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摘 要：综述了经典机器学习算法、人工神经网络和深度学习算法在有害藻华预警模型中的应用

进展；并针对模型在数据稀缺、泛化能力不足以及精度提升方面的具体挑战，详细探讨了多源数据

的应用、模型结构和参数优化、以及集合预报等策略对有害藻华早期预警模型准确性提升的作用。
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0 引言

有害藻华，又称赤潮，是在特定环境条件下，海

水中某些浮游植物、原生动物或细菌爆发性增殖或

高度聚集引发的有害生态现象[1]。近年来，随着气

候变化以及沿海环境污染的加剧，近海赤潮的发生

频率和影响范围明显增加，严重威胁渔业生产、滨

海旅游和公众健康，尤其是有毒藻类引发的赤潮危

害最为严重[2-3]。例如，2015 年春季，北美西海岸发

生的有毒拟菱形藻（Pseudo-nitzschia）藻华，导致经

济性海产品行业关闭，造成巨大经济损失[4]。据统

计，过去 30年间，中国近海因有害藻华造成的经济

损失高达 59亿元[5]。因此，准确预测有害藻华爆发

显得尤为重要。构建有害藻华早期预警模型不仅

有助于有害藻华的治理防控和风险管理，还能减轻

潜在损失，具有重要的现实意义。

有害藻华预警模型主要包括数据驱动模型和

机理模型。数据驱动模型通过分析和学习大量历

史数据，利用统计方法或机器学习算法建立预警模

型。这类模型无需依赖物理或生态系统的基本理

论，而是从数据中提取规律，在缺乏明确机理理解

的情况下，可借助大数据和复杂算法实现高效的预

警。常见的数据驱动方法包括简单的阈值法、线性

和非线性统计模型，以及更加复杂的贝叶斯统计方

法和人工神经网络模型等[6-8]。而机理模型通常通

过构建物理-生态耦合模型，从物理动力学和生态

动力学角度来探索藻华的过程和机制，以及影响有

害藻华种群动态的关键因素[9-10]。例如，区域海洋生

态耦合模式 ROMS-CoSiNE基于物理-生物学耦合

机制，通过差分法求解数值模型中的偏微分方程，

定量模拟生态系统各组成部分及其影响因素的变

化[11]，进而为生态灾害预警提供理论支持。机理模

型往往不需要依赖大量历史数据的统计分析，而是

通过求解偏微分方程模拟系统的动态演化，其结果

也具有更强的解释能力。

机理模型的复杂性和计算需求通常与模型维

度有关。一维模型通常用于简化场景，例如模拟垂

直方向的变化；二维模型考虑水平和垂直方向的交

互作用，适用于较为复杂的区域生态模拟；三维模

型则进一步纳入空间变化细节，包括水体流动和生

态过程的空间分布，能提供更精确的生态预警，尤

其适用于复杂海域的模拟。然而，由于海洋生态系

统的复杂性，物理-生态模型往往需要高精度数据、

复杂参数以及特定的初始和边界条件，因此目前仍
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难以对模型中影响生物生长的变量进行准确、定量

