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Abstract

Minimum annual sea surface temperature (T,;,) plays a critical role in shaping marine ecological processes, yet its spatial
and temporal variability remains insufficiently understood in many regional seas. This study investigates the spatiotempo-
ral trends of T, ;, and its timing in the Eastern China seas from 1985 to 2022. Results reveal distinct spatial patterns, with
warming trends (~0.3 °C/decade) associated with northward-flowing warm currents, and significant cooling trends (up to
—0.4 °C/decade) along coastal regions influenced by cold coastal currents. T,;, and its timing were strongly correlated
with preceding atmospheric conditions from December onward, including air temperature, wind components, and surface
heat fluxes. These relationships enabled the development of an artificial neural network model capable of predicting T,;,
and its timing with lead times of one to two months. Ecologically, lower T, ;, values were associated with increased chlo-
rophyll concentrations and a higher frequency of marine cold spells. These findings offer new insights into the mechanisms

driving T

min

variability and highlight its potential predictability, providing a basis for improving early warning systems

and supporting ecosystem-based management in a changing climate.
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1 Introduction

Climate change is projected to increase the frequency of
extreme weather events, such as heatwaves, droughts,
cyclones, and cold spells (Drijthout et al. 2015; Schlegel et
al. 2021). As a fundamental parameter in oceanography and
climate science, sea surface temperature (SST) influences
numerous physical, chemical, and biological processes in
the marine environment (Li and He 2014; Yeh et al. 2017;
O’Reilly and Zanna 2018). It plays a significant role in reg-
ulating heat exchange between the ocean and atmosphere,
which affects weather patterns, global climate, and marine
ecosystems (Karnauskas et al. 2021; Ganguly et al. 2024).
Extreme temperature events can have profound impacts
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on marine biodiversity, fisheries, and coastal communities
(Oliver et al. 2021; Schlegel et al. 2021), leading to such
phenomena as coral bleaching, changes in species distribu-
tions, and the collapse of vital habitats (Smale et al. 2019;
Schlegel et al. 2021; Smith et al. 2023). Therefore, under-
standing the dynamics and extremes of SST is essential to
predicting and mitigating the effects of climate change on
the oceans and the communities that depend on them.
While the effects of extreme warm events have received
considerable attention, extreme cold events also have signif-
icant ecological impacts (Schlegel et al. 2017, 2021). These
cold events can push marine species beyond their thermal
limits, leading to changes in species distributions, altera-
tions in community structures, and potential evolutionary
adaptations (Parmesan 2006; Campbell-Staton et al. 2017).
Although less prominent than heatwaves, cold events can be
equally severe in certain regions (Lentini et al. 2001; Flor-
enchie et al. 2004). Research on extreme cold events often
focuses on marine cold spells (MCSs), periods when SST is
significantly lower than climate-normal values (Schlegel et
al. 2021; Li et al. 2024). Conversely, the annual minimum
sea surface temperature (T ,;,), which represents the lowest
temperature recorded in a given year, offers a direct measure
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of extreme cold conditions. While MCSs provide insights
into periods of anomalous cold compared to historical
norms, T, ;. is valuable in studying the tolerance of marine
organisms to extreme cold and the effects cold conditions
have on marine ecosystems. Analyzing T, ;, enhances our
understanding of the frequency, intensity, and ecologi-
cal consequences of these cold events, contributing to our
knowledge of their role in marine ecosystem dynamics.
The Eastern China seas, comprising the Bohai sea, Yel-
low sea, and East China sea, are a marginal sea system in
the Western Pacific and are characterized by complex pat-
terns of ocean circulation (Fig. 1). The region’s winter
circulation consists of warm northward-flowing currents
such as the Taiwan Warm Current, Kuroshio, Yellow sea
Warm Current, and Tsushima Warm Current, as well as
cold southward-flowing coastal currents like the Zhe-Min
Coastal Current, Bohai sea Coastal Current, Yellow sea
Coastal Current, and West Korea Coastal Current (Guo et
al. 2023). Spatial and temporal variations in upper ocean
temperatures significantly influence the coastal climate and
ecological environments, affecting fisheries and weather
forecasting in surrounding countries (Cai et al. 2006; Wang
et al. 2018). Recent research has confirmed a noticeable
warming trend in the SST of the Eastern China seas over the
past few decades (Tang et al. 2020; Wang et al. 2023), with
winter warming occurring more rapidly than summer warm-
ing (Cai et al. 2016, 2017). This phenomenon is attributed
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Fig. 1 Topography (a) and Currents (b) of the Eastern China seas
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to complex factors including monsoons, ocean advection,
vertical mixing, and air—sea heat fluxes (Liu 2005; Liu and
Zhang 2013; Cai et al. 2016, 2017). However, patterns of
winter warming and their controlling mechanisms are not
yet clearly defined. Investigating the warming patterns in
the upper ocean of the Eastern China seas from new per-
spectives, such as T, ;,, may provide valuable insights.

The Eastern China seas, known for their high primary
productivity, support extensive fishing and aquaculture
operations, making them vital to China’s economic devel-
opment (Hu and Wang 2016; Yin et al. 2022). Although
significant winter warming has been observed in many stud-
ies (Cai et al. 2016, 2017; Wang et al. 2023), others have
suggested that enhanced coastal currents during the win-
ter might lead to reduced SSTs (Zhang et al. 2020). These
contrasting trends highlight the complexity of regional SST
dynamics and underscore the need to better understand
the mechanisms driving T, .. variability and its ecological
consequences.

