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Abstract Due to the photoacclimation of phytoplankton chlorophyll pigments, it is critical to know the ratio
of carbon‐to‐chlorophyll (θ) if one wants to estimate phytoplankton carbon from chlorophyll or vice versa.
Behrenfeld et al. (2016, https://doi.org/10.1038/nclimate2838) developed a widely used model to estimate θ
based on solar radiation within the mixed layer, which reproduced θ very well for the areas defined in the study,
but there is a knowledge gap regarding whether this model is applicable to any spatial scale. Here, we evaluated
the performance of this model for areas of different sizes and found that the agreement between model‐
calculated θ and satellite‐estimated θ is highly dependent on the size of the interested area where the agreement
is very poor (R2 is as low as ∼0.05) if the size is small. As the size of an interested area increases, the agreement
between model estimates and satellite retrievals improves significantly (R2 is as high as ∼0.80). This trend or
pattern persists regardless of whether the area is constrained within the same level or mixed levels of chlorophyll
variation. These results highlight that the applicability of this popular model of carbon‐to‐chlorophyll ratio
should be better applied to oceanic areas matching those used in the model development and underscore the need
to develop a more universally applicable model for the photoacclimation of phytoplankton chlorophyll in the
upper ocean.

Plain Language Summary Phytoplankton play a crucial role in the ocean; understanding the ratio of
carbon to chlorophyll (θ) is essential for estimating phytoplankton carbon from chlorophyll levels or vice versa.
A widely used model developed by Behrenfeld et al. (2016, https://doi.org/10.1038/nclimate2838) estimates θ
based on solar radiation in the mixed layer and has been effective in specific study areas. However, its
applicability to areas of different sizes has not been fully explored. In this study, we assessed the performance of
this model across areas of varying spatial sizes. We found that the agreement between satellite‐based estimates
of θ and the model results are strongly influenced by the spatial size of the area of interest. For smaller areas,
there is a low correlation between model results and satellite data. As the spatial size of the area increases, the
correlation improves significantly. This pattern holds regardless of whether the areas exhibit similar or varying
levels of chlorophyll. These results suggest that the model is most suitable for the specific spatial scales for
which it was originally designed. They also highlight the need for a more universally applicable model to
estimate the carbon‐to‐chlorophyll ratio in the future.

1. Introduction
Phytoplankton are the primary producers of the global ocean, which are critical constituents of the ecosystem. In
the past, chlorophyll concentration (Chl) has been regarded as the proxy for phytoplankton biomass, as generally
there is a very positive relationship between the contents of phytoplankton and Chl. However, recent research has
demonstrated that Chl is also regulated by physiological photoacclimation (Letelier et al., 1993; Mignot
et al., 2014). In other words, due to different exposure to solar radiation, while Chl may change, phytoplankton
biomass remains the same. To quantitatively interpret the impact of solar radiation on Chl in the upper ocean,
Behrenfeld et al. (2016) developed a photoacclimation model to quantify the ratio (θ) of phytoplankton carbon
(Cph) to Chl, which is exclusively driven by light availability. It is found that the areal averaged ratio of designated
areas calculated from the model (θModel) agreed excellently with that obtained from satellite ocean color products
(θSat). It thus suggests that photoacclimation is a dominant process controlling the dynamics of phytoplankton θ in
the upper ocean (Bellacicco et al., 2016; He et al., 2021; Xiu & Chai, 2021), although other factors such as
ecological mechanisms could also impact this ratio (e.g., Bianchi, 2011; Chang et al., 2003; Hung et al., 2010;
Hung & Gong, 2011; Xing et al., 2019). Moreover, findings also suggested that the observed Chl reduction with
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future rising temperatures likely reflects physiological adjustments rather than a decline in biomass (da Silveira
Bueno et al., 2024; Dutkiewicz et al., 2019; Yamaguchi et al., 2022). This insight offers a more optimistic
perspective on the impacts of global warming on marine phytoplankton (Behrenfeld et al., 2016).