的描述[12-13]。

随着计算机技术、人工智能和生物技术的迅猛

发展，机器学习算法作为数据驱动模型之一，在有

害藻华预警预测研究中得到广泛应用[14-15]。机器学

习模型模拟人类的某些学习过程，发展出各类学习

理论和方法，在解决潜在物理和生物关系不明的多

元和非线性问题上具有独特优势[16-17]。众所周知，

有害藻华的发生是气候、生物、物理和化学等因素

综合作用的结果[18]，具有突发性和非线性特点[2，19]。

此外，导致近海海域有害藻华发生的因素及藻种相

当复杂，不同区域有害藻华的原因种、主要影响因

素、变化规律等均存在差异[2]。这些复杂影响因素

限制了传统预报技术在近海海域有害藻华预警预

测中的发展和应用。利用机器学习方法等人工智

能技术，可以有效处理变量间复杂的交互作用和非

线性关系。机器学习算法构建的“黑匣子”模型，可

解决对未知物理、化学和生物过程构建复杂数学方

程的需求[20]，从而显著提升近海有害藻华信息提取

和预警能力。因此，机器学习模型已成为目前有害

藻华预警技术的重要研究方向。

尽管机器学习模型在有害藻华预警中取得显

著进展，但仍面临数据稀缺、模型解释性不足及泛

化能力较差等挑战[21]。因此，本文旨在通过综述有

害藻华机器学习预警模型的研究进展，探讨其在实

际应用中的优势与局限性，并提出可能的改进方向

和未来研究重点，为有害藻华的早期预警与防控提

供理论基础和技术支持，进而有效减少有害藻华对

生态环境和人类社会的负面影响。

1 机器学习方法在有害藻华预警上
的应用

1.1 经典机器学习算法

经典机器学习算法广泛应用于有害藻华预警

领域，涵盖了从结构较简单的回归算法到较复杂的

支持向量机（Support Vector Machine，SVM）和随机

森林（Random Forest，RF）等多种方法。许多经典算

法自 20世纪 90年代以来不断得到优化和应用。线

性回归是最简单的基础算法，旨在寻找输入与输出

之间的线性关系[22]。多项式回归和逐步回归是稍复

杂的变种，主要用于捕捉数据中的非线性关系[23-24]。

支持向量机和随机森林等非线性模型能更好地处

理复杂的非线性关系，显著提高模型的预测精度，

尤其在气候、海洋等领域的应用效果显著[25-26]。分

类任务是机器学习中的另一个主要任务，支持向量

机和随机森林既可以用于回归分析，也可以应用于

分类任务，展现出处理多种类型问题的灵活性。在

有害藻华预警中，分类任务常用来识别藻华是否发

生，或对藻华级别进行分级预警。

SVM 是一种基于统计学习理论的监督学习算

法，主要用于分类和回归任务。其基本原理是通过

寻找最优超平面分离将不同类别的样本数据，并使

两类数据点到超平面的距离最大化，从而提高分类

泛化能力。核心算法包括通过优化问题求解最优

超平面，利用核函数（如线性核、径向基核等）将数

据映射到高维空间，使低维空间中非线性可分的数

据在高维空间实现线性可分。SVM泛化能力较强，

适用于高维空间，能够有效处理复杂和非线性问

题，且不易陷入局部最优解。但SVM对内存和计算

时间要求较高，尤其在大规模数据集上，训练时间

可能较长。此外，SVM 对核函数选择敏感，不同核

函数可能显著影响模型性能，调参过程较为复杂。

SVM在水生态系统中的应用，尤其是有害藻华预警

方面，表现出优越性能。例如，Miura等[6]利用过去 7

天的营养盐、径流量和气象数据，基于SVM模型成功

预 警 日 本 4 个 大 坝 水 库 未 来 7 天 内 微 囊 藻

（Microcystis spp.）和蓝绿藻（Dolichospermum spp.）

的浓度，并基于浓度阈值预测藻华发生，准确率分别

达92.3%和71.4%。相关研究表明，SVM结合叶绿素

a浓度、海岸环境条件、物理化学水质数据以及水动

力和气象数据时，预测准确性高于人工神经网

络 [27-28]。此外，一些改进方法如 Su等[14]在基于 SVM

模型开展北京密云水库月平均叶绿素浓度预报研究

时，采用遗传算法特征选择提取叶绿素最相关的4个

影响因子（总磷、总氮、高锰酸盐指数和水库库容），简

化了模型结构，使其在环境管理中更加实用和高效。

RF是一种基于决策树的集成学习算法，通过构

建多棵决策树并对其结果进行投票或平均以提高

预测精度。其核心算法是通过随机选择样本和特

征生成多个决策树，最终整合各树输出结果。随机
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森林的优势在于能够有效避免过拟合，提高模型鲁

棒性，且能够处理高维数据和缺失数据。但模型训

练时间较长，且因多棵决策树组合导致结果不易直

观理解，可解释性较差。在多个生态问题中，RF表

现出较好的预警效果，尤其在处理大规模数据时，

能有效提升模型鲁棒性[8，29]。

为了进一步提升经典机器学习算法的预警性

能，研究者们探索了经典机器学习算法与其他算法

的结合。例如，Hill 等[30]将 SVM、RF、多层感知机

（Multilayer Perceptron，MLP）与深度学习网络相结

合构建了HABNet藻华检测系统（见图1），充分发挥

不同机器学习模型的优势，利用不同中分辨率成像

光谱仪（Moderate-Resolution Imaging Spectroradio-

meter，MODIS）数据参量和地形数据，采用分类预

报方式（直接判断藻华是否发生）成功实现对弗罗

里达州沿岸短凯轮藻（K. brevis）的检测。该方法最

大检测准确率达 91%，为实际应用提供了更便捷高

效的预警工具。

图1 HABNet机器学习藻华检测系统的结构示意图[32]

Fig.1 Structure of HABNet machine learning system[32]

