial weight.
In the traditional AdaBoost algorithm, the initial weights
of training samples are typically uniformly distributed,

Di(i) =1/m, ®

where m is the total number of training samples, and D, (i)
represents the weight of the i-th training sample for the
first weak learner.

However, our primary goal was to achieve early warn-
ing of algal blooms through the forecast of Chl-a concen-
tration. Generally, algal blooms are accompanied by high
Chl-a levels (Siegel et al., 2002; Tang et al., 2003). There-
fore, accurate forecasting of high Chl-a values is particu-
larly important. To enhance the model’s forecasting abili-
ty for high Chl-a samples, we used non-uniform initial
weight,

=, ©)

where Chl, represents the Chl-a concentration of the i-th
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training data preprocessing

!

initialize sample weight (D)
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train weak forecast model (/)
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normalized sample weight [DY,,(i)]
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A

combine weak models to
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Fig. 4. Flowchart of the AdaBoost algorithm.

training sample.

Step 3. Iterative process

The foundation of the AdaBoost algorithm is an itera-
tive process that repeats for a specified number of itera-
tions k.

For each iterationj =1, 2, ..., k:

Step 3.1. Train weak forecast model

A weak forecast model H; (a LSTM model) was
trained using initial sample weight D (7). The goal was to
minimize the weighted error.

Step 3.2. Compute error rate

After training, the weighted error E; of the weak fore-
cast model H; was calculated,

E;=

m { Dj(i), |Chli—0;(i)| > 0.05, (10

~ o, |Chl; - 0;(i)| < 0.05,
where O(i) represents the forecast result of the weak fore-
casting model /; for the i-th training sample.

Step 3.3. Compute weak model weight

The weight for the weak forecast model H; was com-
puted,

1
T el

(11)
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where the weight reflects the weak forecast model’s per-
formance, with better models receiving higher weights.
Step 3.4. Update sample weight
The weights of the training samples were updated to
emphasize those that were incorrectly predicted as fol-
lows:

a-Dj(i), |Chl;—0;(i)| > 0.05,

Dj1() = ) ]
{ Dj(i),  |Chli—0;(i)| <0.05,

where a is a coefficient slightly greater than 1 (set to 1.1
in this study). Samples that were incorrectly predicted had
their weights multiplied by a, making them more influen-
tial in the next iteration.

Step 3.5. Normalize sample weight

The updated sample weights were normalized so that
they summed to 1,

DY, (i) = nD”i (13)

ZDjH(i)
i=1

Step 4. Normalize weak model weight

After completing the iterative training process, the
weight assigned to each weak forecasting model was col-
lected. To ensure that the combined influence of all weak
models was appropriately scaled, these weights were nor-
malized so that their total sum equaled 1,

(14)

Step 5. Combine weak models to form a strong model
After completing all iterations, the final strong fore-
cast model was constructed by aggregating the predic-
tions of all weak forecasting models, each weighted by

their respective normalized weights a)?] ,

15)

t+1°

M
Chlyy = > w;-Chl/
=1

where Chlii)l represents the forecasted Chl-a concentra-
tion by the j-th weak forecast at time ¢ + 1; Chl,| de-
notes forecast Chl-a concentration by the strong forecast
model at time ¢ + 1; and M is the total number of weak
forecasting models. In this study, M was set to 10 to bal-
ance optimization performance and training time. When
M exceeded 10, there was no significant improvement in
forecasting accuracy, while the model’s training time in-
creased. This weighted aggregation leverages the collec-
tive strengths of all weak models, enhancing the overall
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predictive accuracy and robustness of the strong forecast-
ing model.

2.5 Model evaluation metrics

The model’s performance was evaluated using three
metrics: the correlation coefficient (r), root mean square
error (RMSE), and absolute error. The  assesses the rela-
tionship between predicted and observed results, with val-
ues closer to | indicating higher accuracy. The RMSE and
absolute error quantify the differences between predicted
and observed values, with smaller values reflecting better
model performance.

RMSE = (16)

i(Yi—Z)@i—ii)
i=1

r= ,

J i (Y; —75)2 i i=5)
i=1 p

(17)
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absolute error; = |Y; —yil, (18)
where Y; and y, represent the observed and predicted val-
ues, respectively, Y; and y; are their mean values, and n
is the number of samples.