The photoacclimation model (θmodel hereafter) of Cph to Chl ratio is expressed as a function of sea surface
photosynthetically available radiation (PAR0), the diffuse attenuation coefficient for PAR (KPAR), and the mixed‐
layer depth (MLD) (see details in Data and Methods). In this model, there are two model constants (c1 and c2) that
significantly influence its performance. To determine these constants, Behrenfeld et al. (2016) divided the global
ocean into 37 areas (or “bins”) based on the Chl variance level, with Chl of the global ocean referring to the 8‐day
Chl product from the Moderate Resolution Imaging Spectroradiometer on the Aqua satellite (MODIS Aqua)
(Behrenfeld et al., 2005, 2016). Specifically, the area of Level 0 (L0) covers waters with 0 < standard deviation of
Chl (s.d.Chl) < 0.018 mg m− 3, L1 for 0.018 < s.d.Chl < 0.026 mgm− 3, L2 for 0.026 < s.d.Chl < 0.09 mg m− 3, L3
for 0.09 < s.d.Chl < 0.4 mg m− 3, and L4 for s.d.Chl > 0.4 mg m− 3 (Behrenfeld et al., 2005, 2016). For pixels in
each bin, θSat at every pixel (θSat‐pix) was calculated fromMODIS‐produced Chl andCph (which is converted from
particle backscattering coefficient, bbp) and θSat was obtained by averaging the θSat‐pix values of all pixels within
this bin. For MODIS data in the period of 2002–2014 and for the 8‐day global composites, the averages of the 37
bins generated 19,246 total number of observed θSat, which were then used to fit in the model and resulted in the
values of c1 and c2 (see details in Behrenfeld et al. (2016)).

Although it is exciting that this photoacclimation model worked very well for the average of these bins and its
conclusions were adopted by many studies (Burt et al., 2018; Fox et al., 2020; He et al., 2021; Sharma et al., 2019;
Yang et al., 2021), it is not clear if the remotely sensed and model‐calculated θ could also match well for areas of
any size. This information is crucial for applying this model to a random area particularly when converting Chl to
Cph or vice versa for that region. In addition, independent of spatial scale, the satellite‐derived Chl—and thus the
relationship between θSat and θmodel—may also be influenced by optical interference from colored dissolved
organic matter and terrestrially derived dissolved organic carbon, which are often introduced by typhoons and
riverine discharges (Liu et al., 2013; Swan et al., 2009; Tang et al., 2008), although evaluating these effects is
beyond the scope of this study.

In this study, we thus investigated the impacts of bin sizes on the relationship between remotely sensed and
model‐calculated θ with the objective of obtaining an in‐depth understanding of the applicability of this widely
adopted photoacclimation model for phytoplankton in the oceans. From analyses of various bin sizes, we found
that there is a high dependency of model performance on areal size, indicating the need for continued efforts to
improve the modeling of phytoplankton photoacclimation in the ocean.

2. Materials and Methods
2.1. The Photoacclimation Model

The model (θmodel) of Cph to Chl ratio is described by a series of equations (Behrenfeld et al., 2016), which are
described in detail below.

θModel = θDM ΔθSM (1)

Here, θDM is a “baseline” deep‐mixing solution, representing photoacclimation in a deep‐mixing scenario where
the MLD is deeper than the euphotic zone depth (Zeu) with ΔθSM a correction factor for shallow mixing.

θDM is modeled as Equation 2, which has two inputs: PAR0 and KPAR.

θDM = c1 e
c2 PAR00.45

KPAR (2)

c1 and c2 are the constants of this model, which are, respectively, 19 g C (g Chl)− 1 and 0.038 m− 1 (Einstein
m− 2 hr− 1)− 0.45.

For situations of shallow mixed layers (MLD < Zeu), a variable ΔθSM (see Equations 3 and 4) is introduced to
make an adjustment,
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ΔθSM =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1 + e− 0.15 PAR0

1 + e− 3 IML
, MLD<

6
KPAR

(3)

1, MLD≥
6

KPAR
(4)

Here, IML is the irradiance at half of the MLD and calculated following Equation 5 (Behrenfeld et al., 2005;
Westberry et al., 2008):

IML = PAR0 e− 0.5 KPAR MLD (5)

Thus, Equations 1–5 indicate that the ratio of θ is solely a function of solar radiation in the upper water column,
which is the essence of phytoplankton photoacclimation.