1.2 人工神经网络模型

人工神经网络是机器学习的重要组成部分，其

研究正迅速发展[31]。人工神经网络模仿生物神经系

统的结构和功能，从信息处理角度对人脑神经网络

进行抽象建模[32-33]。它通过不同连接方式的组合，

形成多层次网络结构，模拟大脑神经网络处理、学

习和记忆信息的过程[32-33]。它采用与传统人工智能

和信息处理技术完全不同的机制，克服了基于逻辑

的人工智能在处理直观和非结构化信息方面的缺

陷，具备自适应、自组织和实时学习的优点[31,34]。人

工神经网络已广泛应用于模式识别、智能机器人、

自动控制和环境参量预报等领域，解决了现代计算

机无法解决的实际问题，显示出良好的优势[35]。

人工神经网络的基本单元是神经元，它模仿生

物神经元的输入输出过程[35-36]（见图 2）。神经元通

过加权和函数接收输入，并通过激活函数生成输出

信号。常见的神经网络结构包括前馈神经网络

（Feedforward Neural Network，FNN）和反向传播神

经网络（Backpropagation Neural Network，BP），其

中，BP神经网络通过反向传播算法优化权重参数，

逐步降低预报误差，广泛用于回归和分类问题。另

一类重要的神经网络是径向基函数神经网络

（Radial Basis Function Network，RBF），其通过径向

基函数作为激活函数，有效解决了高维数据下的分

类与回归问题。

图2 人工神经元结构图

Fig.2 Artificial neuron structure diagram

早在 20 世纪 90 年代，人工神经网络开始应用

于赤潮相关研究，并取得显著成果。Recknagel[36]采

用人工神经网络成功预测了蓝绿藻丰度，这一成果

推动了人工神经网络在水质监测和藻类预警领域

的应用。杨建强等[37]采用BP和RBF人工神经网络

开 展 大 亚 湾 拟 菱 形 藻 和 辽 东 湾 丹 麦 细 柱 藻

（Leptocylindrus danicus）密度预报，验证了人工神经

网络在模拟和预测方面相较于传统统计回归模型

的优势，最优预报结果的相对误差从多项式回归模

122



丁文祥等：机器学习算法在有害藻华早期预警模型的应用进展5期

型的 23.86% 降至 BP 模型的 7.02% 和 RBF 模型的

1.7%。Deng 等[28]在香港吐露港海域的研究结果证

实，人工神经网络和 SVM均具有较强的适应性，能

有效学习海岸环境变量与藻类动态间的复杂关系，

进而实现对藻类生长趋势和规模的准确预测。人

工神经网络的研究结果也可以指导对机理的认识，

如许阳春等[38]利用 BP神经网络研究叶绿素预报模

型输入参量的最优组合，结果表明以气温、溶解氧

浓度、日照时长为输入参量时，BP模型误差最小，为

平潭海域以叶绿素浓度作为判定指标的赤潮预警

研究提供重要参考。

人工神经网络的主要优势在于强大的学习能

力，尤其在面对复杂和非线性关系时，能够捕捉传

统统计方法难以识别的模式。此外，神经网络在大

数据环境下表现出良好的鲁棒性和自适应能力。

然而，人工神经网络的缺点也不容忽视，主要体现

在训练过程的计算复杂度较高、存在过拟合问题且

对大量标注数据具有依赖性。尤其在缺乏足够数

据支持时，网络性能可能受到限制。

1.3 深度学习模型

深度学习是机器学习的重要分支，源自人工神

经网络并在其基础上发展而来[39]。它通过模拟人脑

神经元的结构和工作原理，构建具有多层次结构的

神经网络模型。每一层网络都可以对输入数据进

行逐层抽象和特征提取，逐渐将低级的原始特征转

化为更复杂的高级特征，从而捕捉数据中的深层次

模式和关系[40-41]。深度学习的优势在于其强大的自

动特征学习能力，无需人工设计特征，可从大量数

据中自动发现潜在规律，特别适合处理复杂且高维

的数据集[41-42]。它在图像识别、语音识别、自然语言

处理等多个领域取得突破性进展，并在人工智能应

用中发挥日益重要的作用[40-41]。深度学习的核心特

点是通过多层次神经网络结构处理和表示数据，使

其在解决非线性、复杂问题时具有显著优势[43-45]。

卷 积 神 经 网 络（Convolutional Neural Network，

CNN）和 长 短 时 记 忆 网 络（Long - Short Term

Memory，LSTM）是两种广泛应用的深度学习模型，

二者各具特点，在多个领域中都表现出优异的应用

效果[30,43,45]。

CNN是一种深度学习模型，特别适用于处理图

像、语音、视频等具有网格结构的数据。CNN的设

计灵感源自生物神经系统的结构，尤其是视觉皮层

的处理机制，能够通过卷积操作自动提取输入数据

的局部特征[46]。与传统全连接神经网络不同，CNN

通过局部连接、共享权重和池化操作，显著减少参

数数量，提高模型计算效率。CNN的基本结构包括

卷积层、池化层和全连接层（见图 3）。卷积层通过

卷积操作提取输入数据的局部特征，卷积核（滤波

器）在输入数据上滑动，并通过加权和生成特征图。

池化层通常用于下采样，减少特征图的空间维度，

以降低计算复杂度，同时保留重要特征。常见的池

图3 基于CNN的叶绿素综合预报模型结构[49]

Fig.3 Architecture of the chlorophyll-a integrated prediction model[49]
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化方法包括最大池化和平均池化。全连接层位于

