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Abstract
Algal  blooms pose  significant  threats  to  marine  ecosystems and human health.  Accurate  forecasting  of  chlorophyll-a
(Chl-a)  concentration  is  critical  for  effective  control  of  harmful  algal  blooms  (HABs).  This  study  proposes  a  novel
approach  for  enhancing  Chl-a  concentration  forecasting  by  integrating  the  AdaBoost  algorithm  with  long  short-term
memory  (LSTM)  neural  networks.  We  developed  a  strong  forecasting  model  by  combining  adaptive  boosting
(AdaBoost) with LSTM models in Xiamen Bay, China. This model achieved higher correlation coefficients and lower
root mean square errors than individual weak models. The AdaBoost-optimized model increased the frequency of low
absolute  errors  while  decreasing  the  occurrence  of  high  absolute  errors,  which  indicated  improved  overall  prediction
accuracy and reliability. Moreover, the model effectively reduced performance fluctuations, which are frequent in deep
learning  models.  The  application  of  a  non-uniform initial  weighting  scheme  within  the  AdaBoost  framework  further
enhanced  model  performance  for  high  Chl-a  concentration  values,  which  are  critical  for  detecting  HABs.  The
optimization  effect  of  AdaBoost  was  validated  by  applying  it  to  data  collected  from  the  Ningde  area.  A  robust
framework  is  provided  in  this  study  to  improve  Chl-a  concentration  predictions  and  offer  valuable  insights  for
managing coastal ecosystems facing the challenges of algal blooms.
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1  Introduction

Harmful algal blooms (HABs) are significant environ-
mental  events  occurring  in  coastal  waters  worldwide.
They  are  driven  by  nutrient  enrichment,  hydrodynamic
changes,  and climatic  factors  (Moline  et  al.,  2004; Taka-
hashi  et  al.,  2009;  Saba  et  al.,  2014).  They  pose  serious
threats to marine ecosystems, coastal  economies,  and hu-
man health through degraded water quality, mass mortali-

ty of fish, and contamination of seafood with harmful tox-
ins  (Tester  and  Stumpf,  1998;  Anderson  et  al.,  2010;
Wang et al., 2014; Yu et al., 2018). Effective prediction of
HABs is  crucial  for  mitigating  their  adverse  impacts  and
providing early warnings to enable timely intervention.

Chlorophyll-a  (Chl-a),  a  proxy  for  phytoplankton
biomass,  has  become  a  key  indicator  for  monitoring  and
forecasting  algal  bloom  events  (Strutton  et  al.,  2011;
Sarangi,  2012;  Harding  et  al.,  2016).  Rapid  increase  in   
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Chl-a  concentration  is  often  correlated  with  the  initial
stages  of  bloom  formation  (Siegel  et  al.,  2002),  making
accurate Chl-a concentration forecasting crucial for HAB
early warning systems (Vahtera et al., 2007; Nausch et al.,
2012; Tian et  al.,  2019).  However,  traditional forecasting
models,  including  physical  and  statistical  methods,  have
limitations in addressing the complex,  nonlinear  relation-
ships  between  environmental  variables  that  drive  algal
blooms  (Stumpf  et  al.,  2009; Anderson  et  al.,  2010; Lee
and  Lee,  2018). These  models  often  fail  to  predict   ex-
treme  events,  including  rapid  increases  in  Chl-a  levels,
which are critical for timely HAB predictions.

In  recent  years,  machine-learning  and  deep-learning
techniques have  emerged as  powerful  tools  for  overcom-
ing  these  limitations,  offering  enhanced  capabilities  to
model  complex  interactions  in  environmental  data  (Tian
et al.,  2019; Barzegar et al.,  2020; Jin et al.,  2021). Long
short-term memory (LSTM) networks have emerged as a
highly effective tool for time series forecasting, particular-
ly in ecological systems where temporal dependencies are
critical  (Lee  and  Lee,  2018; Yussof  et  al.,  2021).  LSTM
networks have  been  successfully  applied  in  various   eco-
logical forecasting scenarios, such as water quality predic-
tion  (Gao  et  al.,  2023),  hydrological  modeling  (Cho  and
Kim, 2022), and HAB forecasting (Liu et al., 2022). They
are  well  suited  for  predicting  Chl-a  concentration  due  to
their capacity to capture both long-term dependencies and
short-term variations in environmental data. These charac-
teristics  improve  a  model’s  ability  to  forecast  bloom
events with greater accuracy.

While  LSTM  models  offer  significant  advantages,
their performance can be further enhanced through ensem-
ble  learning  techniques.  Ensemble  learning  is  a  machine
learning  paradigm  that  combines  multiple  base  (weak)
learners to  improve  predictive  performance  by   aggregat-
ing  their  outputs  (Hu  et  al.,  2021;  Zhang  et  al.,  2022).
Common  ensemble  learning  methods,  such  as  bagging,
stacking, and  boosting,  can  significantly  improve  the   ro-
bustness  and  predictive  power  of  machine-learning mod-
els (Alfaro et al., 2013; Talukder et al., 2022; Mohammed
and Kora, 2023; Chen et al., 2024).