2.2. Inputs of the Photoacclimation Model and Data Source

Standard Level 3 products of PAR0 (Einstein m− 2 d− 1) and the diffuse attenuation coefficient at 490 nm (Kd(490))
estimated from MODIS Aqua measurements were downloaded from the National Aeronautics and Space
Administration (NASA) Ocean Color Webpage (https://oceancolor.gsfc.nasa.gov/). To ensure consistency with
the photoacclimation model developed by Behrenfeld et al. (2016), Kd(490) was calculated using the 490–547
band ratio algorithm (Austin & Petzold, 1981; Mueller, 2000; Werdell & Bailey, 2005). KPAR was calculated
from Kd(490), which is an empirical conversion between Kd(490) and KPAR (Morel et al. (2007)). These data
covered the period from July 2002 to December 2020 with a spatial resolution of 9 km and an 8‐day temporal
resolution. Following Kirk (1983), day length (in hours) was determined as a function of date and latitude. Day
length was then used to convert the daily PAR0 product to hourly PAR0 (Einstein m− 2 hr− 1). The MLD data were
obtained from the HYbrid Coordinate Ocean Model (HYCOM, https://www.hycom.org/) with the same spatial
and temporal resolutions as the aforementioned satellite data for the same period.

2.3. Method of Obtaining Areal Averages

To assess the performance of θModel for different bin sizes, θSat of each pixel was calculated following Behrenfeld
et al. (2016). Chl, estimated with the Ocean Color Index algorithm (Hu et al., 2012) from the MODIS Aqua
measurements, was downloaded from the NASA Ocean Biology Processing Group at the temporal and spatial
resolutions mentioned above. Following Behrenfeld et al. (2005) and Westberry et al. (2008), Cph was converted
from the particle backscattering coefficient at 443 nm (bbp(443)) from the MODIS Aqua measurements and
estimated by the Garver‐Siegel‐Maritorena algorithm (bGSMbp(443)) (Maritorena et al., 2002). In all cases of our study,
we first computed θSat‐pix, then obtained average values (θSat) for each specific area of interest. Similarly, for
θModel of a bin, we calculated θModel for each pixel (θModel‐pix) first, and subsequently determined the average
values for each designated area (θModel). Thus, each plot in the figures (i.e., the subsequent Figures 1, 3, 7, and 9)
represents the average of all pixels within a study area over an 8‐day period, which is consistent with that of
Behrenfeld et al. (2016).

2.4. Study Area and Level of Chl Variance

For the development of the photoacclimation model, Behrenfeld et al. (2016) focused on the bins within the same
variance level of Chl. Thus, for consistency, we first focused on the change in bin sizes exclusively within the
same variance level of Chl. Subsequently, we also changed the bin sizes across different variance levels of Chl.
Following Behrenfeld et al. (2016), five variance levels of Chl were defined (as stated earlier, L0 to L4) with each
level determined based on the standard deviation of Chl (s.d. Chl). For the purpose of demonstration, we focused
on the Pacific Ocean because it exhibited the best agreement between θSat and θModel among the 37 studied areas
or bins. Especially, according to Behrenfeld et al. (2016), θSat and θModel had excellent agreements for L0, L1, and
L2 of the South Pacific Ocean (SP) and for L2 and L3 of the North Pacific Ocean (NP).
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2.5. Validation of Data Processing

To ensure data processing of this study is consistent with that of Behrenfeld et al. (2016), we replicated the
comparison between θModel and θSat as performed in their study. As examples, we concentrated on the regions
designated as SP L0, L1, and L2 (Figure 1a). By replicating this comparison, we aimed to validate results from our
data processing matching those of Behrenfeld et al. (2016), as such a consistency check is crucial for assessing the
model performance over different sizes of bins.