网络末端，通常用于将特征图映射到最终的分类结

果或回归输出。CNN 的优势在于强大的特征提取

能力，能够自动学习数据中的重要模式[47-48]，避免了

人工特征提取的困难和局限性。通过多层卷积和

池化操作，CNN逐步提取从低级到高级的特征，形

成对输入数据的深度理解，这使其在图像分类、物

体识别、语音识别、自然语言处理等领域取得显著

成果。

LSTM 是一种特殊的递归神经网络（Recurrent

Neural Network，RNN）结构，专门用于解决传统

RNN 在处理长序列数据时面临的梯度消失和梯度

爆炸问题[50]。LSTM 通过引入门控机制，能够有效

捕捉和记住长期依赖关系，这使其在时间序列预

测、自然语言处理、时间序列分析等任务中表现优

异。LSTM 的核心组件是其内部的记忆单元，它包

含 3个主要的“门”——输入门、遗忘门和输出门（见

图 4）。每个门均为神经网络层，通过决定保留和丢

弃的信息来管理记忆单元的状态：输入门控制哪些

新信息应该被存入记忆单元；遗忘门控制哪些旧信

息应从记忆中删除，输出门决定当前记忆单元的输

出值。通过这些门控机制，LSTM 在处理长时间跨

度序列时，能有效保留重要信息并抑制无关内容，

从而解决传统RNN在长序列学习中出现的“记忆衰

减”问题[50-51]。

图4 LSTM单元示意图[52]

Fig.4 Schematic diagram of the LSTM unit[52]

随着深度学习技术的不断发展，CNN和 LSTM

在有害藻华相关研究中得到了广泛应用[7，43，52]。

Lee等[41]对比了MLP、RNN、LSTM与传统回归模型

在有害藻华预警中的潜力，模型以水文、水质和生

态参量为输入，通过预报叶绿素浓度实现有害藻华

预报；16个监测站的测试结果均显示LSTM模型的

预测准确率最高，叶绿素预报的平均均方根误差从

回归模型的 17.75 μg/L 下降到 16.09 μg/L，揭示了

LSTM和深度学习在有害藻华预测中的潜力。Baek

等[7]尝试结合CNN模型的回归和分类预报能力，采

用CNN分类模型预报韩国巨济岛链状亚历山大藻

（Alexandrium catenella）藻华的发生情况，采用CNN

回归模型预报其藻华生物密度，预报精度分别达到

96.8%和 1.20 log（cells/L）；同时基于深度学习模型

探讨藻华的可能影响机制，发现盐度和温度对藻华

爆发贡献较大，而NH4N会影响藻华生长。

由于LSTM模型在处理时间序列数据时具有结

构设计上的独特优势，很多研究发现其在赤潮时间

序列预报中明显优于其他机器学习模型[43，45]，例如，

Yussof 等[45]在沙巴西海岸开展遥感叶绿素时间序列

预报研究时发现，LSTM 模型的预报效果明显优于

CNN 模型，RMSE 从 4.4 mg/L下降至 3.4 mg/L。将

CNN 模型与 LSTM 模型相融合也是赤潮预报的常

用方法[44，53]，例如，Ding 等[52-53]以卫星监测的气象、

水文和叶绿素数据为输入，通过预报叶绿素浓度的

时空分布开展舟山渔场藻华预报研究，结果显示采

用 CNN-LSTM 混合模型的预报效果优于单一的

CNN或LSTM模型，预报结果的决定系数由 0.31和

0.40提升至 0.43。无论是将深度学习模型与传统回

归模型对比、不同深度学习模型间比较，还是通过

融合多模型构建混合模型，核心目的都是寻求更精

确的预报结果。在这一过程中，机器学习模型的优

化尤为重要，其性能的提升直接关系到预测结果的

准确性与可靠性。优化方法通常包括调整模型结

构、优化算法、特征选择与数据预处理等，旨在提高

模型的泛化能力和处理复杂非线性关系的能力。

因此，深入研究和探索机器学习模型优化技术，是

实现更精确、有效预测的关键步骤，也是推动相关

领域应用研究的重要基础。

2 有害藻华机器学习预警模型的优化

2.1 多源数据应用与处理

机器学习模型通过学习历史事件掌握事件发

生规律，并利用最新数据预报未来事件，其本质是
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统计模型，因此对数据源的要求极高。然而，在有