Adaptive Boosting  (AdaBoost),  a  widely  used   boost-
ing  algorithm,  transforms  weak  learners  into  strong  ones
through  an  iterative  process  that  gives  higher  weights  to
misclassified  samples.  This  mechanism allows  AdaBoost
to focus on difficult-to-predict cases,  producing more ac-
curate  predictions  overall  (Jiang  et  al.,  2019).  AdaBoost
has  been successfully  applied in  various  fields,  including
image recognition and financial forecasting (Wu and Gao,
2018;  Hu  et  al.,  2020),  but  its  potential  for  enhancing
deep-learning  models  in  ecological  time-series  forecast-
ing, particularly  in  marine  ecosystems,  remains   underex-
plored. AdaBoost has shown promise in improving model
performance in environmental applications including rain-
fall-runoff  prediction  (Liu  et  al.,  2014)  and  air  quality
forecasting  (Liang  et  al.,  2020),  yet  its  integration  with
LSTM  networks  for  forecasting  Chl-a  concentration  in

marine ecosystems is  a  novel  approach that  has  not  been
thoroughly investigated.

Xiamen Bay is a semi-enclosed bay that is located on
the western coast of the Taiwan Strait. It frequently expe-
riences  algal  blooms  as  a  result  of  nutrient  loading  from
the Jiulong River  (Chen et  al.,  2013). The unique hydro-
dynamic  conditions  and  anthropogenic  pressures  in  the
bay  make  it  highly  susceptible  to  eutrophication  and
HABs  (Wang  et  al.,  2018;  Chen  et  al.,  2021).  Accurate
forecasts  of  Chl-a  concentration in  Xiamen  Bay  are   cru-
cial for developing effective management strategies given
the  significant  ecological  and  economic  risks  posed  by
these blooms. Ding et al. (2022) demonstrated that LSTM
models could successfully forecast Chl-a concentration in
Xiamen  Bay.  However,  their  study  highlighted  the  need
for further optimization, particularly in improving the ac-
curacy of  high Chl-a concentration predictions  indicative
of imminent algal bloom events.

In  this  study,  we  investigated  the  application  of  the
AdaBoost algorithm to optimize the performance of LSTM
models for Chl-a concentration forecasting in Xiamen Bay.
By  combining  multiple  weak  learners,  the  AdaBoost-en-
hanced LSTM model  improves Chl-a concentration fore-
casting  accuracy,  particularly  during  periods  of  elevated
bloom activity.  AdaBoost  provides  significant   enhance-
ment in model performance by focusing on the most chal-
lenging  cases,  resulting  in  more  reliable  predictions  for
both low and high Chl-a concentration. The primary obje-
ctive  of  this  research  is  to  evaluate  the  effectiveness  of
AdaBoost in optimizing LSTM-based Chl-a concentration
forecasts for Xiamen Bay. We hope to provide an improved
forecasting  tool  for  mitigating  the  effects  of  HABs  and
supporting the sustainable management of coastal ecosys-
tems by combining deep learning with ensemble learning.

2  Material and methods

2.1  Data

Environmental data were collected from a buoy locat-
ed in Xiamen Bay. The data span the period from January
2008 to June 2021, with a gap from January 2019 to Au-
gust  2020  due  to  equipment  downtime.  Additionally,  we
collected  monitoring  data  from  the  Ningde  area  from
September 2017 to July 2018 to validate the model’s per-
formance in  other  regions.  The dataset  included four  key
parameters:  water  temperature,  dissolved  oxygen  (DO),
pH, and Chl-a concentration. Measurements were record-
ed every 30 min, resulting in 48 data points per day. These
parameters were measured using the YSI EXO2 platform,
a water  quality  monitoring  system  designed  for   continu-
ous data  collection  under  dynamic  environmental   condi-
tions.  This  dataset  was  provided  by  the  Xiamen  Marine
and Fisheries Research Institute. Anomalies in the dataset
occurred  occasionally  due  to  equipment  malfunctions
caused  by  conditions  such  as  wind,  waves,  currents,  or
biofouling on the instrument probes. Quality control of the
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monitoring  data  was  performed  following  the  methods
outlined by Zhang et al. (2009).

Buoy data and daily average meteorological data were
collected for the same period from a nearby meteorologi-
cal station.  The  meteorological  parameters  included   pre-
cipitation,  average  air  pressure,  average  air  temperature,
average  relative  humidity,  sunshine  hours,  minimum  air
pressure, minimum  air  temperature,  maximum  air   pres-
sure, maximum air temperature, average two-minute wind
speed, and  maximum  wind  speed.  These  data  were   ob-
tained from the National Meteorological Information Cen-
ter  (https://data.cma.cn). For the locations of  the ecologi-
cal  buoy  and  the  meteorological  station  please  refer  to
Fig. 1 in Ding et al. (2022). The statistical characteristics
of all collected parameters are summarized in Table 1.

For  the  construction  of  the  LSTM  Chl-a  concentra-
tion forecasting model the data were divided by date into
training and testing datasets. The training dataset consist-
ed of  monitoring data from 2008 to 2018,  while  the  test-
ing  dataset  included  data  from  September  2020  to  June
2021. Prior to input into the LSTM models, all data were
normalized using the following equation:

x′i =
xi− x̄

S
, (1)

x′i xi

x̄ x̄ =
1
n

n∑
i=1

xi

S =

√√
1
n

n∑
i=1

(xi− x̄)2

where   is the normalized value,    is the original para-

meter value,   is the mean of the parameter,  ,

n  is  the  number  of  data,  and S  is  the  standard  deviation,

.

Previous studies have suggested that evaluating bloom
dynamics based on biomass change rates,  rather  than ab-
solute  concentration,  can  improve  forecasting  accuracy

(Sverdrup,  1953; Behrenfeld and Boss,  2014). Tian et  al.
(2017,  2019)  used  the  Chl-a  concentration  change  rate
(∆Chl) in their machine learning model to improve Chl-a
concentration  forecasts  and  Ding  et  al.  (2022)  used  the
relative Chl-a concentration change rate  (∆RChl)  in  their
LSTM model.  In  this  study,  we  adopted  the  approach  of
Ding  et  al.  (2022)  and  used  ∆RChl  as  the  output  for  the
LSTM model to generate forecast results.