Following Behrenfeld et al. (2016), θModel were compared with θSat for the three bins in the SP and for the period
of 2002–2020. It is found that all of them have a statistically significant relationship (p < 0.01 in t‐test). For SP
L0, θSat ranged from ∼123.0 to 638.5 g C (g Chl)− 1, whereas θModel ranged from ∼116.0 to 875.0 g C (g Chl)− 1

(Figure 1b). The coefficient of determination (R2) and the slope values between θSat and θModel were 0.73 and 1.01,
respectively. The fitting line is almost approaching the 1:1 line. A similar pattern was observed in SP L1 where
θSat ranged from ∼87.6 to 356.6 g C (g Chl)− 1, whereas θModel ranged from ∼83.2 to 407.4 g C (g Chl)− 1

(Figure 1c). The R2 and slope values between θSat and θModel were 0.82 and 0.97, respectively, also with the fitting
line nearing the 1:1 line. Although in SP L2, the range of θSat ranged from ∼57.5 to 217.6 g C (g Chl)− 1, and the
range of θModel from ∼55.8 to 227.4 g C (g Chl)− 1 (Figure 1d). The R2 and slope values between θSat and θModel

were 0.85 and 0.89, respectively. It seems that θModel is slightly lower than θSat in SP L2, whereas the same pattern
is also displayed by Behrenfeld et al. (2016) (their Figure 4b and Figure S8). The fitting line in SP L2 still closely
approaches the 1:1 line, although slightly below it. All these results are consistent with those showing in

Figure 1. Relationship between θSat and θModel in three bins of South Pacific (SP). (a) The study areas of the three bins with
background colors representing different Chl variance levels. (b)–(d) The relationships between θSat and θModel for bins of SP
L0, SP L1, and SP L2, respectively. The blue line is a 1:1 line, and the red line is a linear fit. N is the number of plotting data.
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Behrenfeld et al. (2016) (their Figure 4b and Figure S8), indicating that the data processing in our study is valid
and suitable for this effort.

2.6. Statistical Analyses

Following Behrenfeld et al. (2016), for each pixel within the bins defined above, θSat‐pix and θModel‐pix, respec-
tively, were calculated; subsequently, the θSat and θModel were obtained for each bin. Thus, we obtained the pairs
of θSat and θModel for each bin size for the 8‐day time series from July 2002 to December 2020. A one‐sample t‐test
was employed to determine differences between two data sets (i.e., θSat and θModel), and the p‐value (p) was used
to assess statistical significance (Gerald, 2018). To assess the correspondence between θSat and θModel, R2 and the
slope from linear regression analyses were calculated. The linear regression analyses were computed using the
“cftool” function of MATLAB Version 2019a (The MathWorks, Inc., Natick, Massachusetts, United States). If
θSat closely match θModel, it suggests that θ dynamics are primarily driven by photoacclimation and the robustness
of the photoacclimation model (Behrenfeld et al., 2016). Conversely, significant deviations between the two will
indicate a limitation of the model (Behrenfeld et al., 2016).

3. Results
3.1. Model Performance of Varying Bins Within the Same Variance Level of Chl

First, to gauge the relationship between model performance and bin size for pixels within the same variance level
of Chl, we randomly selected a 2° × 2° bin in the Pacific Ocean and then expanded the bin to 22° × 22° with a step
of 2° × 2° (Figure 2); subsequently, we compared θSat with θModel for each bin. These randomly selected areas or

Figure 2. The study areas of bin‐size expansion in single Chl variation level. These random study areas are South Random Bin (SRB) L0 (a), SRB L1 (b), SRB L2 (c),
North Random Bin (NRB) L2 (d), and NRB L3 (e), respectively. The background color of Chl variance levels in Pacific Ocean. Navy blue: L0, light blue: L1, green: L2,
dark yellow: L3. The small red box represents the initial bin size (2° × 2°), and the large box represents the expanded final bin size (22° × 22°), following the directions
of arrows.
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bins were denoted as: South Random Bin (SRB) L0 (from 22° to 24°S and 146°–148°W to 12°–34°S and 136°–
158°W), SRB L1 (37°–39°S and 95°–97°W to 27°–49°S and 85°–107°W), and SRB L2 (40°–42°S and 146°–
148°W to 30°–52°S and 136°–158°W); North Random Bin (NRB) L2 (13°–15°N and 124°–126°W to 3°–25°N
and 114°–136°W) and NRB L3 (39°–41°N and 167°–169°W to 29°–51°N and 157°–179°W).