Despite its ecological and environmental significance,
the main drivers of T, variability in the Eastern China seas
remain poorly understood. Given the observed spatial het-
erogeneity and its close connection to cold-season dynamics,
identifying the dominant factors influencing T, is crucial.
Moreover, the strong associations between T,,;,, and preced-
ing atmospheric conditions suggest a potential for predic-
tive modeling. This study investigates the key atmospheric
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and oceanic drivers of T,;,, assesses its predictability using
an artificial neural network, and explores its implications for
marine ecosystems. The findings are expected to improve
understanding of regional cold extremes and contribute to
early warning efforts and disaster risk reduction in marine
environments.

2 Materials and methods
2.1 Data

The SST data used in this study were obtained from the
Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) products, which have a spatial resolution of 0.05°.
The OSTIA SST, which is a daily product provided by the
UK Met Office, uses a variational assimilation algorithm
that integrates microwave and infrared remote sensing data
from multiple platforms with in situ measurements from
the Global Telecommunications System (GTS) (Donlon et
al. 2012). The data are corrected using ice concentration
products from the Ocean and Sea Ice Satellite Applica-
tions Facility (EUMETSAT OSI-SAF), Advanced Along-
Track Scanning Radiometer (AATSR) data, and buoy data,
resulting in SST records that eliminate the effects of diurnal
variation (Donlon et al. 2012). We collected SST data for
the Eastern China Seas from 1985 to 2023, sourced from
the European Copernicus program (http://marine.copernicu
s.eu). Previous studies have confirmed the consistency of
OSTIA SST data with in situ measurements in this region
(Wang et al. 2020). Although extending the analysis to ear-
lier decades (e.g., 1960—1970s) could help provide a longer-
term perspective, reliable and high-resolution SST datasets
covering the Eastern China Seas are limited prior to 1985.
In this study, we used the OSTIA reanalysis product, which
begins in 1985, to ensure consistency in spatial and tempo-
ral resolution across the study period. This allows for robust
spatiotemporal trend analysis while minimizing uncertainty
associated with data quality and coverage in earlier periods.

Meteorological data were sourced from the National
Centers for Environmental Prediction (NCEP), which has
a spatial resolution of 0.3125° (~38 km). The NCEP pro-
vides various meteorological and oceanographic datasets,
including forecasts, analyses, and climate products, sup-
porting applications in weather prediction, climate research,
and environmental monitoring. Generated using advanced
numerical weather prediction models, the data are widely
used for decision-making in research, policy, and industry
(He and Zhao 2018; Zhu et al. 2021). We collected NCEP
meteorological data from 1985 to 2023, including param-
eters such as air temperature at 2 m, wind (U and V) at
10 m, upward longwave radiation flux (Quyy), downward

longwave radiation flux (Qp; ), upward shortwave radiation
flux (Qugw), downward shortwave radiation flux (Qpgw),
latent heat flux (Q;p), and sensible heat flux (Qgy). These
data were obtained from the Asia-Pacific Data-Research
Center (http://apdrc.soest.hawaii.edu/data/data.php).

Daily chlorophyll (Chl) data were obtained from Glob-
Colour, which produces data by merging satellite observa-
tions from SeaWiFS, MERIS, MODIS, VIIRS, and OLCI
sensors and has a spatial resolution of 4 km. These datas-
ets, covering the period from 1998 to 2023, are available
through the Copernicus Marine Environmental Monitor-
ing Service (CMEMS) at https://data.marine.copernicus.e
u. The multi-sensor daily Chl product integrates Chl fields
reconstructed using a consistent methodology for each sen-
sor (Garnesson et al. 2019). Compared to the official prod-
ucts of the respective agencies, this integration significantly
improves spatial coverage, which is important for both open
ocean and coastal regions (Garnesson et al. 2019).

2.2 Calculation of annual minimum SST and
decadal trends

The SST in the Eastern China Seas is characterized by pro-
nounced seasonal fluctuations, and the lowest temperatures
usually occur in winter (Bao and Ren 2014; Hu et al. 2022).
However, the specific date on which the SST reaches its
minimum can vary from year to year. Using the method of
calculating annual maximum SST (T,,,,) outlined by Ding
etal. (2024), we determined annual minimum SST (T,,;,), as
shown in Fig. 2. Before calculating T, ;,, a 31 day moving
average was applied to smooth the short-term fluctuations.
Since T,;, often occurs at the transition between years, a
T,.i, recorded at the beginning of a year is attributed to the
previous year. For example, if the lowest SST is observed
in February 2017, it is considered the minimum for 2016.

Both air temperature and the meridional wind (V, where a
northward wind is negative) also reach their annual minima
in winter. The same methodology applied for SST was used
to calculate the annual minimum air temperature (AirT ;)
and its timing, as well as the annual minimum meridional
wind component (V,;,) and its timing.

To determine the decadal trends of T,;, and its timing,
we adapted a linear regression model to the yearly time
series for each pixel, using T,;, and T,;, timing as depen-
dent variables and year as the independent variable. The
slopes of these regressions signify the rates of change for
Tpin (in °C/decade) and T,;, timing (in days/decade). To
assess the significance of the trends, we calculated the Pear-
son correlation coefficient () between the observed values
and fitted values from the regression model. The Person cor-
relation coefficient », ranging between —1 and 1, measures
the strength and direction of the linear relationship between
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Fig. 2 Schematic diagram of T, ;, and its timing. The solid black line depicts the SST time series for a specific pixel over the course of a year

two continuous variables. The #-test was used to determine
significance levels for the correlation, with p<0.05 indicat-
ing a significant correlation.