害藻华机器学习预警模型的研究中，数据源往往受

限，只能依赖有限的观测数据和参量探索最佳预报

结果。随着观测技术的提升和观测数据的积累，更

长的时间序列数据和更完善的相关参量将会进一

步推动机器学习模型在有害藻华预警方面的应用。

在赤潮预警中，通常采用赤潮优势种浓度或相

应的表征因子来评估赤潮的发生及危害[54]。赤潮的

发生通常是依据优势种浓度是否超过阈值来认定，

因此，直接预报优势种的浓度被认为是最直接有效

的预警方式。然而，赤潮的优势种鉴定过程相对复

杂，往往受到采样频率和采样时空分布的限制，难

以获取高频次、长时段的监测数据。对于机器学习

模型而言，数据量不足成为显著挑战，因为机器学

习模型的有效性和准确性往往依赖大量数据进行

训练与验证。缺乏足够的数据会导致模型训练不

充分，影响预测精度和可靠性，从而限制了基于机

器学习的赤潮预警系统的实际应用效果。采用赤

潮的表征因子进行赤潮预报是当前研究中的一种

常用方法。叶绿素浓度是反映藻类生物量的重要

指标，其浓度快速增加与藻华爆发起始时间一

致 [55]。因此，叶绿素浓度被广泛应用于赤潮预警模

型中，因为它能够提供及时的藻类繁殖信息，辅助

预警赤潮发生。许多研究表明，通过对叶绿素浓度

的监测与预测，能够有效预警赤潮的发生，进而减

少赤潮带来的生态和经济损失[45，53，56]。

固定浮标或定点采样数据能够提供机器学习所

需的长时间序列数据，这使其成为许多赤潮预警研

究中的重要数据来源。许多研究利用定点浮标监测

数据或定时采样得到的时间序列数据，开展机器学

习模型的训练和预报，并取得显著效果[57-59]。然而，

这些数据的获取往往需要较高的成本，并且监测站

点地理位置固定，这就限制了其空间监测范围。而

赤潮的发生位置通常具有高度的不确定性，可能随

机发生，并随着时间的推移而扩散或偏移。因此，尽

管固定浮标和定点采样能为赤潮预警提供重要数据

支持，但其空间覆盖的局限性意味着需要结合其他

监测手段和数据源，以提高预警的时效性和准确性。

遥感数据凭借高空间覆盖率优势，能够有效弥

补固定浮标或定点采样数据在空间范围上的局限

性。随着航天技术的迅速发展，海洋卫星及其探测

技术不断取得进展，观测精度也在持续提高[60-61]，这

使得遥感数据在赤潮预警研究中成为重要数据来

源。例如 Song 等[61]为解决缺乏足够现场数据的问

题 ，利 用 MODIS 和 中 等 分 辨 率 成 像 光 谱 仪

（Medium Resolution Imaging Spectrometer，MERIS）

卫星数据建立了蒙特利湾随机森林赤潮模型，取得

了较好的预报结果，并通过了现场数据的验证。然

而，尽管遥感数据具备空间覆盖优势，但是其采样

频率较低的问题限制了其在赤潮这种快速变化的

生态现象中的动态监测能力；同时，遥感数据所提

供的监测参数相对较少，这使得其在深入挖掘赤潮

发生机制和规律上的应用面临一定的挑战。

随着技术的进步，海洋数值模型获得长足发

展，可实现对近海水文参量更精细化的描述[62-63]，各

种海洋生态耦合模型也得到了广泛应用[64-66]，这使

得数值模型数据成为近海有害藻华机器学习预警

模型数据源的潜力显著提升。将数值模型数据与

遥感数据结合开展有害藻华机器学习预警模型研

究也是目前常用的方法之一。例如，Jin等[56]将动力

模型数据与高频的静止轨道和海洋色成像仪

（Geostationary and Ocean Color Imager，GOCI）遥感

数据共同作为深度学习模型的训练数据，以遥感叶

绿素浓度为模型输出实现对叶绿素的空间分布预

报，显著提高了深度学习模型的时空预报效能。赤

潮的发生和发展是复杂的生物过程与化学过程交

织作用的结果，尽管现代海洋数值模型已能模拟一

些主要过程，但对许多生物地球化学过程的精确刻

画仍然有限，特别是在处理微观尺度的藻类生长动

力学、营养物质循环和气候变化的交互影响时，这

些过程的复杂性和时空变异性使得模型的参数化存

在较大的不确定性。因此，这些参数化的不确定性

可能导致模型预报结果出现偏差，从而影响赤潮预

警的准确性和可靠性。

除了数据源问题，数据不平衡也是机器学习赤

潮预警模型面临的挑战之一。赤潮发生的时间远

少于不发生的时间，导致监测数据中为常规时段数

据为主，赤潮时段数据较少，形成不平衡的数据集。

这种数据不平衡使得模型可准确预报常规事件，但

在赤潮事件的预警上可能精度不足。由于高浓度

赤潮事件比低浓度事件更关键，因此增加赤潮期间

数据的比例，以解决数据不平衡问题，是提高模型
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准确性和实用性的关键。针对这一问题，已有一些