For the various bins or boxes, θModel was compared with θSat. It is found that all of them have a statistically
significant relationship (p < 0.01 in t‐test). For SRB L1, as an example, θSat ranged from ∼10.6 to 467.7 g C (g
Chl)− 1, whereas θModel ranged from ∼29.3 to 441.8 g C (g Chl)− 1 (Figure 3). However, there are significant
variations in the R2 and slope values between θSat and θModel in linear regression with the lowest R2 as 0.04 and the
highest as 0.76, and the slope increased from 0.22 to 0.95. Further, all results show the lowest value for a bin size
of 2° × 2°, and the values of R2 and slope increase with bin size. This pattern is also found in other areas (see
Figure 4). For instance, for SRB L2, the R2 value between θSat and θModel is 0.13 for a bin size of 2° × 2°, gradually
increases as the bin size expands to 0.76 for a size of 22° × 22°, so does the slope between θSat and θModel. Such

Figure 3. Relationship between θSat and θModel in South Random Bin (SRB) L1 (37°–39°S and 95°–97°W to 27°–49°S and 85°–107°W). (a) The small red box represents
the initial bin, and the large box represents the expanded final bin of SRB L1. The background color represents the Chl variance level is L1, which is same as
Figure 2b. (b–l) The relationships between θSat and θModel with the expansion of bin size in SRB L1. The blue line is a 1:1 line, and the red line is a linear fit.N denotes the
number of data points, calculated by first determining the θSat and θModel values for each pixel, then averaging the values for each bin. Each plot represents the 8‐day
average of all pixels within the study area.
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results are also observed for NRB (Figure 4) except that the rate of change in R2 and slope values with the increase
of bin size is different. For instance, for NRB L2, R2 and slope values plateau from a bin size of 8° × 8°, but these
values continue to increase for NRB L3. These results indicated that even at a single variance level of Chl, the
agreement between model‐estimated θ and remotely sensed θ depends on the bin size.

In general, the agreement between θSat and θModel is poor when the bin size is set as 2° × 2°, but the agreement is
very good when the bin size is expanded to 22° × 22°, which is consistent with the result presented by Behrenfeld
et al. (2016). These results suggest that the relationship between θModel and θSat is bin size dependent rather
universal to any bin size.

3.2. Model Performance of Varying Bins Within the Mixed Variance Levels of Chl

Second, we focused on bin sizes across different variance levels of Chl, thereby avoiding the subjective definition
of different water masses. A 5° × 5° bin was randomly selected and subsequently expanded to 35° × 35° with a
5° step (Figure 5). We then compared θSat with θModel for each bin size. The randomly selected areas and bins were
named as follows: SP Mbin1 (20°–25°S and 145°–150°W to 5°–40°S and 130°–165°W), SP Mbin2 (40°–45°S
and 145°–150°W to 25°–60°S and 130°–165°W), and NP Mbin1 (40°–45°N and 145°–150°W to 25°–60°N and
130°–165°W).

Figure 4. Relationship between θSat and θModel in all five study areas (Figure 2). (a) The R2 between θSat and θModel with the
bin‐size expansion. The blue, orange, yellow, purple, and green lines represent South Random Bin (SRB) L0, SRB L1, SRB
L2, North Random Bin (NRB) L2, and NRB L3, respectively. (b) The slopes between θSat and θModel with the bin‐size
expansion. The color of the lines represents the same as Panel (a).
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For these varying areal sizes, all of the linear regressions between θSat and θModel passed the significance level
(p< 0.01, in t‐test), indicating that a statistically significant relationship exists between the two sets of values. The
nature of this mixing of different Chl levels is presented in Figure 6. Specifically, for SPMbin1, L0 is 44.8%, with
L1 as 25.9%, and L2 as 29.0% (see Figure 6a). For SPMbin2, about 68.0% is L2 with L3 as 22.6% (Figure 6b). For
NP Mbin1, 25.5% belongs to L2, with 59.7% for L3, and 14.0% for other Chl variance levels especially when the
bin sizes were larger than 20° × 20° (Figure 6c). All these results indicate different marine environments for these
bins.

For SP Mbin2, the range of θSat is ∼31.4–474.0 g C (g Chl)− 1, and the θModel is ∼29.7–486.2 g C (g Chl)− 1

(Figure 7). From linear regression analyses between θSat and θModel, the slopes increase from 0.30 to 1.05 as the

Figure 5. The study areas of bin‐size expansion in mixed Chl variation levels. These random study areas are South Pacific (SP) Mbin1 (a), SP Mbin2 (b), and North
Pacific Mbin1 (c), respectively. The background color of Chl variance levels is the same as Figure 2, and the light yellow is L4. The small red box represents the initial
bin size (5° × 5°), and the large box represents the expanded final bin size (35° × 35°) following the directions of the arrows.