2.3 Calculation of Chl variability

To examine the impact of T,,;, on Chl variations, changes
in Chl were calculated as follows: for each pixel, the aver-
age Chl value for the week preceding the T,,;, timing was
designated as Chl,., and the average Chl value for the
week following the T, ;, timing was designated as Chly.
The difference between these values (AChl=Chlg,; — Chl-
pre) Tepresents the fluctuation in Chl around the T, If
the absolute value of AChl was less than 0.05 pg/L, Chl-
pre and Chlg, were considered not significantly different,
and the pixel was excluded from further analysis. If AChl
was greater than 0, it indicated an increase in Chl after the
T in» and the pixel was labeled as exhibiting a Chl increase.
Conversely, if AChl was less than 0, it indicated a decrease
in Chl after the T,;,, and the pixel was labeled as exhibit-
ing a Chl decrease. The net change in the number of pixels
where Chl increased versus decreased was represented as
APixels=N

increase Ndecrease'
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2.4 Calculation of marine cold-spells

MCSs are events where SST falls below a specific threshold
established in previous studies (Schlegel et al. 2021; Walter
et al. 2024). In this analysis, we identified MCSs for each
pixel using daily OSTIA data. In particular, an MCS was
defined as occurring when the daily SST fell below the 10th
percentile of the climatological SST distribution, calculated
on the basis of a 38 year dataset covering the years 1985—
2022. To account for seasonal fluctuations, daily SST val-
ues were averaged over an 11 day window centered on each
date, followed by a 31 day moving average for smoothing.
An MCS event was considered contiguous if the tempera-
ture remained below the threshold for at least five consecu-
tive days, allowing for gaps not exceeding three days. The
MATLAB scripts used for this analysis are available at http
s://github.com/ZijieZhaoMMHW. The proportion of MCSs
coincident with T, ;, timing was determined by comparing
the number of pixels experiencing MCSs at the T,;, timing
with the total pixels in the study area.
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2.5 Artificial neural network-based prediction of
Tmin

To investigate the predictability of T ;, and its timing, we
employed an artificial neural network (ANN) model using
MATLAB. The network architecture consisted of a sequence
input layer, followed by two fully connected layers with 16
neurons each. A dropout layer with a dropout rate of 0.5 was
applied between the hidden layers to reduce overfitting. The
final fully connected layer contained 1 neuron to produce
the regression output, followed by a regression layer. The
model was trained using the Adam optimizer with a learning
rate of 0.001 for 500 epochs.

We adopted a leave-one-out cross-validation approach,
treating each year as the test sample while the remaining
years were used for training. Prediction performance was
evaluated using the mean absolute error (MAE) between
predicted and observed values. For comparison, the clima-
tological mean over the 38 years was used as a baseline pre-
diction. To evaluate the effectiveness of the ANN, a skill
score was computed, representing the degree to which the
model’s MAE was reduced compared to the baseline clima-
tological prediction.

MAEaNN

Sklll Score = (1 — WE}CLI

> x 100%
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Fig.3 Distribution of mean T ;, (a) and T

min

Here, MAE ,\n and MAE; represent the mean absolute
errors calculated from the ANN predictions and the baseline
climatological prediction, respectively.

3 Results
3.1 Spatial patterns and trends

Figure 3 show the spatial distributions of the mean T,;, and
its timing in the Eastern China Seas from 1985 to 2022. T ,;;,
exhibits a clear northwest—southeast gradient, with lower
values in the northwestern regions and higher values in the
southeastern regions. The T,;, timing generally ranges from
late January to mid-March, with earlier occurrences in the
southern parts of the region. In particular, T, ;, occurs earlier
in coastal areas, especially along the eastern coast of China
and in the waters surrounding Taiwan Island. In contrast,
T, occurs later in the mid-northern East China Sea, the
central Yellow Sea, and the western side of Jeju Island.

The spatial distributions of the correlation between T,;,
and its timing, as well as the trends in T,;, timing, are shown
in Fig. 4a and c. Regions with significant correlations or
trends are scattered and localized. For example, a significant
negative correlation between T,,;, and its timing is found
in the central-northern Taiwan Strait, while a significant
advancement in T ; timing is observed near the Yangtze
River estuary. However, these significant areas are limited
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in spatial extent. Consequently, the area-averaged T,;, and
T .in timing for the entire study region are not significantly
correlated, and the regional mean T, ;, timing shows no sig-
nificant long-term trend (Fig. 5a).

In contrast, the spatial distribution of T, ;, trends reveals
distinct boundaries between warming and cooling regions
(Fig. 4b). Most coastal areas exhibit a significant cooling
trend, with the exception of certain areas such as the coastal
waters of the Japan Sea and the eastern coast of Taiwan

Island. Offshore areas predominantly show significant
warming trends, except for a few localized cooling zones in
the central East China Sea. Despite the spatial extent of both
warming and cooling regions, the area-averaged T,;, across
the entire study region does not show a significant trend
(Fig. 5a). This is likely due to the opposing trends offsetting
each other. When analyzed separately, significantly warming
regions show an average increase of 0.3 °C/decade, while
significantly cooling regions exhibit an average decrease of
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Fig. 5 Area-averaged time series of T, (red lines) and T, ;, timing
(black bars) from 1985 to 2022 for the Eastern China Seas (a), warm-
ing regions (b), and cooling regions (¢) in the Eastern China Seas. The

red dashed line represents the linear fit of the T, ;, time series consid-
ered significant, while the black dashed line represents the linear fit of
the T,;,, timing time series considered significant
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—0.4 °C/decade (Fig. 5b and c). Furthermore, the timing of
T,.in 1 the cooling regions has advanced significantly, at a
rate of — 1.7 days/decade (Fig. 5c¢).