研究尝试通过不同方法开展优化。苏新红等[67]将赤

潮发生前后的一段时间气象监测数据作为一个赤

潮样本，利用收集的 219个赤潮样本作为BP网络的

训练数据来预报赤潮危害等级，大幅提高了赤潮期

间数据的占比；Kim 等[58]在预报依据藻类细胞浓度

划分的赤潮危害等级时，采用自适应合成采样方法

生成合成数据，解决了原始数据中高细胞浓度等级

数据失衡的问题，提高了机器学习模型的预测性能。

2.2 模型结构和参数的调整

机器学习模型在众多领域展现了巨大的应用价

值，但其应用仍有待完善。在某些场景下，机器学习

模型的预报精度仍有提升空间[68-70]。因此，有必要针

对不同需求开发和优化机器学习模型，以实现更小

误差、更短训练时间、更高精度的最佳模型配置。对

机器学习模型的优化涉及多个方面，主要包括对模

型结构和超参数、输入、输出和训练过程的优化。

传统上，最优的机器学习模型是通过穷举式试

错调整其结构和超参数获得的[71-72]，但这种方法效

率低下，有时甚至不可行，且忽略了超参数之间的交

互影响，因此无法保证获得最优结果[73]。寻优算法能

够有效提高模型优化效率，避免传统穷举试错法的

低效性，同时考虑超参数间的交互影响，从而更有可

能获得最优模型性能。因此，有害藻华机器学习模

型通常结合各类寻优算法实现对模型超参数的优

化。例如，研究人员采用粒子群算法（Particle

Swarm Optimization，PSO）筛选SVM的超参数，提升

了模型对螺旋藻（Spirulina platensis）的预报性能[74]；

他们还采用改进的基于线性种群规模缩减的差分进

化算法（Linear Population Size Reduction Differential

Evolution Algorithm，L-SHADE）优化梯度增强回归

树模型（Gradient Boosting Regression Tree，GBRT）

的超参数，实现了对西班牙水库叶绿素异常增殖过

程的预测[75]。贝叶斯优化算法[76-77]、遗传算法[78-79]等

也是常用的超参数优化算法，在其他领域取得了显

著成果，但在有害藻华预警模型超参数优化方面仍

需更多案例验证。寻优算法也存在不足，例如优化

过程中可能需要大量的计算资源，尤其是当超参数

空间较大时，计算开销会显著增加；此外，部分寻优

算法可能面临收敛速度较慢的问题，特别是处理复

杂模型或高维度问题时，可能需要较长时间才能获

得理想的结果。

机器学习模型输入的优化也是改进模型性能

的常见方式，主要包括对模型输入参量的筛选和输

入数据结构的优化。影响藻华或叶绿素的因素通

常复杂多样[2，80]，由多参量组成的高维特征向量时

间序列中常隐藏不相关和冗余信息[81]，导致模型结

构复杂，从而降低机器学习模型的分析精度和应用

效率[14]。为避免冗余信息干扰，采用最相关的影响

因子作为输入向量可获得更准确可靠的预测结果。

比较容易理解的方式是从数据分析角度实现对输

入参量的筛选，如 Shin等[82]采用正向选择法分析不

同参量对叶绿素预报效果的影响，剔除无关参量，

以减少冗余信息对机器学习模型的干扰。主成分

分析是回归模型和机器学习模型输入参量特征提

取和降维的常用方法[83-84]，通常选取前几个主成分

作为模型输入，实现输入参量降维。遗传算法是另

一种更智能的降维方法，通过筛选模型输入参量的

最优组合提升模型预报精度[85]。例如，Su等[14]在叶

绿素影响因子分析结果的基础上，采用遗传算法进

行输入参量特征选择，显著提高了模型对北京密云

水库叶绿素浓度的预报精度和效率。输入参量的

输入方式也会对模型预报结果产生重大影响。例

如，Shin等[82]以业务部门监测的水文、水质和气象数

据为基础，研究韩国洛东江监测站点叶绿素预报模

型时发现，将RNN模型与滚动窗口输入方法相结合

预测叶绿素浓度的效果最优，并发现在机器学习模

型中提前一步递归预测是提升模型预测性能的重

要过程。对模型输入的优化虽然能提高模型预测

精度，并在一定程度上增强模型的可解释性，但也

存在局限性：首先，输入参数筛选和降维过程中可

能丢失部分重要信息，特别是在处理复杂的非线性

关系时，过度简化可能会影响模型表现；其次，特征

选择和降维方法依赖现有数据分析技术，可能导致

忽略未知因素或对某些潜在变量作出错误假设，进

而影响模型泛化能力。

从模型输出角度进行优化，通常需要结合对赤

潮机理的深入理解。多数叶绿素或浮游生物机器

学习预报模型直接预报其浓度[82, 86]，假设机器学习

方法可以在不需要人工辅助的情况下学习浮游生

物变化的动态机理，进而给出准确的预测结果。然
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而，有研究指出，浮游生物的影响因素首先作用于

其变化过程，并且需要一定时间才会显著影响其浓

度[2，68]。此外，研究表明，在藻华动态研究中，生物量

相对变化率的重要性高于绝对浓度[87-88]，这一认识

推动了一些新优化方法的提出，以改进有害藻华机

器学习模型的预测输出。例如，Tian等[68] 以华东地

区水库出水口的定时监测水文和水质数据为基础

开展叶绿素预报研究时发现，以叶绿素变化率作为

人工神经网络模型的输出，效果优于直接预报叶绿

素浓度，预报结果与观测结果的相关系数可以从

0.75 提升到 0.83；Ding 等[52]基于定点浮标监测数据

进行厦门湾叶绿素预报研究时发现，以叶绿素相对

变化率作为深度学习模型的输出，预报结果的均方

根误差更低、相关系数更高。这种优化方式也存在

局限性，如过度依赖对赤潮机理的深入理解，而目

前这种理解仍较为有限，尤其在复杂的海洋环境

中，许多影响因素间的相互作用尚未完全明晰。

对模型训练过程的优化主要包括初始权值和

阈值的优化、泛化能力的提升以及集成学习的应

用。机器学习模型在初始训练时，其权值和阈值通

常随机设定，但这种随机性可能会增加模型的不稳

定性。因此，一些研究常采用遗传算法优化机器学

习模型的初始权值和阈值[89-91]。例如，向先全等[91]