3 Results

To minimize the potential influence of random errors,
we conducted ten independent tests. Each test involved
training ten weak forecasting models and one strong fore-
casting model, the latter generated by combining the weak
models using the AdaBoost algorithm. The performance
of these models was evaluated using the correlation coef-
ficient () and RMSE, as summarized in Tables 2 and 3,
respectively.

The results in Table 2 demonstrate that the AdaBoost-
optimized strong forecasting models consistently outper-
formed the individual weak forecasting models. In every
test, 7 of the strong models exceeded the average r of the
weak models. Moreover, in most tests, » of the strong
models were higher than those of all individual weak
models. For example, in Test 1, the strong model achieved

Table 2. Correlation coefficient (7) of the Chl-a concentration forecast results for the weak forecast models and the

AdaBoost-optimized strong forecast model

Forecast model

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Weak model 1 0.910 0.889 0.928 0.924 0.918 0.912 0.915 0.924 0.918 0.906
Weak model 2 0.934 0.901 0.921 0.947 0.916 0.922 0.922 0.900 0.922 0.926
Weak model 3 0.933 0.943 0.916 0.935 0.936 0.909 0911 0911 0.916 0.936
Weak model 4 0.935 0.885 0.901 0911 0.915 0.926 0.920 0.937 0.917 0.915
Weak model 5 0.907 0.910 0.924 0.893 0.903 0.905 0.913 0.933 0.908 0.930
Weak model 6 0.934 0.925 0.925 0.933 0.927 0.928 0.922 0.921 0.883 0.914
Weak model 7 0.914 0.909 0.934 0.914 0911 0.934 0.921 0.901 0.925 0.940
Weak model 8 0.916 0.937 0.915 0.948 0.905 0.922 0.932 0.912 0.909 0.927
Weak model 9 0.910 0.923 0.917 0.941 0.903 0.929 0.904 0.916 0.890 0.917
Weak model 10 0.892 0.939 0.923 0.915 0.949 0.894 0.901 0.912 0.926 0.922
Weak model (average) 0.919 0.916 0.921 0.926 0.918 0.918 0.916 0.917 0911 0.923
Strong model 0.936 0.936 0.940 0.944 0.939 0.936 0.935 0.934 0.929 0.943

Table 3. RMSE of the Chl-a concentration forecast results of the weak forecast models and the AdaBoost-optimized

strong forecast model

Forecast model

RMSE/(ug'L™1)

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Weak model 1 1.243 1.334 1.077 1.105 1.125 1.190 1.167 1.120 1.158 1.202
Weak model 2 1.023 1.263 1.214 0.937 1.211 1.115 1.149 1.270 1.176 1.117
Weak model 3 1.024 0.961 1.143 1.011 1.013 1.236 1.255 1.279 1.219 1.003
Weak model 4 1.014 1.376 1.252 1.226 1.185 1.105 1.113 1.001 1.171 1.145
Weak model 5 1.243 1.190 1.118 1.322 1.293 1.226 1.243 1.078 1.194 1.047
Weak model 6 1.023 1.097 1.098 1.023 1.060 1.057 1.204 1.133 1.424 1.170
Weak model 7 1.150 1.239 1.018 1.167 1.217 1.025 1.173 1.321 1.120 0.993
Weak model 8 1.187 1.014 1.156 0.902 1.256 1.097 1.052 1.186 1.309 1.079
Weak model 9 1.182 1.144 1.153 1.020 1.316 1.090 1.248 1.190 1.365 1.148
Weak model 10 1.317 1.034 1.115 1.150 0.907 1.352 1.285 1.173 1.075 1.194
Weak model (average) 1.141 1.165 1.134 1.086 1.158 1.149 1.189 1.175 1.221 1.110
Strong model 1.000 1.014 0.970 0.937 0.987 1.004 1.037 1.039 1.078 0.944
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an r of 0.936, which surpassed both the average » and r of
all ten weak models. In Tests 2, 4, 5, and 8, although » of
the strong model was slightly lower than that of up to
three weak models, it still exceeded the average perfor-
mance.

Similarly, Table 3 indicates that the RMSE of the
strong forecasting models was consistently lower than the
average RMSE of the weak models. In most tests, the
strong models achieved lower RMSE values than each in-
dividual weak model, underscoring the effectiveness of
AdaBoost in reducing prediction errors. Even in instances
where some weak models had slightly lower RMSE than
the strong model, typically only one weak model per test
outperformed the strong model.