3.2 Atmospheric and oceanicinfluencesonT,;,

The temporal evolution of atmospheric conditions and SST
revealed a clear lag between air-based drivers and ocean
response. In the Eastern China Seas, both air temperature
and the meridional wind component (V) reached their min-
ima during winter (Fig. 6a). On average, T,,;, occurred on
February 17, approximately 25 days after the occurrence of
the minimum air temperature (AirT,;,; January 23), and 48
days after the minimum meridional wind (V,;,,; December
31). Despite this lag, significant correlations were observed
among these variables. AirT,;, exhibited significant positive
correlations with both the T, ;, in warming regions (WT_;,)
and cooling regions (CT,;,), while V.. showed a signifi-
cant correlation with CT,;, (Fig. 6b, c). Additionally, the
timing of AirT,;, and V,;, was positively correlated with
the timing of both WT,;, and CT,;, (Fig. 6d, e), indicating
a consistent relationship between atmospheric minima and
SST response.

Further analysis of monthly air temperature and wind
components provided additional insights into the temporal
associations (Table 1). In warming regions, WT,;, was sig-
nificantly influenced by the zonal wind component (U) in
December. Specifically, weaker easterly winds (i.e., more
negative U values) in December corresponded to higher
WT,,;, values, as evidenced by a significant negative cor-
relation between U and WT, ;. In contrast, CT,;, was more
closely associated with V in December, where stronger
northerly winds (more negative V values) were associated
with lower CT,;,, reflecting a significant positive correla-
tion between V and CT,;,.

The relationship between air temperature and WT,; was
stronger and more persistent than that with CT,;,. WT i,
showed significant positive correlations with air tempera-
ture from December through March (Table 1), indicating
that prolonged periods of elevated air temperature contrib-
ute cumulatively to higher T, ;, values in warming regions.
In contrast, CT;, was mainly correlated with V and air
temperature in December, with weaker correlations in other
months (Table 1). Meanwhile, the timing of CT,,;,, was most
strongly influenced by air temperature and V in February
(Table 1). Warmer air temperatures and weaker northerly
winds in February were linked to an earlier occurrence of
CT,,» indicating that short-term atmospheric conditions
can significantly influence the timing of T, in cooling
regions.

Ocean-atmosphere heat fluxes were also found to be sig-
nificantly related to T,,;, and its timing (Table 2). Longwave

min

n

min
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Fig. 6 a Climatological time series from September to July for SST}
(black solid line), air temperature (red solid line), and V (blue solid
line). The corresponding dashed lines in their respective colors indi-
cate the times when SST, air temperature, and V reached their annual
minimum values. b Scatter plot of AirT,;, and WT_;, (blue hollow
circles), and CT,;, (red solid circles). ¢ Scatter plot of V_;, and WT,;
(blue hollow circles), and CT,;, (red solid circles). d Scatter plot of
AIrT,;, timing and WT,; timing (blue hollow circles), and CT;, tim-
ing (red solid circles). e Scatter plot of V,,;, timing and WT,;, timing
(blue hollow circles), and CT,;, timing (red solid circles)

radiation fluxes (Qyw and Qp;yw) were significantly posi-
tively correlated with WT,;, from December through
March, highlighting their sustained role in moderating SST
in warming regions. In contrast, in cooling regions, latent
(Qrp) and sensible (Qgyy) heat fluxes in December were sig-
nificantly negatively correlated with CT,;,. Higher values
of Q; iy and Qgyy, indicating stronger heat loss from the ocean
surface, were associated with lower T,;,. Moreover, in Feb-
ruary, Q; iy and Qg showed significant positive correlations
with the timing of CT,;,, suggesting that greater surface
heat loss in this month tends to delay the occurrence of T,;,
in cooling regions.

3.3 Relationship between T, and Chl

To examine the response of Chl to T,;,, we analyzed the
weekly changes in Chl across 25 years (1998-2022), com-
paring values one week before and after T, at each grid
point (Fig. 7a). In 21 out of 25 years (84%), the net number
of grid points with increasing Chl after T,;, exceeded the
number of grid points with decreasing Chl (APixels>0).
Moreover, in 23 out of 25 years (92%), the area-averaged
Chl change (AChl) was positive. These results indicate that
an increase in Chl following T,;, is a common phenomenon
across the Eastern China Seas.

In addition, the magnitude and spatial extent of Chl
changes were related to both T, ;, and its timing (Fig. 7b,
c). T,,;, exhibited a significant negative correlation with
AChI, indicating that lower T,;, values were associated with
greater increases in Chl. Furthermore, T, ;, timing showed
significant positive correlations with both AChl and APixels.
In other words, when T,,;,, occurred later in the season, both
the number of grid points with increasing Chl and the mag-
nitude of Chl increase tended to be higher.

Overall, these results demonstrate that in the Eastern
China Seas, increases in Chl following T,;, are widespread,
and this response is more pronounced when T, .. is lower
and occurs later in the winter season.

min

3.4 Relationship between T, ;, and MCSs

A strong relationship was also observed between T, ;, and
the probability of MCSs in the Eastern China Seas (Fig. 8).
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Table 1 Correlation coefficients (n=38) between monthly average wind components (U, V and wind speed [WS]) and air temperature (AT), and

