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FEL KT A LA v (K. brevis) BOAGIN . 3% 7  i
TGN VAR 2235 91% , Ry 2 By R AL T s i B vy
RO s TR

K11 HABNet HL# 27~ e HE AN 22 5 45 A8 78 2 412
Fig.1 Structure of HABNet machine learning system®
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Fig.2 Artificial neuron structure diagram
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Fig.3 Architecture of the chlorophyll-a integrated prediction model®!
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RN 7E &b B 3 471 5088 HsF T I 104 A0 T2 3 2 R
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AT A DAL 258 RNIN FE T 81027 2 v s B “ 1242 5

W I,

4 LSTMHIoR & Ee
Fig.4 Schematic diagram of the LSTM unit®?
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(Medium Resolution Imaging Spectrometer, MERIS)
AN T SR A T B L AR AR R AR, T
TR PR A R Ot T B B Y S, SR
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BT B4 U5 T 0 o 2 BT . AR T R
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SR BETE Ak Z—. flan, Jin SN 50 )
LT R HE 5 Y L P TE RN e AR Y
(Geostationary and Ocean Color Imager, GOCI) iz J&%
S5 e [R) Ay R B 2 > MR R I RSl , DA Sk
23 Z Uk B Sy B Y iy Y SI2 BRIk ) 4 (] 43 A T
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T A TN e e O 2 ) R ) ok R S Ak AE i R AL
ZUEMIRYES 3 R AR PERUE B Y L RE B —
S R AR EXNT 2 AR P o Bk Ah 2= 1o AR A 1 Z)
AT R A PR, 4 012 AR A PRI R i B 2 A= K Bl
175 CE IR U P RS AR AR R 28 B RS I 3X
SO AR A 5 A TR 23 7 S A A AR R () S 4 A7
R RATENE . HIL, X5 S50 ANl e
0] RE T BB RY I 45 5 H B 22 , DA T 52 i R )
P A AT T R

B 1 R ) R, s AN L AL AR A AT R
T U R AR A PR 2 — o R kAR Y B TR G
TN HE T A] S B IS oy R B
Pk 3, AR BB 0 B AN P i B R 4
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FIREAS R F WO 19 219 IR AR A D BP [ 45 1Y
DI ZB ohe A o T 1 3 2 2, R B e 17 o 1 400
(15 B 14 7 EE 5 Kim S5EE7E TR A 5 28 4 i vk S
3 B4 AR 00 9 3 A R, SR O S IR A T 1
A I, AR DR T e Rl s A o R S
Kdn R A D, Sy 1 ML S B A T P R

2.2 HEWRIEZEHINS R

Bl IR E AR 22 AR B 1 B R o A
(B AR LR A A f o83 . FERSEI 5N i
LAY B PG B2 AT A T2 [R)E70 [R A 5T
XPANRNFT SR I R LA L AR 27 2T B, DL SEBLEE /N
BR2E TR IR R S RS B D A B L, X
BLAR 2 2 BB AR AR e A~ J7 1T, EA G XA
RIZEF RS E A S A Zrad B Ak

1248 b S R AR5 2 B 2 1o 55 %5 3
R A L A5 R RN S HOAR BT, BN K
LT A EAA T, HZ20 T RSB
HRgma, PG R UE AR S B A 45 2R AL RE
5 A7 AR R B R AR A8 ol S A% e 95 28 U R 1Y
RRASC: , [ B 2% 23 5] 1) 52 B 52 0], DA TS BE A T
ARG I AT MR RE . TR , A S B AR ML A 2 2]
U3 5 45 G 25 28 U0 B 1 S I AR AR S B AR
o il an, w58 N 51 R KL BF 5375 (Particle
Swarm Optimization, PSO) ik SVM IS4, $2 7+
TR IEiE E (Spirulina platensis ) 4 R 1 AETY;
AT SR P AT 18 e R R R A 4 i 1) 22
Ak 4 (Linear Population Size Reduction Differential
Evolution Algorithm, L-SHADE ) fii, £k 45 5 4 54 [1] )
45 4 (Gradient Boosting Regression Tree, GBRT)
B S B, SEBL T X PYHE A 7K e i 4 R S5 Y e aok
R FIT, DU A B e s L B e T4
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Advances in the application of machine learning algorithms in early warning
models for harmful algal blooms

DING Wenxiang"?, LIN Chenxu', ZHANG Caiyun®
(1. Key Laboratory of Underwater Acoustic Communication and Marine Information Technology (Xiamen University), Ministry of Education, Xiamen

361102, China; 2. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China )

Abstract: This paper reviews the progress in the application of classical machine learning algorithms, artificial
neural networks, and deep learning models in harmful algal blooms early warning models. Addressing specific
challenges such as data scarcity, limited generalization capability, and the need for improved accuracy, this paper
provides a detailed discussion on the role of multi-source data integration, model structure and parameter
optimization, and ensemble forecasting strategies in improving model performance.

Key words: machine learning; artificial neural networks; deep learning; early warning; harmful algal blooms

SalES PRI

https://www.cnki.net