Figure 6. The relative contribution of each Chl variance level to all the pixels with valid numerical values in South Pacific
(SP) Min1 (20–25°S and 145–150°W to 5–40°S and 130–165°W, a), SP Min2 (40–45°S and 145–150°W to 25–60°S and
130–165°W, b), and North Pacific Min1 (40–45°N and 145–150°W to 25–60°N and 130–165°W, c). The different colors of
the bars represent different sizes of bins.
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bin size increases from 5° × 5°–35° × 35°. The R2 value between θSat and θModel is 0.26 for the 5° × 5° bin,
increases gradually with the bin expansion, and eventually stabilizes at 0.78 when the bin size is 35° × 35°.
Similar results are also found in the SP Mbin1 (see Figure 8). We found that the R2 between θSat and θModel

increases from 0.32 to 0.75 with the bin size expanded by 5° increments. Meanwhile, the slopes between θSat and
θModel increase from 0.89 to 1.10 when the bin expanded from 5° × 5°–35° × 35°.

For the NPMbin1, as the bin size expanded, we also observed an increase in the slope (from 0.28 to 0.56) between
θSat and θModel (see Figures 8 and 9). However, although the R2 value between θSat and θModel increases from 0.60
to 0.67 when the bin expands from 5° × 5°–10° × 10°, it decreases from 0.66 to 0.44 when the bin size further
expands to 35° × 35°. These results are quite different from those observed for SPMbin1 and SPMbin2 where the
R2 value between θSat and θModel increases gradually with bin size.

This discrepancy might be attributed to the increased inclusion of pixels from L0, L1, and L4 within the bin as it
expanded from 15° × 15° to 35° × 35° for NP Mbin1 (Figure 6c). It is noticed that the agreements between θSat
and θModel in L0, L1, and L4 are not as good as other bins (Behrenfeld et al., 2016). This difference in performance
could be the reason for the initial increase and subsequent decrease in the R2, as more L1 and L4 pixels are
encountered when the bin size is further expanded. In addition, the agreements between θSat and θModel in L0, L1,
and L4 in the NP are worse than those in the SP (Behrenfeld et al., 2016). Nevertheless, the slope value between
θSat and θModel improves as bin size increases (Figure 9), indicating an overall better alignment between θSat and
θModel for larger bin sizes in NP Mbin1.

Figure 7. Relationship between θSat and θModel in South Pacific (SP) Mbin2 (40–45°S and 145–150°W to 25–60°S and 130–165°W). (a) The small red box represents the
initial bin, and the large box represents the expanded final bin of SPMbin2. The background color represents the Chl variance levels, which were the same as Figure 5b.
(b–h) The relationships between θSat and θModel with the expansion of bin size in SPMbin2. The blue line is a 1:1 line, and the red line is a linear fit. N denotes the number
of data points, calculated by first determining the θSat and θModel values for each pixel, then averaging the values for each bin. Each plot represents the 8‐day average of all
pixels within the study area.

Journal of Geophysical Research: Biogeosciences 10.1029/2025JG009003

LIAN ET AL. 9 of 15

 21698961, 2025, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025JG

009003 by X
ian Jiaotong U

niversity, W
iley O

nline L
ibrary on [09/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4. Discussion
4.1. Model Performance at Pixel Level

Our results show that only when the bin size is similar to that presented by Behrenfeld et al. (2016), θModel is found
in good agreement with θSat. The difference between θModel and θSat becomes large when the bin size is reduced.
To better understand the cause of this scale‐dependent divergence, we examined the model's performance at the
pixel level and compared it with its behavior at a large spatial scale.