T, and T, timing from December to March
Month Variable Toin T, timing WT_ . WT_ ;. timing CT,i, CT,;, timing
December U —0.48%** —0.26 —0.45%** —0.18 —0.18 0.06
v 0.21 0.27* —0.01 0.33%* 0.52%** 0.27
WS —0.26 —0.24 0.03 —0.30* —0.64%** —0.26
AT 0.60%** 0.41%* 0.47%%* 0.34** 0.41%* 0.19
January U —0.12 0.23 —-0.25 0.34%* 0.19 0.20
Vv 0.17 -0.30* 0.09 —-0.32* 0.10 —0.26
WS —0.25 0.09 —0.12 0.17 —0.18 0.15
AT 0.69%** 0.06 0.58%** —0.12 0.23 —0.11
February U —0.03 0.23 —-0.20 0.22 0.24 0.27*
A% 0.41%* —0.48%** 0.40%* —0.37** 0.19 —0.50%**
WS —0.35%* 0.28* —0.28* 0.18 —0.28* 0.29*
AT 0.67%** —0.39%* 0.63%** —0.32%* 0.27 —0.52%**
March U —0.05 0.28* —0.12 0.28* 0.19 0.12
A% 0.26 —0.40%* 0.30* —0.41%* —-0.07 —0.29*
WS —0.30* 0.13 —-0.21 0.08 —0.16 0.29*
AT 0.62%%* —0.37** 0.67*** —0.39%* —0.04 —0.44%**
**k p<0.01, ** p<0.05, * p<0.1
Table 2 Correlation coefficients (n=38) between heat flux, T ;.. min timing from December through March
Month Variable Toin T iy timing WT, . WT_ .. timing CT,in CT,,;, timing
Quiw December 0.64%** 0.29* 0.65%** 0.17 0.16 0.07
January 0.73%** 0.25 0.67*** 0.09 0.20 —0.02
February 0.82%** —0.24 0.73%** —0.23 0.36** —0.39%*
March 0.74%%** —0.29* 0.77%%* —0.32% 0.06 —0.46%**
Qorw December 0.56%** 0.35%* 0.45%** 0.29* 0.33%* 0.00
January 0.59%** 0.07 0.49%** —0.11 0.24 0.00
February 0.44%%* —0.42%** 0.46%** —0.37** 0.11 —0.44%**
March 0.55%** —0.37%* 0.44%%* —0.40%* 0.22 —0.20
Qusw December —0.42%** —-0.19 —0.27 —0.13 —0.32%* —0.04
January —0.38%* —0.05 —0.25 —0.00 —0.18 0.04
February —0.37** 0.06 —-0.19 0.04 —0.32% 0.10
March —0.24 0.02 —0.02 —0.04 —0.38%* —0.04
Qpsw December —0.29* —-0.07 —0.37%* —0.02 0.12 0.34%*
January —0.28* —0.08 —0.27 0.06 —0.14 —-0.17
February 0.07 0.11 —0.01 0.13 0.13 0.00
March —0.25 0.00 0.02 —0.00 —0.49%** —0.21
Quu December —0.26 —0.32%* 0.07 —0.38%* —0.68%** —0.24
January —0.17 0.22 0.01 0.32%* —0.26 0.06
February —0.17 0.49%** —0.15 0.34%* —0.13 0.44%%*
March —0.20 0.33%%* —-0.10 0.32% —0.11 0.14
Qsh December —0.36%* —0.37%* —-0.10 —0.40%* —0.61%** —0.27
January —0.39%* 0.17 —0.26 0.31* -0.22 0.14
February —0.35%* 0.45%%%* —0.38%* 0.32* —-0.13 0.55%**
March —0.36** 0.46%** —0.42%** 0.47%%* 0.13 0.33%*

wakp < (.01, ** p<0.05, * p<0.1

Across the study period, the average probability of MCSs

Furthermore, T

min

was significantly negatively correlated

occurrence was approximately 6.4%. However, at the time
of T,,;,, this probability increased substantially to 14.3%,
indicating that extremely low SSTs are associated with a
heightened likelihood of MCSs events.

@ Springer

with the probability of MCSs at T,;, timing (r=—0.89,
p<0.01). Lower T, values were associated with a
higher frequency of MCSs occurrence. Notably, the year
2010 exhibited the lowest T .. on record and the highest

min



Spatiotemporal trends of annual minimum sea surface temperature in the Eastern China seas

Page 11 0of 18 349

T T T 0.3
14000 |2
12000 | 10.25
10000 - -0.2
8000 [
4015 __
™
» 6000 E
e 201 ¢
E 4000 |- =
QO
0 [N . [ J . L ' Il 0
-2000 0.05
-4000
-0.1
'6000 1 L 1 1
2000 2005 2010 2015 2020
Year
0.25 . - . 0.25 : . : . 16000
b Cc ©
o 114000
0.2t o 0.2 3
2 ° 412000
0.15} - 0.15} &
o o o 410000
N ) 2
= 01Fe “wu® ® {1 & 04}
S 18000
E o s o o E )
=) - O = ?
E o0.05} SS 1 £ o.05} {6000 X
= Q © = [
5 0O~ = o <
a ol - ® 55 Sa B g% 14000
9 ° 0.40 42000
E - J 4 E r=0.
-0.05 r ;g-:g 0.05 ® p=005 |
o : =y
01F - 01F p <0.
0.1 01} o 5 3 | o
(o]
-0.15 L A L 0. 5 1 A L L
13.5 14 14.5 15 15.5 0214 02/18 02/22 02/26  03/02
Tonn (C) T i timing

Fig.7 a Annual time series of APixels (blue bars) and AChl (red bars) in the Eastern China Seas. b Scatter plot of T
of T,;, timing verse AChl (blue hollow circles) and APixels (red solid circles)

verse AChl. ¢ Scatter plot

@ Springer



349 Page 12 of 18 W. Ding et al.
045 1 I || I LI L LI | L L L LI I LI 1 I 1 I LI | I 1 | L I I LI 156
0.4 115.4
0_35 -115.2
-115
(7]
3 0.3
E -—114.8
0 0.25 ©
2 ‘ 146 ¢
S 0.2 E
3 ‘ {144 "
[
a 0.15
‘ +14.2
0.1 ‘ d14
| | | | |
0 0 © - < ~ = ) © o ~ %) © - 13.6
© b} o o o =} = o =} - - - N
o o o o o = =1 =1 = o o =) =)
- - - - - N N N N N N N N
Year

Fig. 8 Time series of the probability of MCSs at T, ;, timing

probability of MCSs (Fig. 8), with 42.3% of the study area
experiencing MCSs when SST reached its minimum.