2.2  LSTM model

LSTM  networks,  a  specialized  variant  of  recurrent
neural  networks  (RNNs),  are  designed  to  overcome  key
limitations of traditional RNNs, particularly the vanishing
gradient problem, which makes learning long-term depen-
dencies  in  time-series  data  difficult  (Hochreiter  and  Sch-
midhuber,  1997).  LSTMs  incorporate  memory  cells  and
gating mechanisms—the input, forget, and output gates—
that enable them to effectively capture both short-term and
long-term temporal  dependencies.  Differently  from   stan-
dard  RNNs,  where  the  influence  of  earlier  inputs  fades
over  time,  LSTMs use  these  gates  to  control  the  flow of
information,  enabling them to retain relevant  information
across longer  sequences.  The  gating  mechanisms  are   de-
fined as follows:

input value: z = tanh(Wz[ht−1, xt])−z = tanh(Wz[ht−1, xt]),
(2)

input gate: I = sigmoid(WI[ht−1, xt]), (3)

forgotten gate: f = sigmoid(W f [ht−1, xt]), (4)

output gate: o = sigmoid(Wo[ht−1, xt]), (5)

 

Table 1.   Statistical summary [mean, standard deviation (SD), minimum (Min), and maximum (Max)] of the observa-
tional variables

Parameter Unit Mean SD Min Max r

Water temperature ℃ 22.8 5.9 11.5 32.2 0.06**
Dissolved oxygen/% − 97.7 16.1 66.7 199.4 0.57**

pH − 8.0 0.2 7.5 8.7 0.36**
Chl-a concentration µg/L 3.5 5.6 0.1 91.0 1.00**

Precipitation mm 3.7 12.2 0 172.7 −0.02
Average air pressure hPa 997.5 6.5 968.6 1 017.2 −0.06**

Average air temperature ℃ 21.6 6.1 3.9 31.9 0.07**
Average relative humidity − 75.4 12.8 23.0 100.0 0.04*

Sunshine hours h 5.3 4.1 0 13.0 0.12**
Minimum air pressure hPa 995.2 6.5 948.9 1 013.2 −0.06**

Minimum air temperature ℃ 19.0 6.1 1.1 29.3 0.06**
Maximum air pressure hPa 999.5 6.6 973.6 1 019.7 −0.06**

Maximum air temperature ℃ 25.7 6.3 7.8 38.5 0.08**
Average 2-min wind speed m/s 2.6 1.0 0.6 9.8 −0.05**
Maximum wind speed m/s 5.2 1.6 2.1 36.4 0

      Note: The correlation coefficient with Chl-a concentration (r) is also shown. * means p < 0.05, and ** means p < 0.01. − means
no unit.
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new state: ct = f · ct−1+ I · z, (6)

output value: ht = o · tanhct, (7)

Wz[·, ·] WI[·, ·] W f [·, ·] Wo[·, ·]where  ,  ,  , and   are four pa-
rameter  matrices;  sigmoid  function  is  defined  as
sigmoid(a)=1/(1+e-a); xt  is  the  input  at  time  t; ht−1  is  the
hidden  state  from  the  previous  time  step;  z  is the   candi-
date cell state at time step t; I, f, and o are the input gate,
forget  gate,  and  output  gate  at  time  step  t,  respectively;
and ct is the cell state at time step t.

∆

In  this  study,  we  constructed  an  LSTM  model  with
seven  layers,  consisting  of  a  sequence  input  layer,  two
LSTM  layers,  two  dense  (fully  connected)  layers,  a
dropout layer, and a regression output layer (Fig. 1).  The
model outputs  RChl, which is then used to calculate the
Chl-a  concentration  for  the  following  day  based  on  the
current  day’s  concentration.  Dropout  is  a  regularization
technique that  prevents overfitting by randomly dropping
units (along with their connections) during training (Mur-
phy et al., 2014; LeCun et al., 2015). To minimize the risk
of overfitting we applied dropout between the two LSTM
layers. The structure of this LSTM model has demonstrat-
ed strong forecasting performance in Chl-a concentration
predictions  in  several  studies  (Ding  et  al.,  2022;  Zhang
et al., 2024).

2.3  AdaBoost algorithm

AdaBoost is an ensemble learning algorithm that com-
bines multiple weak learners to form a strong learner (Fre-
und  and  Schapire,  1997).  It  works  by  iteratively  training
weak learners,  with  each  new  model  focusing  on  the   in-
stances  that  have  been  misclassified  or  poorly  predicted
by  the  previous  models.  The  predictions  from  all  weak
learners  are  then combined to  produce a  final  model  that
delivers improved performance. AdaBoost has been wide-
ly  applied  to  enhance  the  accuracy  of  machine-learning
models  across  various  applications  (Walker  and  Jiang,
2019; Sun et al., 2020; Wu et al., 2020).

In  this  study,  we  explored  how  the  AdaBoost  algori-

thm  affected  the  LSTM  model’s  performance  for  Chl-a
concentration  forecasting.  The  architecture  of  the  Ada-
Boost-enhanced LSTM model is shown in Fig. 2. The Ada-
Boost algorithm improves forecasting accuracy by combi-
ning  multiple  LSTM models,  each  trained  on  reweighted
versions of the data. The LSTM Chl-a concentration fore-
cast model served as the base (weak) learner in this study.