The time series of forecasted Chl-a concentration from
September 2020 to June 2021 further illustrates the per-
formance improvement (Fig. 5). The strong forecasting
model produced more stable and accurate predictions than
the individual weak models. Average r across the weak
models was 0.918, whereas the strong model achieved an
r of 0.937. This enhancement highlights the AdaBoost al-
gorithm’s ability to improve model performance by com-
pensating for individual model errors and addressing
weaknesses.

The distribution of absolute error (Fig. 6) also demon-
strates that the strong model significantly improved the
error profile. The distribution of absolute errors below

20

Sin., 2025, Vol. 44, No. 7, P. 147-160

0.25 pg/L increased from 44% in the weak models to 49%
in the strong model. Furthermore, the probability of er-
rors exceeding 5.00 pg/L was halved in the strong model,
indicating its enhanced capability to reduce large predic-
tion errors. This ability is critical for forecasting extreme
events such as HABs.

Variability in model performance was further as-
sessed using boxplots of » and RMSE (Fig. 7). The weak
models exhibited greater variability, reflecting inconsis-
tencies in their predictions due to factors such as random
parameter initialization. In contrast, the strong model
demonstrated reduced variability, with higher » and lower
RMSE, confirming that the AdaBoost effectively stabi-
lized model performance.

4 Discussion

4.1 Optimization performance of AdaBoost

The AdaBoost algorithm is renowned for enhancing
the performance of weak learners by combining them into
a strong ensemble model (Freund and Schapire, 1997). Its
application has been widespread in various domains, in-
cluding ecological modeling (Kadavi et al., 2018; Peng
et al., 2020), and in predicting HABs and Chl-a concen-
tration (Alaez et al., 2021; Shin et al., 2021). In this study,
the AdaBoost algorithm was used to optimize LSTM

wn
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Fig. 5. Time series of observed and predicted Chl-a concentration using individual weak forecasting models (a) and

the AdaBoost-optimized strong forecasting model (c) from

September 2020 to June 2021, and scatter plots showing the

correlations between observed and predicted values corresponding to a (b) and ¢ (d), respectively. The black solid lines
in b and d represent linear regression fits between the observed and predicted values, respectively.



Ding Wenxiang et al. Acta Oceanol. Sin., 2025, Vol. 44, No. 7, P. 147-160 155

Probability/%

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Absolute error/(ug-L™")

Probability/%

1

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0
Absolute error/(pug-L™)
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Fig. 7. Boxplots of r (a) and RMSE (b) between the forecast and observed Chl-a concentration for the weak forecast-
ing models and the AdaBoost-optimized strong forecasting model. The boxplots use the following conventions: the blue
boxes represent the interquartile range (IQR) between the first quartile (Q1) and the third quartile (Q3); the red horizon-
tal line inside each box indicates the median value; the black dashed lines (whiskers) extend to the minimum and maxi-

mum values within 1.5 times the IQR from QI and Q3, respectively; and the red dots denote outliers beyond the
whisker range.

models for Chl-a concentration forecasting in Xiamen strong models consistently outperformed individual weak
Bay. The results showed that the AdaBoost-optimized models (Tables 2 and 3).
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AdaBoost enhances model performance by iteratively
focusing on the errors of previous models. Each subse-
quent weak model is trained to correct the shortcomings
of its predecessors, emphasizing samples that were previ-
ously mispredicted. This iterative refinement leads to en-
hanced understanding of the training data and improved
prediction accuracy (Walker and Jiang, 2019; Sun et al.,
2020).

Our findings verify the effectiveness of AdaBoost in
reducing prediction errors and enhancing correlation with
observed values. The strong model both improved accura-
cy within the 0.25 pg/L error range and also significantly
reduced large errors exceeding 5.00 pg/L. This is particu-
larly important for forecasting HABs, which are often as-
sociated with sudden spikes in Chl-a concentration (An-
derson et al., 2010; Siegel et al., 2002). Minimizing large
prediction errors is vital for timely and reliable early
warning of events.

The reduced variability in model performance (Fig. 7)
highlights AdaBoost’s ability to stabilize deep learning
models, which are known to be sensitive to random ini-
tialization and training conditions (Goodfellow et al.,
2016). AdaBoost reduces the risk of poor predictions by
combining multiple weak learners, resulting in more con-
sistent and reliable forecasts.