4 Discussion
4.1 Mechanisms of regional variability in T_;,

As global climate warming continues (Bronselaer and
Zanna 2020; Lyu et al. 2021), regional variations in SST
have become increasingly important, with significant impli-
cations for marine ecosystems, local weather patterns, and
fisheries (Wernberg et al. 2013, 2016). Previous studies
have reported a general warming trend in winter SST across
the Eastern China Seas (Yeh and Kim 2010; Cai et al. 2016,
2017). However, our results revealed pronounced spatial
differences in the trends of T,;,, with distinct boundaries
separating warming and cooling regions (Figs. 4 and 5).

A comparison of Figs. 1b and 4b highlights a clear cor-
respondence between T, trend patterns and prevailing
ocean currents. Warming regions are primarily associated
with northward-flowing warm currents, particularly those
linked to the Kuroshio and its branches, which transport
warm water into the Eastern China Seas and elevate SST
(Lian et al. 2016; Li et al. 2021; Tan et al. 2021; Cheng et al.
2025). In these regions, T, ;, exhibited a warming trend of
approximately 0.3 °C/decade (Fig. 5b), consistent with the
findings of Cai et al. (2016) and broadly aligned with global
SST warming patterns.

@ Springer

In contrast, cooling regions are concentrated along
coastal areas influenced by southward-flowing cold coastal
currents. These areas exhibited a significant cooling trend
in T,;,, with rates reaching approximately —0.4 °C/decade
(Fig. 5c¢), diverging sharply from global warming trends.
The southward-flowing coastal currents has shown a
strengthening trend in recent decades (Zhang et al. 2020),
which may contribute to the observed T, cooling. More-
over, these coastal currents are aligned with the prevail-
ing northeasterly monsoon winds during winter (Sun et al.
2016; Yin et al. 2018). December, in particular, is character-
ized by the strongest northerly winds over the Eastern China
Seas (Fig. 6a), which have significantly intensified over the
38 years (data not shown). This strengthening of the mon-
soonal winds has enhanced the southward transport of cold
water, further amplifying the decreases in T;,.

Atmospheric processes further modulate SST variability
through both direct heat exchange and ocean-atmosphere
coupling (Sun et al. 2018; Gao et al. 2022). In warming
regions, T,;, exhibited significant positive correlations with
air temperature and longwave radiation fluxes (Qyyw and
Qprw) from December through March (Tables 1 and 2),
highlighting the cumulative influence of sustained atmo-
spheric warmth on SST. The consistent correlation across
multiple months suggests that ocean thermal inertia plays
a crucial role in maintaining elevated T,;, levels well into
late winter.

In the cooling regions, the key factors influencing

T, can also be traced back to December (Tables 1 and
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2). Stronger northerly winds, lower air temperatures, and
enhanced sensible and latent heat fluxes in December con-
tribute to lower T,;, values. However, the influence of these
factors weakens markedly in January and February, likely
due to increasing ocean thermal inertia, which moderates
the immediate atmospheric forcing effects (Soldatenko and
Yusupov 2019). T,,;;, in the cooling regions predominantly
occurs in February (64%), and its timing is influenced by
atmospheric conditions during that month. Weaker north-
erly winds, higher air temperatures, and lower sensible
and latent heat fluxes tend to advance the timing of T,;,.
Interestingly, despite the absence of significant trends in
February northerly wind strength, air temperature, or heat
fluxes over the 38 year period, T, timing has advanced
significantly. This suggests that the observed advancement
is likely driven by the combined or nonlinear effects of mul-
tiple factors, rather than changes in any single variable. A
more detailed analysis would be required in future studies
to fully understand these complex interactions.

In addition to ocean currents and atmospheric factors,
vertical mixing, upwelling, and freshwater input from rivers
also play significant roles in modulating SST in the Eastern
China Seas (Kako et al. 2016; Hu and Wang 2016). Strong
winter winds enhance vertical mixing, which brings colder,
nutrient-rich subsurface waters to the surface, locally reduc-
ing SST and influencing T,,;,,. Coastal upwelling, driven by
wind and current dynamics, further contributes to localized
cooling along the shoreline. Moreover, freshwater discharge
from major rivers such as the Yangtze River affects surface
stratification and temperature by introducing low-salinity
water, which stabilizes the upper water column and alters
the vertical heat distribution (Kako et al. 2016). Although
these processes exhibit spatial heterogeneity and require
further in situ observations for precise quantification, they
likely contribute to the fine-scale SST variability and the
sharp thermal gradients observed between warming and
cooling regions.

While global SSTs generally show a warming trend, our
results demonstrate that T, ;, trends in the Eastern China
Seas are more complex, with distinct warming and cool-
ing regions. This spatial contrast is closely linked to the
unique geographical and oceanographic setting of the East-
ern China Seas. The region is semi-enclosed, bordered by
land to the west and north, and features a wide continental
shelf (Fig. 1a) (Guo et al. 2023). On the eastern side, the
warm Kuroshio intrudes into the Eastern China Seas, signif-
icantly influencing SST patterns (Lian et al. 2016; Bai et al.
2019). In winter, the enhanced East Asian Winter Monsoon
strengthens cold coastal currents flowing southward along
the coast, which cools the nearshore areas (Wei et al. 2014;
Zhang et al. 2020). As a result, the interaction between the
warm Kuroshio and the cold coastal currents creates sharp

boundaries between warming and cooling zones in T,,.
This complex interplay of topography, ocean currents, and
monsoonal winds makes the Eastern China Seas a distinc-
tive region for studying T, ;, variability and its ecological
impacts.