Figure 10a is the map of SP L1, and Figure 10b shows a scatterplot between θSat‐pix and θModel‐pix within SP L1
with downloaded data for a period (8‐day) of 27 December to 31 December 2018, where each pixel represents a
9 km × 9 km aggregate from MODIS measurements. For this bin, where the s.d.Chl is from 0.018 to
0.026 mg m− 3. The ranges of θSat‐pix and θModel‐pix, respectively, are∼0–2,900 g C (g Chl)− 1 and∼0–3,800 g C (g
Chl)− 1, whereas their averages appear quite consistent (281.2 g C (g Chl)− 1 for θSat and 279.6 g C (g Chl)− 1 for
θModel). However, as showing in Figure 10b, there are large differences between θSat‐pix and θModel‐pix. Thus, not
surprising to observe different performances of the photoacclimation model when different areas (or bins) were
used to obtain areal averages as illustrated in Figure 10c.

Figure 8. Relationship between θSat and θModel in all three study areas (Figure 5). (a) The R2 between θSat and θModel with the
bin‐size expansion. The blue, orange, and yellow lines represent South Pacific (SP) Mbin1, SP Mbin2, and North Pacific
Mbin1, respectively. (b) The slopes between θSat and θModel with the bin‐size expansion. The color of the lines represents the
same as Panel (a).
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Two bins with a size of 4° × 4° were randomly selected from SP L1 shown in Figure 10a, which were denoted as
SP L1 test 1 (SPL1‐t1, 15°–19°S and 118°–122°W) and SP L1 test 2 (SPL1‐t2, 27°–31°S and 104°–108°W). The
two boxes are shown in Figure 10c, which encompasses θSat‐pix versus θModel‐pix corresponding to SPL1‐t1 and
SPL1‐t2. For these small and subregion boxes/bins, due to significantly different behaviors between θSat‐pix and
θModel‐pix, the θSat versus θModel, respectively, are quite far apart. Specifically, For SPL1‐t1, the θSat and θModel are
212.4 C (g Chl)− 1 and 108.4 g C (g Chl)− 1, respectively; whereas, for SPL1‐t2, the θSat and θModel are 801.1 g C (g
Chl)− 1 and 905.8 g C (g Chl)− 1, respectively. These results demonstrate that despite apparent agreement in large‐
scale averages, the differences between model estimates and satellite observations at the pixel level can be
substantial.

4.2. Improving the Performance of the Photoacclimation Model With Different Model Coefficients

The reduced agreement between satellite‐derived and model‐estimated θ at smaller spatial scales might also be
influenced by other ecological and biogeochemical variability beyond photoacclimation, such as phytoplankton
community composition, pigment variability, trophic interactions, and so on (Bianchi et al., 2002; Chung
et al., 2012; Hung &Gong, 2011; Shih et al., 2020; Xing et al., 2014). However, these processes are also present at
larger spatial scales where the model is found to perform reasonably well. This suggests that such ecological and
biogeochemical processes are not the primary cause of the reduced performance. Instead, this deterioration is
more likely attributable to limitations in the model's parameterization. In particular, the model coefficients (c1 and
c2 in Equation 2) were specifically tuned based on the 37 aggregated spatial bins (i.e., L0 to L4) of the global
ocean.

Figure 11 shows a case study in a randomly selected region in SP Mbin2 (35°–50°S, 140°–155°W, hereafter
referred to as SP Mbin2 15° × 15°, Figure 11a). We compared the model performance using the original pa-
rameters (c1 = 19 g C (g Chl)− 1, c2 = 0.038 m− 1 (Einstein m− 2 hr− 1)− 0.45, Figure 11b) with that obtained using

Figure 9. Relationship between θSat and θModel in North Pacific (NP) Mbin1 (40°–45°N and 145°–150°W to 25°–60° N and 130°–165°W). (a) The small red box
represents the initial bin, and the large box represents the expanded final bin of NPMbin1. The background color represents the Chl variance levels, which were the same
as Figure 5c. (b–h) The relationships between θSat and θModel with the expansion of bin size in NP Mbin1. The blue line is a 1:1 line, and the red line is a linear fit.
N denotes the number of data points, calculated by first determining the θSat and θModel values for each pixel, then averaging the values for each bin. Each plot represents the
8‐day average of all pixels within the study area.
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optimized parameters (c1 = 32 g C (g Chl)− 1, c2 = 0.035 m− 1 (Einstein m− 2 hr− 1)− 0.45, Figure 11c). The results
show a substantial improvement in fit (R2 = 0.62), and the fitted regression line nearly coincides with the 1:1 line
(slope ≈ 1.00), indicating a strong agreement between θSat and θModel after re‐tuning the model coefficients for this
specific area. This example suggests that the values of c1 and c2 in Equation 2 are area dependent; therefore, it is
necessary, although with considerable challenge, to incorporate such size information into the model.