4.2 Role of non-uniform initial weight

In our use of the AdaBoost framework, we incorporat-
ed a non-uniform initial weighting scheme to prioritize the
accurate prediction of high Chl-a concentration associat-
ed with HABs. Accurately forecasting these high values is
critical for early detection and management of HABs
(Siegel et al., 2002; Tang et al., 2003). By assigning high-
er initial weights to samples with elevated Chl-a concen-
tration, the algorithm directed more focus toward these
critical cases during training.

Our results demonstrated that the non-uniform weight-
ing scheme led to notable improvements in the model’s
performance for high Chl-a concentration compared to the
uniform weighting approach. Specifically, correlation co-
efficient (#) for high Chl-a concentration was higher by
1.5%, and the RMSE was lower by 2.9% (Table 4). In
contrast, the improvement for low Chl-a concentration
was less pronounced, with 7 only 0.2% higher and RMSE
only 1.2% lower. This indicates that the non-uniform
weighting scheme was most effective at enhancing the
model’s ability to predict high Chl-a concentration, which
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are often indicative of bloom events (Fig. 8).

The improved performance for high Chl-a concentra-
tion can be attributed to the model’s increased emphasis
on these samples during training. This focus allowed the
model to better capture the dynamics of algal bloom for-
mation and intensification, thereby improving the accura-
cy of early warning systems.

4.3 Implications for ecological forecasting

To evaluate the broader applicability of the proposed
method, we extended the analysis to the Ningde area, lo-
cated in the northern part of the Taiwan Strait. Using
monitoring data from September 2017 to July 2018, we
observed that, even in a different geographical setting,
the AdaBoost optimization significantly improved the
model’s performance, with a notable increase in 7 and a
considerable reduction in RMSE (Fig. 9). These results in-
dicate that the AdaBoost-optimized LSTM model is appli-
cable to other regions, further demonstrating its flexibility
and robustness.

The combination of AdaBoost and LSTM in this study
is driven by the complementary strengths of both tech-
niques. LSTM, a recurrent neural network, is well suited
for capturing temporal dependencies in time-series data,
including the dynamics of Chl-a concentration (Ding et al.,
2022; Zhang et al., 2024). However, LSTM still has limi-
tations in forecasting Chl-a concentration, particularly in
improving the prediction accuracy for high Chl-a concen-
tration (Ding et al., 2022). To address these limitations,
we incorporated AdaBoost, an ensemble learning algo-
rithm, which improves model performance by iteratively
adjusting weights on misclassified samples and reducing
bias. The AdaBoost algorithm helps improve the stability
and accuracy of the LSTM model, particularly by focus-
ing on challenging instances that may be crucial for de-
tecting extreme events, such as HABs. This combination
allows for both effective temporal modeling and
proved robustness, making it an ideal strategy for ecologi-
cal forecasting. The success of the AdaBoost-optimized
LSTM model in this study has significant implications for
ecological forecasting. We have demonstrated that ensem-
ble learning methods like AdaBoost can effectively en-
hance the predictive capabilities of models dealing with
complex ecological phenomena, such as HABs, which
have substantial environmental and socio-economic im-
pacts (Anderson et al., 2010).

By improving the accuracy of Chl-a concentration fore-

im-

Table 4. Comparison of the optimization performance of the AdaBoost algorithm with non-uniform and uniform ini-
tial weights for all, high (=5 pg/L), and low (<5 pg/L) Chl-a concentration values

r

RMSE/(ug'L™)

Type of weight
All High Low All High Low
Non-uniform initial weight 0.937+0.004 1.001 +£0.044 0.783+£0.019  2.487+0.137 0.895+0.005 0.467 +0.011
Uniform initial weight 0.934+0.002 1.027+0.022 0.771+0.011  2.562+0.061 0.893 £0.003 0.476 + 0.008

Note: Evaluation metrics values are in the format of mean + SD.
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Fig. 8. Scatter plots of observed versus predicted Chl-a concentration using the AdaBoost algorithm with non-uniform
initial weights (a, b) and uniform initial weights (c, d) for high (=5 pg/L) and low (<5 pg/L) Chl-a concentration. The

black solid lines represent the linear regression fits between the observed and predicted values.
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casts, particularly for high concentration, the AdaBoost-
optimized model provides a valuable tool for early warn-
ing systems. Its use will allow coastal managers to make
timely interventions, such as issuing public health advi-
sories or implementing mitigation strategies, thereby re-
ducing the adverse effects of HABs on marine ecosys-
tems and human health.