利用遗传算法优化 BP 模型初始权值和阈值，以提

高对渤海湾叶绿素的预测精度。在野外环境中，水

体的营养条件和藻类动态具有多变性和不稳定

性[92-93]，不同时期驱动叶绿素变化的主要机制可能

存在差异，这导致有害藻华机器学习模型常面临泛

化能力不足的问题。Tian等[69]采用迁移学习方法增

强深度学习叶绿素预报模型的泛化能力，有效解决

了模型在长期应用中性能随时间推移而下降的缺

陷。随机失活（Dropout）是一种常用的正则化技术，

通过在训练过程中随机丢弃部分神经元来防止模

型过拟合，从而提升模型的泛化能力[51，94]，目前已广

泛应用于深度学习叶绿素预报模型的优化[69，95]。集

成学习是通过结合多个弱学习器构建强学习器的

方法，旨在提高模型的准确性和鲁棒性。如 Shin

等[96]以韩国三大水库为研究对象，探讨数据采样不

平衡对机器学习藻华分类预报模型的影响时发现，

采用集成学习优化方法能有效解决训练数据采样

不平衡问题，使预报精度提升 2.12%。

机器学习赤潮预警模型的常见优化方法见表1。

2.3 集合预报

越来越多的研究开始采用机器学习方法预测

有害藻华的发生。当单一机器学习算法难以实现

准确预报时，不少研究开始探索多机器学习算法的

结合方法。不同预报方法的有机结合或集合预报，

是目前有害藻华机器学习预报中较为常用的的优

化方法。美国加利福尼亚州的C-HARM（California

Harmful Algae Risk Mapping）系统利用独特的混合

数值模型、生态预警模型和卫星水色影像，预测拟

菱形藻（Pseudo-nitzschia）赤潮发生的可能性和毒素

等 级[97]。 欧 洲 的 ASIMUTH（Applied Simulations

and Integrated Modelling for the Understanding of

Toxic and Harmful Algal Blooms）预警系统则通过卫

星观测产品与现场监测、区域模型的结合，实现对

有害藻华的短期预警[2]。Qin等[17]提出一种结合自回

归集成滑动平均（Autoregressive Integrated Moving

Average，ARIMA）模 型 和 深 度 信 念 网 络（Deep

表1 机器学习赤潮预警模型的常见优化方法

Tab.1 Common optimization methods for machine learning-based algal bloom early warning models

优化角度

结构和超参数

输入

输出

训练过程

优化方法

结合寻优算法：粒子群算法、差分进化算法、遗传算法等

输入参量的筛选和输入数据结构的优化：遗传算法、主成分分析、滚

动窗口输入法等

结合对赤潮机理的理解：叶绿素变化率、叶绿素相对变化率

初始权值和阈值的优化：遗传算法；泛化能力的提升：迁移学习、随

机失活；集成学习

文献

[71]、[75]

[14]、[82]

[3]、[68]

[69]、[91]、[95]、[96]
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Belief Net，DBN）的混合赤潮预警模型（见图 5），该