Large-scale climate modes, such as the Arctic Oscilla-
tion (Zuo et al. 2016), North Atlantic Oscillation (Han et al.
2016), and El Nifio-Southern Oscillation (Xie et al. 2024),
are known to influence SST variability in the Eastern China
Seas by modulating atmospheric circulation patterns and
oceanic current systems. These climate modes can affect
both the intensity and timing of cold air outbreaks, the
strength of the East Asian Winter Monsoon, and the trans-
port of warm or cold waters, thereby likely modulating both
Toin and T, timing. The potential nonlinear and lagged
impacts of these large-scale modes on regional T,;, vari-
ability merit further detailed investigation to better under-
stand their role in shaping the observed spatial and temporal
patterns.
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4.2 Predictability of T ;,
One of the key findings of this study is the strong linkage
between T,;, and preceding atmospheric conditions, which
provides a valuable basis for enhancing its predictability.
Air temperature and wind components exhibited significant
correlations with both T, ;, and its timing, with many of
these relationships traceable to atmospheric patterns estab-
lished as early as December (Table 1). In particular, T,
showed strong correlations with AirT, ;, and V ,; across
both warming and cooling regions, with T occurring on
average 25 to 48 days later than these atmospheric minima
(Fig. 6), highlighting the role of ocean thermal inertia.
Surface heat fluxes further enhanced this predictive
framework. In warming regions, December longwave radia-
tion fluxes showed strong positive correlations with T,;,,
while in cooling regions, T,,;, was more strongly influenced
by December latent and sensible heat fluxes. Based on these
findings, we developed an ANN model using 14 December
variables as input to predict T,;, and T,;, timing. As shown
in Table 3, the ANN achieved a MAE of 0.22 °C for T,
prediction in warming regions, which was notably lower
than the MAE of 0.45 °C in cooling regions. For T, timing,
the average prediction error was about 45 days in warming
regions and approximately 3 days in cooling regions. The
smaller error in the latter is partly due to the lower temporal
variability of T,;, timing in cooling regions, as indicated by
the much smaller MAE; ; compared to warming regions.
In terms of skill score, the ANN model demonstrated
higher predictability in warming regions than in cooling
regions, and the prediction of T, was generally more
accurate than that of T, ;, timing (Table 3). This difference
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Table 3 Prediction performance of the ANN model for T ; and T ; timing (1985-2022) using December variables as input
Variable T i (°C) T i, timing (day) WT_. (°C) WT,_ . timing (day) CT,_;, (°C) CT,;, timing (day)
MAE ,\n 0.22 3.81 0.22 4.81 0.45 3.16
MAE(; 0.34 3.41 0.36 5.15 0.53 3.22
Skill score 34% 10% 40% 6% 14% 2%

can be attributed to the more persistent influence of air tem-
perature and longwave radiation in warming regions, where
their effects can extend coherently from December through
March. In contrast, T, ;, timing in cooling regions was more
strongly influenced by February variables such as air tem-
perature, northerly winds, Qy, and Qg (Tables 1 and 2).
Since our model is based solely on December conditions,
it does not capture the subsequent atmospheric evolution in
January and February, limiting the accuracy of T, ;, timing
predictions in cooling regions.

Nevertheless, the ability to forecast T,;, and T,;, timing
one to two months in advance offers practical value, par-
ticularly for assessing the risk of extreme low-temperature
events and their ecological impacts. To further improve
forecast accuracy, future efforts could adopt a two-step
prediction strategy: an initial estimate based on December
conditions, followed by updates incorporating January and
February data. In addition, while the current model focuses
on regional mean predictions, future work may extend this
approach to grid-level predictions across the study area,
enabling more detailed spatial assessments.

4.3 Ecological responsestoT,;,

Our analysis revealed a clear ecological signal associated
with T,;, variability, particularly in relation to Chl dynam-
ics. Over the past 25 years of satellite-derived observations,
we found that in 84% of the years, the number of grid cells
showing an increase in Chl following T,;, exceeded those
with decreases (Fig. 7a). Additionally, 92% of the years
exhibited positive regional-average Chl anomalies after
T i Suggesting that the occurrence of T,;, often marks
the onset of enhanced phytoplankton growth in the Eastern
China Seas.

The relationship between SST and Chl is inherently com-
plex and shaped by multiple oceanographic and ecological
factors (Anderson et al. 2012; Guallar et al. 2017). One of
the key physical mechanisms involved is thermal stratifi-
cation (Thompson et al. 2015). During winter, cooling of
the sea surface increases surface density, leading to convec-
tive mixing that disrupts stratification. This vertical mixing,
reinforced by strong winter winds, brings nutrients to the
surface but can also suppress phytoplankton retention in
the euphotic zone. Once T,;, occurs and SST begins to rise,
surface stratification re-establishes, allowing phytoplankton
to remain in the illuminated surface layer. Combined with
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nutrient enrichment from earlier mixing, this creates favor-
able conditions for phytoplankton blooms (Anderson 1998;
Dawson et al. 2018).

This transition helps explain the significant negative
correlation between T,;, and AChl observed in our study
(Fig. 7b). Notably, lower T,,;, values were associated
with stronger increases in Chl. One potential explanation
involves ecological imbalances between phytoplankton
and zooplankton. Studies suggest that lower temperatures
may reduce zooplankton grazing rates more than they limit
phytoplankton growth, allowing phytoplankton populations
to proliferate (Taucher and Oschlies 2011; Behrenfeld et
al. 2013). Thus, in years with lower T, phytoplankton
may experience reduced top-down control at a time when
physical conditions (e.g., re-stratification, light availability,
and nutrient supply) are particularly conducive to bloom
development.