Figure 10. The relationships between θSat‐Pix and θModel‐Pix in South Pacific (SP) L1 and two random bins during a randomly
chosen 8‐day period (December 27th to 31 December 2018). (a) Map of SP L1, with background color representing the Chl
variance level (as in Figure 2). Two random selected small bins, SL1‐t1 (magenta box) and SL1‐t2 (red box), were randomly
selected from SP L1. (b) The relationships between θSat‐pix and θModel‐pix in SP L1. The blue line is a 1:1 line, and the red line
is a linear fit. (c) Density plot based on data from panel (b), that is, the background color represents the density plot of SP L1
with warmer colors indicating higher pixel densities. The magenta and red boxes show the results of SL1‐t1 and SL1‐t2,
respectively. The magenta and red boxes show the linear relationships between θSat‐pix and θModel‐pix for SL1‐t1 and SL1‐t2,
respectively, with corresponding regression lines, equations, and R2 values in matching colors.
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Additionally, temporal resolution may also impact the model's applicability. The model coefficients developed by
Behrenfeld et al. (2016) were originally constructed using 8‐day data of 37 bins, which might inherently smooth
out short‐term environmental fluctuations. Key drivers such as MLD and light availability can vary substantially
on shorter timescales (Gardner et al., 1999). Therefore, it remains unknown whether substituting higher‐
frequency inputs (e.g., daily data) into this model would yield valid results and capture ecological responses
occurring at shorter timescales. Hence, future studies should also systematically assess the model's sensitivity to
temporal variability and evaluate whether recalibration is necessary to extend its application to higher temporal
resolutions.

5. Conclusion

Our results showed that the agreements between θSat and θModel were poor when the areal sizes are significantly
smaller than that used in the model development of θ. Regardless of whether the area exhibits mixed levels or

Figure 11. Relationship comparisons between θSat and θModel in South Pacific (SP) Mbin2 15° × 15° region (35°–50°S, 140°–
155°W). (a) The red box is the random selected study area in SP Mbin2 15° × 15° region. The background colors represent
the Chl variance levels, which is same as Figure 2. (b) Relationship between θSat and θModel under the original
parameterization (c1= 19 g C (g Chl)− 1, c2= 0.038 m− 1 (Einstein m− 2 hr− 1)− 0.45) from Behrenfeld et al. (2016). (c) Optimized
result using adjusted parameters (c1= 32 g C (g Chl)− 1, c2= 0.035 m− 1 (Einstein m− 2 hr− 1)− 0.45). The blue line is a 1:1 line, and
the red line is a linear fit. N denotes the number of data points, calculated by first determining the θSat and θModel values for each
pixel, then averaging the values for each bin. Each plot represents the 8‐day average of all pixels within the study area.
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uniform levels of Chl variation, this tendency or pattern persists. A possible explanation lies in that the model
coefficients c1 and c2 were originally derived from 37 large bins and therefore are not directly applicable to small
spatial scales.

Moreover, the complexity of water masses, as supported by previous field‐based observations showing that θ can
vary substantially even within relatively small spatial domains in the East China Sea (Chang et al., 2003), suggests
that applying large‐scale results to small‐scale processes may obscure fine‐scale water mass characteristics.
Meanwhile, diverse ocean province strategies might lead to varying output of θModel (Chassot et al., 2011; Dowell
& Platt, 2009; Longhurst, 1998; Vichi et al., 2011). The uncertainty of the relationship between remotely sensed
and model‐calculated θ raised from the area‐size dependence might influence the evaluation of growth rates,
biomass dynamics, and the impacts of other influential factors of phytoplankton, thereby affecting the accuracy of
other ecological and predictive models (Boyce et al., 2017; Brunet et al., 2011; Sathyendranath et al., 2009;
Signorini et al., 2015). To address these challenges and improve model performance at smaller or any spatial
scales, in situ observations of θ will be indispensable. To advance our understanding of phytoplankton dynamics
in the global ocean, there is a need for continued efforts to establish a photoacclimation model that is applicable
without size limitations.
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