A common strategy in forecasting is to average the re-
sults  of  multiple  predictions  to  reduce  the  influence  of
random  errors.  While  this  approach  helps  minimize  the
occurrence of  extreme mispredictions,  it  may also  down-
play exceptionally  accurate  predictions.  In  contrast,  Ada-
Boost improves forecasting accuracy by using a weighted
average  that  prioritizes  the  predictions  made  by  stronger
models.  The key feature of the AdaBoost algorithm is its
ability to assign weights to each weak learner based on its
individual  training  errors,  allowing  the  model  to  focus
more on difficult cases and improve overall performance.

The ultimate goal of training a machine learning model
is to  minimize  the  discrepancies  between the  forecast   re-
sults and actual  observations.  However,  minor discrepan-
cies often exist in practice. When implementing the Ada-
Boost algorithm, it is critical to assess the accuracy of the
forecast results based on the training data. We established
a threshold for the absolute error of these forecasts. If the
absolute error was less than this threshold, the forecast was
deemed correct; otherwise, it was considered incorrect.

As  shown  in  Fig.  3,  the  majority  of  absolute  errors
from the weak forecast model’s training data results were
below 0.05 μg/L,  with  a  probability  of  83.8% (34.1% ﹢
49.7%).  Even  when  a  model  is  adequately  trained,  some
forecast  results  may  still  exhibit  errors  greater  than
0.05 μg/L. The AdaBoost algorithm is designed to reduce
this type of underperformance. Therefore, we set 0.05 μg/L
as  the  threshold.  When  the  absolute  error  of  the  training
data forecast result was below this threshold, the forecast
was considered correct; if it exceeded this value, the fore-
cast was deemed incorrect.

2.4  Model optimization process

The detailed optimization process using the AdaBoost
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algorithm is illustrated in Fig. 4. It consists of the follow-
ing steps:

Step 1. Training data preprocessing
All training data was standardized and organized into

a  time  series  format  suitable  for  input  into  the  LSTM
model, as described in Section 2.1.

Step 2. Initialize sample weight
Each  training  sample  was  assigned  an  initial  weight.

In  the  traditional  AdaBoost  algorithm,  the  initial  weights
of training samples are typically uniformly distributed,

D1(i) = 1/m, (8)

where m is the total number of training samples, and D1(i)
represents  the  weight  of  the  i-th  training  sample  for  the
first weak learner.

However, our primary goal was to achieve early warn-
ing of algal blooms through the forecast of Chl-a concen-
tration. Generally, algal blooms are accompanied by high
Chl-a levels (Siegel et al., 2002; Tang et al., 2003). There-
fore, accurate forecasting of high Chl-a values is particu-
larly important. To enhance the model’s forecasting abili-
ty  for  high  Chl-a  samples,  we  used  non-uniform  initial
weight,

D1(i) =
Chli

m∑
i=1

Chli

, (9)

where  Chli  represents  the  Chl-a  concentration  of  the  i-th

 

parameter sequence

LSTM
model

boosted
by

AdaBoost

reweight

forecast forecast

finally forecast

forecast

data

reweight

data

reweight

data

Chlt − l

Chlt + 1
(1) Chlt + 1

Chlt + 1

M

ω1

ωjChlt + 1
j = 1
Σ

ω2 ωM

(2)

(j)

Chlt + 1
(M)

Chlt − 1 Chlt

DOt − l DOt − 1 DOt

Vt − l Vt − 1 Vt

M-th LSTM modelsecond LSTM modelfirst LSTM model

It

Ct-1

ht-1 ht

OtC′t

Ct

ft It

Ct-1

ht-1 ht

OtC′t

Ct

ft It

Ct-1

ht-1 ht

OtC′t

Ct

ft

 

Chl(M)
t+1

Fig.  2.     Architecture  of  the  AdaBoost-enhanced  LSTM  model  for  Chl-a  concentration  forecasting.  ωj  represents
the weight  of  the  j-th LSTM model,  and   denotes  the Chl-a concentration at  time  t + 1 predicted by the M-th
LSTM model.

 

correct

0

50

40

34.1

49.7

30

20

10

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

incorrect

Pr
ob

ab
ili

ty
/%

Forecast error/(μg·L−1)
 
Fig. 3.   Distribution of training data forecast absolute er-
rors of the LSTM Chl-a concentration forecast model.

  Ding Wenxiang et al. Acta Oceanol. Sin., 2025, Vol. 44, No. 7, P. 147–160 151



training sample.
Step 3. Iterative process
The foundation of the AdaBoost algorithm is an itera-

tive process  that  repeats  for  a  specified  number  of   itera-
tions k.

For each iteration j = 1, 2, …, k:
Step 3.1. Train weak forecast model
A  weak  forecast  model  Hj  (a  LSTM  model)  was

trained using initial sample weight Dj(i). The goal was to
minimize the weighted error.

Step 3.2. Compute error rate
After training, the weighted error Ej of the weak fore-

cast model Hj was calculated,

E j =

m∑
i=1

 D j(i)，
∣∣∣Chli−O j(i)

∣∣∣ ⩾ 0.05,

0，
∣∣∣Chli−O j(i)

∣∣∣ < 0.05,
(10)

where Oj(i) represents the forecast result of the weak fore-
casting model Hj for the i-th training sample.

Step 3.3. Compute weak model weight
The weight for the weak forecast model Hj was com-

puted,

θ j =
1

2e|E j |
, (11)

where  the  weight  reflects  the  weak forecast  model’s per-
formance, with better models receiving higher weights.

Step 3.4. Update sample weight
The  weights  of  the  training  samples  were  updated  to

emphasize those  that  were  incorrectly  predicted  as   fol-
lows:

D j+1(i) =

 a ·D j(i)，
∣∣∣Chli−O j(i)

∣∣∣ ⩾ 0.05,

D j(i)，
∣∣∣Chli−O j(i)

∣∣∣ < 0.05,
(12)

where a  is a coefficient slightly greater than 1 (set to 1.1
in this study). Samples that were incorrectly predicted had
their weights multiplied by a, making them more influen-
tial in the next iteration.