模型充分利用ARIMA在捕捉时间相关性和空间异

质性方面的优势，同时结合DBN对环境因子与赤潮

生物量之间复杂非线性关系的强大表达能力。该

模型以船舶采样监测的水文和生态数据为基础，针

对不同沿海地区的环境因子构建相应的ARIMA模

型，而DBN则用于捕捉环境因子与赤潮生物量间的

非线性关系。通过舟山和温州海域的测试结果表

明，单独的 BP模型和 DBN模型预报结果的相关系

数分别为 0.598和 0.654，ARIMA-BP模型的相关系

数为 0.716，而 ARIMA - DBN 模型的相关系数达

0.798，可见ARIMA与DBN结合的预报效果明显优

于其他模型。

福建近岸赤潮短期预警模型也是一种集成多

种机器学习网络的集合预警模型，从 2019年起在福

建省海洋预报台实现业务化运行。研究发现，采用

BP 和 RBF 两种人工神经网络进行组合预报，可有

效避免单一模型带来的偶然误差[98]。该模型基于生

态浮标监测的水文、水质和气象参量，构建了赤潮

发生概率等级的业务化预警系统。模型以赤潮发

生前后 15天的监测数据构成的赤潮样本为训练数

据，并采用自组织映射（Self-Organizing Map，SOM）

神经网络对赤潮样本进行严格筛选。模型融合BP

和RBF两种人工神经网络，同时利用遗传算法优化

模型的输入参量以及初始权值和阈值。为应对近

岸环境的高动态变化，模型每日更新最新 15天的监

测数据重新训练，并采用提前一步递归预测方式进

行预报，显著提升了模型的精度和泛化能力。模型

充分利用生态浮标 0.5 h高频采样的特点，构建多个

预报因子，通过分类预报的方式每日生成数百个预

报结果，每个结果直接判断赤潮是否发生。根据所

有预报结果中判断赤潮发生的比例，确定赤潮发生

概率等级。这种方法有效避免了因单一模型、单一

数据组、单一预报结果等因素带来的偶然误差。该

模型自 2019 年 5 月起在福建省海洋预报台投入业

务化运行，2019—2021年 24 h时效预报结果的赤潮

识别率分别达到了 60%、55%和60%。

由于近岸水体的营养条件和藻类动态具有高

度不稳定，且不同区域存在明显差异，因此不同区

域所采用的预警模型和优化方法各不相同。针对

不同问题，采用不同优化方法对机器学习各过程进

行优化，是当前研究的重要方向，也是提升机器学

习模型在有害藻华预警中应用效果的重要途径。

3 结论

本文综述了机器学习算法在有害藻华早期预

警模型中的应用进展，重点探讨了经典机器学习算

图5 ARIMA-DBN赤潮预警模型结构示意图[17]

Fig.5 The framework of ARIMA-DBN[17]
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法、人工神经网络及深度学习模型在该领域的应用

情况。与传统方法相比，机器学习方法在处理复杂

非线性关系和大数据分析方面具有显著优势。尽

管如此，当前研究仍面临数据稀缺、泛化能力不足

及精度有待提升等挑战。针对这些挑战，本文详细

论述了多源数据的应用、模型结构的优化与参数调

整、以及集合预报策略对提升模型准确性的作用。

本研究回顾了机器学习在赤潮预报中的巨大

潜力，但要实现更精确全面的预报效果，仍面临多

个挑战。未来的研究可以在以下几个层面进行突

破和拓展：

①数据层面的提升

机器学习赤潮预报模型的效果在很大程度上

取决于数据的质量和多样性。目前使用的数据源

在时空分辨率、监测范围及参数种类上均存在一定

局限性。为进一步提高预报精度，需加强赤潮的实

时监测能力，尤其要增加对营养盐、浮游植物、浮游

动物等关键生物及环境参数的监测。随着遥感技

术和自动化监测技术的发展，我们有望获取更全

面、高质量的数据，为机器学习模型提供更丰富的

输入，助力模型更准确地捕捉赤潮发生的规律和趋

势。因此，探索更优质的数据源和全面的数据积

累，将是机器学习赤潮预报取得重大突破的关键。

②机制层面的深入研究

深入理解赤潮发生机制是提升机器学习模型

预报能力的重要基础。赤潮的发生受多种自然和

人为因素影响，包括水温、盐度、营养盐浓度、光照

条件等环境因素，以及水体中的生物种群动态。当

前赤潮数据收集往往侧重于某些表面特征，却忽视

了深层次的机制信息。若收集的数据无法全面反

映赤潮发生的核心驱动机制，机器学习模型的预测

能力将受到限制。因此，深入研究赤潮的物理、化

学和生物学机制，尤其是通过实验和观测数据揭示

不同类型赤潮的发生机制，将为数据参量的选取和

机器学习模型的优化提供重要指导，进而提升模型

的精准性和泛化能力。同时，需开发具有更高可解

释性和更强泛化能力的深度学习模型，探索如

Transformer等先进模型在赤潮预报中的应用，以进

一步提高深度学习模型对赤潮预报的准确性。

③实时更新模型和数据

随着沿海人类活动的日益频繁，近岸生态系统

的变化对赤潮的发生和演变产生了重要影响。例

如，工业污染、农业排放和气候变化等因素可能改

变赤潮藻种的种群结构和水体环境条件，进而影响

赤潮的发生和发展。为应对这些动态变化，机器学

习模型需要不断更新和优化。这要求实时更新数

据、模型和算法，以反映最新的环境变化和赤潮趋

势。通过将实时监测数据与机器学习模型相结合，

可有效调整模型参数，保证模型的适应性和时效

性，从而维持或提升赤潮预报的准确性和可靠性。

综上所述，提升机器学习在赤潮早期预警中的

应用效果，需要从数据、机制和模型更新 3个层面开

展持续研究和探索。只有在这些方面取得突破，才

能实现更精准的赤潮预警和防控，减少赤潮造成的

生态和经济损失，为沿海地区的可持续发展提供有

力支持。此外，跨学科合作与多方资源整合，将是

推动赤潮预警模型不断前进的重要动力。
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Advances in the application of machine learning algorithms in early warning

models for harmful algal blooms

DING Wenxiang1,2, LIN Chenxu1, ZHANG Caiyun1*

(1. Key Laboratory of Underwater Acoustic Communication and Marine Information Technology (Xiamen University), Ministry of Education, Xiamen

361102, China; 2. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China )

Abstract：This paper reviews the progress in the application of classical machine learning algorithms, artificial

neural networks, and deep learning models in harmful algal blooms early warning models. Addressing specific

challenges such as data scarcity, limited generalization capability, and the need for improved accuracy, this paper

provides a detailed discussion on the role of multi-source data integration, model structure and parameter

optimization, and ensemble forecasting strategies in improving model performance.
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