We also found a significant positive correlation between
T in timing and Chl (Fig. 7¢). Years with delayed T, were
often followed by higher Chl values. Light availability
likely plays a key role in this pattern. In the ECSs, solar
irradiance increases steadily from February through March
(Chang and McClean 1997; Sourisseau et al. 2017). A later
T .in Often aligns with this seasonal increase in sunlight, thus
enhancing phytoplankton growth once stratification is re-
established. Moreover, delayed T,;, is strongly associated
with stronger northerly winds and lower air temperatures
in February (Table 1)—conditions that promote deeper and
more sustained winter mixing. This prolonged mixing phase
could lead to greater nutrient accumulation in the surface
layer, fueling stronger phytoplankton responses once the
water column stabilizes.

While these explanations are plausible, it is important
to recognize limitations in satellite-based Chl estimations,
especially in turbid coastal waters where resuspended sedi-
ments can artificially inflate Chl readings (Chen et al. 2019).
However, the consistency of observed patterns across spa-
tial domains and temporal scales suggests that the detected
signals are not solely artifacts. Future research incorporat-
ing in situ Chl and nutrient measurements will be essential
for confirming the ecological mechanisms proposed here.

Finally, we explored the link between T,;, and MCS
events. MCSs, defined by anomalously low SSTs, are asso-
ciated with significant ecological disruptions (Schlegel
et al. 2021). Our findings revealed that the likelihood of
MCSs occurrence more than doubled around the timing of

min



Spatiotemporal trends of annual minimum sea surface temperature in the Eastern China seas

Page 150f 18 349

Tin- Furthermore, T,;, values were negatively correlated
with MCSs frequency (Fig. 8), indicating that years with
lower T,;, tend to experience more MCSs (Fig. 8). Given
the known impacts of MCSs on marine organisms and eco-
system stability (Santos et al. 2016; Schlegel et al. 2017),
understanding how T,,;, modulates their occurrence could
support adaptive marine management and enhance ecosys-
tem resilience to extreme cold events.

In addition to Chl dynamics and MCS occurrence,
changes in T,;, may also affect higher trophic levels and
key ecological communities. For example, lower T,;, and
increased MCSs can cause thermal stress or habitat loss
for temperature-sensitive species such as coastal benthic
organisms and juvenile fish (Santos et al. 2016). These dis-
turbances can alter food web structures and lead to cascad-
ing ecological consequences. Moreover, elevated Chl levels
following T,;, may influence zooplankton populations,
thereby affecting the feeding conditions of fish larvae and
other higher consumers. Such bottom-up effects, along with
potential mismatches in the timing of primary and secondary
production, warrant further investigation (Sigler et al. 2016).
Future research should focus on how T, ;,-driven shifts in
phytoplankton dynamics propagate through the marine food
web, particularly under ongoing climate change.
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4.4 Management implications and future directions

This study offers several practical insights for marine policy
and management. First, the demonstrated predictability of
T, using early-winter atmospheric and oceanic indicators
provides an opportunity to improve seasonal forecasting.
Incorporating T, forecasts into management strategies
could help guide decisions in aquaculture, fishery closures,
and the protection of sensitive species.

Second, the observed responses of Chl and MCSs to T ;,
variability highlight the importance of integrated monitor-
ing systems that combine physical, chemical, and biological
data. Such systems can support better assessments of eco-
system health and improve preparedness for ecological risks
linked to T, extremes.

However, some limitations should be noted. The use of
satellite-derived Chl data introduces uncertainty in turbid
coastal waters, and the relatively short observation period
limits the analysis of long-term or nonlinear trends. Addi-
tionally, this study did not explore subsurface processes—
such as mixed layer depth or nutrient supply—which may
influence surface patterns.

Future work should focus on developing more compre-
hensive T,,;,, prediction models by incorporating large-scale
climate drivers. Expanding in situ observations—espe-
cially of Chl, nutrients, and vertical mixing—will help
validate satellite-based results and improve understanding

of underlying mechanisms. Research into T, ;,’s ecological
effects across different habitats and trophic levels will also
be key for advancing ecosystem-based management in the
Eastern China Seas under climate change.

5 Summary

This study systematically investigated the spatiotempo-
ral trends of the minimum annual sea surface temperature
(T,,;,) in the Eastern China Seas over the period 1985-2022.
Significant spatial and temporal patterns in T ;, and its tim-
ing were identified, showing distinct regional variations.

Distinct boundaries between warming and cooling
regions were identified. Cooling trends occurred primar-
ily in areas influenced by southward-flowing coastal cold
currents, while warming trends were observed along north-
ward-flowing warm current paths. In the warming regions,
T, increased at a rate of approximately 0.3 °C/decade.
Conversely, the cooling regions experienced a decrease in
T, at a rate of —0.4 °C/decade, with the timing of T,
advancing significantly by 1.7 days/decade.

The variability of T,;, and its timing was closely linked
to preceding atmospheric conditions, particularly air tem-
perature, wind patterns, and surface heat fluxes starting from
early winter (December). These strong correlations enabled
the development of an ANN model that could predict T,;,
and its timing one to two months in advance with reason-
able accuracy, especially in warming regions. The model’s
performance highlights the important role of ocean thermal
inertia and atmospheric-ocean coupling in governing T,
dynamics.

Ecologically, T, was found to be a critical indicator
associated with phytoplankton dynamics, as lower T, val-
ues and delayed T,,;, timing were both linked to enhanced
Chl concentrations. Furthermore, T,;, was strongly cor-
related with the frequency of MCS events, underscoring
its value in assessing the risk of extreme low-temperature
impacts on marine ecosystems.

Overall, this study improves our understanding of the
complex regional processes controlling winter SST minima
in the Eastern China Seas and demonstrates the potential
for using atmospheric precursors to forecast T,;, and related
ecological responses. These findings provide a valuable sci-
entific basis for climate impact assessments and adaptive
management strategies in this ecologically and economi-
cally important marine region.
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