Step 3.5. Normalize sample weight
The updated  sample  weights  were  normalized  so  that

they summed to 1,

DN
j+1(i) =

D j+1(i)
m∑

i=1

D j+1(i)

. (13)

Step 4. Normalize weak model weight
After  completing  the  iterative  training  process,  the

weight assigned to each weak forecasting model was col-
lected. To ensure that the combined influence of all weak
models was appropriately scaled, these weights were nor-
malized so that their total sum equaled 1,

ωN
j =

θ j

M∑
j=1

θ j

. (14)

Step 5. Combine weak models to form a strong model

ωN
j

After completing  all  iterations,  the  final  strong   fore-
cast model  was  constructed  by  aggregating  the   predic-
tions  of  all  weak  forecasting  models,  each  weighted  by
their respective normalized weights  ,

Chlt+1 =

M∑
j=1

ω j ·Chl( j)
t+1, (15)

Chl( j)
t+1

Chlt+1

where    represents  the  forecasted  Chl-a  concentra-
tion  by  the  j-th  weak  forecast  at  time  t  +  1;    de-
notes  forecast  Chl-a  concentration  by  the  strong  forecast
model  at  time  t  +  1;  and M  is  the  total  number  of  weak
forecasting models. In this study, M was set to 10 to bal-
ance  optimization  performance  and  training  time.  When
M exceeded 10,  there  was no significant  improvement  in
forecasting  accuracy,  while  the  model’s training  time   in-
creased. This  weighted  aggregation  leverages  the   collec-
tive  strengths  of  all  weak  models,  enhancing  the  overall
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predictive accuracy and robustness of the strong forecast-
ing model.

2.5  Model evaluation metrics

The  model’s  performance  was  evaluated  using  three
metrics:  the  correlation  coefficient  (r),  root  mean  square
error (RMSE), and absolute error. The r assesses the rela-
tionship between predicted and observed results, with val-
ues closer to 1 indicating higher accuracy. The RMSE and
absolute  error  quantify  the  differences  between  predicted
and observed values, with smaller values reflecting better
model performance.

RMSE =

√√
1
ns

ns∑
i=1

(Yi− yi)2, (16)

r =

ns∑
i=1

(Yi−Y i)(yi− yi)√√ ns∑
i=1

(Yi−Y i)
2

ns∑
i=1

(yi− yi)
2

, (17)

absolute errori = |Yi− yi|, (18)

Y i yi

where Yi and yi represent the observed and predicted val-
ues, respectively,   and   are their mean values, and ns
is the number of samples.

3  Results

To minimize the potential influence of random errors,
we  conducted  ten  independent  tests.  Each  test  involved
training ten weak forecasting models and one strong fore-
casting model, the latter generated by combining the weak
models  using  the  AdaBoost  algorithm.  The  performance
of these models was evaluated using the correlation coef-
ficient  (r)  and  RMSE,  as  summarized  in Tables  2 and 3,
respectively.

The results in Table 2 demonstrate that the AdaBoost-
optimized strong  forecasting  models  consistently   outper-
formed  the  individual  weak  forecasting  models.  In  every
test, r of the strong models exceeded the average r of the
weak  models.  Moreover,  in  most  tests,  r  of  the  strong
models  were  higher  than  those  of  all  individual  weak
models. For example, in Test 1, the strong model achieved

 

Table 2.    Correlation coefficient (r)  of the Chl-a concentration forecast results for the weak forecast models and the
AdaBoost-optimized strong forecast model

Forecast model
r

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Weak model 1 0.910 0.889 0.928 0.924 0.918 0.912 0.915 0.924 0.918 0.906
Weak model 2 0.934 0.901 0.921 0.947 0.916 0.922 0.922 0.900 0.922 0.926
Weak model 3 0.933 0.943 0.916 0.935 0.936 0.909 0.911 0.911 0.916 0.936
Weak model 4 0.935 0.885 0.901 0.911 0.915 0.926 0.920 0.937 0.917 0.915
Weak model 5 0.907 0.910 0.924 0.893 0.903 0.905 0.913 0.933 0.908 0.930
Weak model 6 0.934 0.925 0.925 0.933 0.927 0.928 0.922 0.921 0.883 0.914
Weak model 7 0.914 0.909 0.934 0.914 0.911 0.934 0.921 0.901 0.925 0.940
Weak model 8 0.916 0.937 0.915 0.948 0.905 0.922 0.932 0.912 0.909 0.927
Weak model 9 0.910 0.923 0.917 0.941 0.903 0.929 0.904 0.916 0.890 0.917
Weak model 10 0.892 0.939 0.923 0.915 0.949 0.894 0.901 0.912 0.926 0.922

Weak model (average) 0.919 0.916 0.921 0.926 0.918 0.918 0.916 0.917 0.911 0.923
Strong model 0.936 0.936 0.940 0.944 0.939 0.936 0.935 0.934 0.929 0.943

 

Table 3.   RMSE of the Chl-a concentration forecast results of the weak forecast models and the AdaBoost-optimized
strong forecast model

Forecast model
RMSE/(μg·L−1)