Furthermore, this methodology could be applied to
forecasting other ecological variables of interest, such as
dissolved oxygen levels, nutrient concentrations, or harm-
ful toxin levels. The adaptability of AdaBoost in focusing
on critical thresholds makes it a versatile tool for ecologi-
cal forecasting.

4.4 Limitations and future research

Despite these promising results, several limitations of
the AdaBoost-optimized LSTM model should be acknow-
ledged. One primary limitation is the increased computa-
tional cost associated with training multiple weak learners.
The ensemble approach requires more computational re-
sources and time than single-model approaches. This may
create challenges for real-time forecasting applications
without the necessary infrastructure.

Additionally, while the LSTM served as an effective
base learner in this study, exploring other machine learn-
ing algorithms or hybrid models could further enhance
predictive performance. Combining LSTM with models
like random forests or gradient boosting machines may
leverage complementary strengths and improve robustness
(Chen and Guestrin, 2016).

Future research should also consider incorporating ad-
ditional environmental variables, such as nutrient levels,
light availability, and hydrodynamic conditions, to capture
a broader range of factors influencing algal blooms. Inte-
grating remote sensing data or developing data assimila-
tion techniques could further improve forecast accuracy
and spatial resolution (Stumpf et al., 2009; Tian et al.,
2017).

Building on the promising results of our model for Xia-
men Bay, we applied it to the Ningde area, demonstrating
its potential for use in other regions with similar condi-
tions. However, as both Xiamen Bay and the Ningde area
are located on the western side of the Taiwan Strait, fur-
ther validation is needed to assess the model’s applicabili-
ty to a wider range of marine environments with different
ecological characteristics. Additionally, our approach re-
lies on over a decade of data, which may not be available
for many coastal areas. The performance of the model for
regions with limited data requires further investigation.
While the results are promising, the proposed model’s re-
liance on long-term data is limiting, as performance may
fluctuate for regions with limited data. Future research
should focus on refining the model to enhance its robust-
ness when applied to these areas and exploring its integra-
tion with larger-scale ecological monitoring systems to
improve its applicability and forecasting capabilities
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across diverse marine ecosystems.

In conclusion, the AdaBoost-optimized LSTM model
demonstrated significant potential for enhancing early
warning systems for HABs and offered valuable insights
for broader ecological forecasting applications. Contin-
ued refinement of these models through the integration of
diverse data sources and advanced machine learning tech-
niques will further enhance their predictive capabilities.

5 Conclusions

This study demonstrated that optimizing LSTM mod-
els with the AdaBoost algorithm significantly enhanced
the accuracy of Chl-a concentration forecasting in Xia-
men Bay. The AdaBoost-optimized strong forecasting
model consistently outperformed individual weak models.
Specifically, after optimization, the frequency of predic-
tions with low absolute errors (<0.25 pg/L) increased,
while the occurrence of large absolute errors (>5.00 pg/L)
decreased. This indicates that AdaBoost not only
proved overall prediction accuracy but also effectively re-
duced large errors. This ability is crucial for detecting ex-
treme events like HABs.

Moreover, the iterative compensation mechanism of
the AdaBoost algorithm significantly reduced the perfor-
mance variability of the model, making it more stable and
reliable for complex ecological forecasting tasks than the
model would be without the AdaBoost. By introducing
non-uniform initial weights within the AdaBoost frame-
work —assigning higher weights to data with high Chl-a
concentration —the model’s ability to learn and capture
the dynamic changes of high Chl-a concentration was fur-
ther enhanced. Compared to the traditional uniform
weighting method, the non-uniform weighting approach
showed a distinct advantage in improving predictions of
high Chl-a concentration critical for HAB detection.

In conclusion, integrating AdaBoost with LSTM mod-
els is an effective method for improving early warning
systems for HABs. The enhanced predictive performance,
especially with respect to high Chl-a concentration, offers
valuable insights for other ecological forecasting applica-
tions. This study highlights the potential of ensemble
learning techniques in advancing environmental monitor-
ing and management, creating the foundation for more re-
liable and accurate ecological forecasts.

im-
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