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Weak model 1 1.243 1.334 1.077 1.105 1.125 1.190 1.167 1.120 1.158 1.202
Weak model 2 1.023 1.263 1.214 0.937 1.211 1.115 1.149 1.270 1.176 1.117
Weak model 3 1.024 0.961 1.143 1.011 1.013 1.236 1.255 1.279 1.219 1.003
Weak model 4 1.014 1.376 1.252 1.226 1.185 1.105 1.113 1.001 1.171 1.145
Weak model 5 1.243 1.190 1.118 1.322 1.293 1.226 1.243 1.078 1.194 1.047
Weak model 6 1.023 1.097 1.098 1.023 1.060 1.057 1.204 1.133 1.424 1.170
Weak model 7 1.150 1.239 1.018 1.167 1.217 1.025 1.173 1.321 1.120 0.993
Weak model 8 1.187 1.014 1.156 0.902 1.256 1.097 1.052 1.186 1.309 1.079
Weak model 9 1.182 1.144 1.153 1.020 1.316 1.090 1.248 1.190 1.365 1.148
Weak model 10 1.317 1.034 1.115 1.150 0.907 1.352 1.285 1.173 1.075 1.194

Weak model (average) 1.141 1.165 1.134 1.086 1.158 1.149 1.189 1.175 1.221 1.110
Strong model 1.000 1.014 0.970 0.937 0.987 1.004 1.037 1.039 1.078 0.944
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an r of 0.936, which surpassed both the average r and r of
all ten weak models. In Tests 2, 4, 5, and 8, although r of
the  strong  model  was  slightly  lower  than  that  of  up  to
three weak  models,  it  still  exceeded  the  average   perfor-
mance.

Similarly,  Table  3  indicates  that  the  RMSE  of  the
strong forecasting models was consistently lower than the
average  RMSE  of  the  weak  models.  In  most  tests,  the
strong models achieved lower RMSE values than each in-
dividual  weak  model,  underscoring  the  effectiveness  of
AdaBoost in reducing prediction errors. Even in instances
where some weak models  had slightly lower RMSE than
the strong model,  typically only one weak model per test
outperformed the strong model.

The time series of forecasted Chl-a concentration from
September 2020  to  June  2021  further  illustrates  the   per-
formance  improvement  (Fig.  5).  The  strong  forecasting
model produced more stable and accurate predictions than
the  individual  weak  models.  Average  r  across  the  weak
models was 0.918, whereas the strong model achieved an
r of 0.937. This enhancement highlights the AdaBoost al-
gorithm’s ability to improve model performance by com-
pensating  for  individual  model  errors  and  addressing
weaknesses.

The distribution of absolute error (Fig. 6) also demon-
strates  that  the  strong  model  significantly  improved  the
error  profile.  The  distribution  of  absolute  errors  below

0.25 μg/L increased from 44% in the weak models to 49%
in the  strong  model.  Furthermore,  the  probability  of   er-
rors exceeding 5.00 μg/L was halved in the strong model,
indicating its  enhanced  capability  to  reduce  large  predic-
tion errors.  This ability is  critical  for  forecasting extreme
events such as HABs.

Variability in  model  performance  was  further   as-
sessed using boxplots of r and RMSE (Fig. 7). The weak
models exhibited  greater  variability,  reflecting   inconsis-
tencies in their predictions due to factors such as random
parameter  initialization.  In  contrast,  the  strong  model
demonstrated reduced variability, with higher r and lower
RMSE, confirming  that  the  AdaBoost  effectively   stabi-
lized model performance.

4  Discussion

4.1  Optimization performance of AdaBoost

The  AdaBoost  algorithm  is  renowned  for  enhancing
the performance of weak learners by combining them into
a strong ensemble model (Freund and Schapire, 1997). Its
application has  been  widespread  in  various  domains,   in-
cluding  ecological  modeling  (Kadavi  et  al.,  2018;  Peng
et  al.,  2020),  and  in  predicting  HABs  and  Chl-a  concen-
tration (Aláez et al., 2021; Shin et al., 2021). In this study,
the  AdaBoost  algorithm  was  used  to  optimize  LSTM
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Fig. 5.    Time series of observed and predicted Chl-a concentration using individual weak forecasting models (a) and
the AdaBoost-optimized strong forecasting model (c) from September 2020 to June 2021, and scatter plots showing the
correlations between observed and predicted values corresponding to a (b) and c (d), respectively. The black solid lines
in b and d represent linear regression fits between the observed and predicted values, respectively.
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models  for  Chl-a  concentration  forecasting  in  Xiamen
Bay.  The  results  showed  that  the  AdaBoost-optimized

strong models consistently outperformed individual  weak
models (Tables 2 and 3).
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Fig.  6.    Distribution  of  absolute  errors  in  Chl-a  concentration forecasts  for  individual  weak  models  (a)  and  the  Ad-
aBoost-optimized strong model (b).
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Fig. 7.   Boxplots of r (a) and RMSE (b) between the forecast and observed Chl-a concentration for the weak forecast-
ing models and the AdaBoost-optimized strong forecasting model. The boxplots use the following conventions: the blue
boxes represent the interquartile range (IQR) between the first quartile (Q1) and the third quartile (Q3); the red horizon-
tal line inside each box indicates the median value; the black dashed lines (whiskers) extend to the minimum and maxi-
mum  values  within  1.5  times  the  IQR  from  Q1  and  Q3,  respectively;  and  the  red  dots  denote  outliers  beyond  the
whisker range.
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AdaBoost  enhances model performance by iteratively
focusing on  the  errors  of  previous  models.  Each   subse-
quent  weak  model  is  trained  to  correct  the  shortcomings
of its predecessors, emphasizing samples that were previ-
ously mispredicted.  This  iterative refinement leads to en-
hanced  understanding  of  the  training  data  and  improved
prediction  accuracy  (Walker  and  Jiang,  2019; Sun  et  al.,
2020).

Our  findings  verify  the  effectiveness  of  AdaBoost  in
reducing prediction errors and enhancing correlation with
observed values. The strong model both improved accura-
cy within the 0.25 μg/L error range and also significantly
reduced large errors exceeding 5.00 μg/L. This is particu-
larly important for forecasting HABs, which are often as-
sociated  with  sudden  spikes  in  Chl-a  concentration  (An-
derson et al., 2010; Siegel et al., 2002). Minimizing large
prediction  errors  is  vital  for  timely  and  reliable  early
warning of events.

The reduced variability in model performance (Fig. 7)
highlights  AdaBoost’s  ability  to  stabilize  deep  learning
models, which  are  known  to  be  sensitive  to  random   ini-
tialization  and  training  conditions  (Goodfellow  et  al.,
2016).  AdaBoost  reduces  the  risk  of  poor  predictions  by
combining multiple weak learners, resulting in more con-
sistent and reliable forecasts.

4.2  Role of non-uniform initial weight

In our use of the AdaBoost framework, we incorporat-
ed a non-uniform initial weighting scheme to prioritize the
accurate  prediction  of  high  Chl-a  concentration  associat-
ed with HABs. Accurately forecasting these high values is
critical  for  early  detection  and  management  of  HABs
(Siegel et al., 2002; Tang et al., 2003). By assigning high-
er initial  weights to samples with elevated Chl-a concen-
tration,  the  algorithm  directed  more  focus  toward  these
critical cases during training.

Our results demonstrated that the non-uniform weight-
ing  scheme  led  to  notable  improvements  in  the  model’s
performance for high Chl-a concentration compared to the
uniform weighting approach.  Specifically,  correlation co-
efficient  (r)  for  high  Chl-a  concentration  was  higher  by
1.5%,  and  the  RMSE  was  lower  by  2.9%  (Table  4).  In
contrast,  the  improvement  for  low  Chl-a  concentration
was less pronounced, with r only 0.2% higher and RMSE
only  1.2%  lower.  This  indicates  that  the  non-uniform
weighting  scheme  was  most  effective  at  enhancing  the
model’s ability to predict high Chl-a concentration, which

are often indicative of bloom events (Fig. 8).
The improved performance for  high Chl-a concentra-

tion  can  be  attributed  to  the  model’s  increased  emphasis
on  these  samples  during  training.  This  focus  allowed  the
model to better  capture the dynamics of  algal  bloom for-
mation and intensification, thereby improving the accura-
cy of early warning systems.

4.3  Implications for ecological forecasting

To evaluate  the  broader  applicability  of  the  proposed
method, we extended the analysis to the Ningde area,   lo-
cated  in  the  northern  part  of  the  Taiwan  Strait.  Using
monitoring  data  from  September  2017  to  July  2018,  we
observed  that,  even  in  a  different  geographical  setting,
the  AdaBoost  optimization  significantly  improved  the
model’s  performance,  with  a  notable  increase  in  r  and  a
considerable reduction in RMSE (Fig. 9). These results in-
dicate that the AdaBoost-optimized LSTM model is appli-
cable to other regions, further demonstrating its flexibility
and robustness.

The combination of AdaBoost and LSTM in this study
is driven  by  the  complementary  strengths  of  both   tech-
niques.  LSTM, a  recurrent  neural  network,  is  well  suited
for  capturing  temporal  dependencies  in  time-series  data,
including the dynamics of Chl-a concentration (Ding et al.,
2022; Zhang et al., 2024). However, LSTM still has limi-
tations  in  forecasting  Chl-a  concentration,  particularly  in
improving the prediction accuracy for high Chl-a concen-
tration  (Ding  et  al.,  2022).  To  address  these  limitations,
we incorporated  AdaBoost,  an  ensemble  learning   algo-
rithm,  which  improves  model  performance  by  iteratively
adjusting  weights  on  misclassified  samples  and  reducing
bias. The AdaBoost algorithm helps improve the stability
and accuracy  of  the  LSTM model,  particularly  by   focus-
ing on  challenging  instances  that  may  be  crucial  for   de-
tecting  extreme events,  such  as  HABs.  This  combination
allows for  both  effective  temporal  modeling  and   im-
proved robustness, making it an ideal strategy for ecologi-
cal  forecasting.  The  success  of  the  AdaBoost-optimized
LSTM model in this study has significant implications for
ecological forecasting. We have demonstrated that ensem-
ble learning  methods  like  AdaBoost  can  effectively   en-
hance  the  predictive  capabilities  of  models  dealing  with
complex  ecological  phenomena,  such  as  HABs,  which
have  substantial  environmental  and  socio-economic  im-
pacts (Anderson et al., 2010).

By improving the accuracy of Chl-a concentration fore-
 

Table 4.   Comparison of the optimization performance of the AdaBoost algorithm with non-uniform and uniform ini-
tial weights for all, high (≥5 μg/L), and low (<5 μg/L) Chl-a concentration values

Type of weight
r RMSE/(μg·L−1)

All High Low All High Low
Non-uniform initial weight 0.937 ± 0.004 1.001 ± 0.044 0.783 ± 0.019 2.487 ± 0.137 0.895 ± 0.005 0.467 ± 0.011
Uniform initial weight 0.934 ± 0.002 1.027 ± 0.022 0.771 ± 0.011 2.562 ± 0.061 0.893 ± 0.003 0.476 ± 0.008

      Note: Evaluation metrics values are in the format of mean ± SD.
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Fig. 8.   Scatter plots of observed versus predicted Chl-a concentration using the AdaBoost algorithm with non-uniform
initial weights (a, b) and uniform initial weights (c, d) for high (≥5 μg/L) and low (<5 μg/L) Chl-a concentration. The
black solid lines represent the linear regression fits between the observed and predicted values.
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Fig. 9.   Boxplots of r (a) and RMSE (b) between the forecast and observed Chl-a concentration for the weak forecast-
ing models and the AdaBoost-optimized strong forecasting model applied to the Ningde area. The boxplots use the fol-
lowing conventions: the blue boxes represent the interquartile range (IQR) between the first quartile (Q1) and the third
quartile (Q3); the red horizontal line inside each box indicates the median value; the black dashed lines (whiskers) ex-
tend to the minimum and maximum values within 1.5 times the IQR from Q1 and Q3, respectively; and the red dots de-
note outliers beyond the whisker range.
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casts,  particularly  for  high  concentration,  the  AdaBoost-
optimized model provides a valuable tool for early warn-
ing systems.  Its  use will  allow coastal  managers  to  make
timely interventions,  such  as  issuing  public  health   advi-
sories or  implementing  mitigation  strategies,  thereby   re-
ducing the  adverse  effects  of  HABs  on  marine   ecosys-
tems and human health.

Furthermore,  this  methodology  could  be  applied  to
forecasting  other  ecological  variables  of  interest,  such  as
dissolved oxygen levels, nutrient concentrations, or harm-
ful toxin levels. The adaptability of AdaBoost in focusing
on critical thresholds makes it a versatile tool for ecologi-
cal forecasting.

4.4  Limitations and future research

Despite these promising results,  several limitations of
the AdaBoost-optimized LSTM model should be acknow-
ledged. One primary limitation is  the increased computa-
tional cost associated with training multiple weak learners.
The ensemble  approach  requires  more  computational   re-
sources and time than single-model approaches. This may
create  challenges  for  real-time  forecasting  applications
without the necessary infrastructure.

Additionally,  while  the  LSTM served  as  an  effective
base learner in this study, exploring other machine learn-
ing  algorithms  or  hybrid  models  could  further  enhance
predictive  performance.  Combining  LSTM  with  models
like  random  forests  or  gradient  boosting  machines  may
leverage complementary strengths and improve robustness
(Chen and Guestrin, 2016).

Future research should also consider incorporating ad-
ditional  environmental  variables,  such  as  nutrient  levels,
light availability, and hydrodynamic conditions, to capture
a broader range of factors influencing algal blooms. Inte-
grating remote  sensing  data  or  developing  data   assimila-
tion  techniques  could  further  improve  forecast  accuracy
and  spatial  resolution  (Stumpf  et  al.,  2009;  Tian  et  al.,
2017).

Building on the promising results of our model for Xia-
men Bay, we applied it to the Ningde area, demonstrating
its potential  for  use  in  other  regions  with  similar   condi-
tions. However, as both Xiamen Bay and the Ningde area
are located on the western side of  the Taiwan Strait,   fur-
ther validation is needed to assess the model’s applicabili-
ty to a wider range of marine environments with different
ecological characteristics.  Additionally,  our  approach   re-
lies on over a decade of data, which may not be available
for many coastal areas. The performance of the model for
regions  with  limited  data  requires  further  investigation.
While the results are promising, the proposed model’s re-
liance on long-term data  is  limiting,  as  performance may
fluctuate  for  regions  with  limited  data.  Future  research
should focus on refining the model to enhance its robust-
ness when applied to these areas and exploring its integra-
tion  with  larger-scale  ecological  monitoring  systems  to
improve  its  applicability  and  forecasting  capabilities

across diverse marine ecosystems.
In  conclusion,  the  AdaBoost-optimized  LSTM model

demonstrated  significant  potential  for  enhancing  early
warning  systems  for  HABs and  offered  valuable  insights
for broader  ecological  forecasting  applications.   Contin-
ued refinement of these models through the integration of
diverse data sources and advanced machine learning tech-
niques will further enhance their predictive capabilities.

5  Conclusions

This study demonstrated that  optimizing LSTM mod-
els  with  the  AdaBoost  algorithm  significantly  enhanced
the  accuracy  of  Chl-a  concentration forecasting  in   Xia-
men  Bay.  The  AdaBoost-optimized  strong  forecasting
model consistently outperformed individual weak models.
Specifically, after  optimization,  the  frequency  of   predic-
tions  with  low  absolute  errors  (<0.25  μg/L)  increased,
while the occurrence of large absolute errors (>5.00 μg/L)
decreased. This  indicates  that  AdaBoost  not  only   im-
proved overall prediction accuracy but also effectively re-
duced large errors. This ability is crucial for detecting ex-
treme events like HABs.

Moreover,  the  iterative  compensation  mechanism  of
the AdaBoost  algorithm significantly  reduced  the  perfor-
mance variability of the model, making it more stable and
reliable for complex ecological  forecasting tasks than the
model  would  be  without  the  AdaBoost.  By  introducing
non-uniform initial  weights  within  the  AdaBoost   frame-
work—assigning  higher  weights  to  data  with  high  Chl-a
concentration—the  model’s  ability  to  learn  and  capture
the dynamic changes of high Chl-a concentration was fur-
ther  enhanced.  Compared  to  the  traditional  uniform
weighting  method,  the  non-uniform  weighting  approach
showed  a  distinct  advantage  in  improving  predictions  of
high Chl-a concentration critical for HAB detection.

In conclusion, integrating AdaBoost with LSTM mod-
els  is  an  effective  method  for  improving  early  warning
systems for HABs. The enhanced predictive performance,
especially with respect to high Chl-a concentration, offers
valuable insights for other ecological forecasting applica-
tions.  This  study  highlights  the  potential  of  ensemble
learning techniques  in  advancing environmental  monitor-
ing and management, creating the foundation for more re-
liable and accurate ecological forecasts.
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