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A B S T R A C T   

For atmospheric correction over turbid waters, due to non-negligible water-leaving radiance (Lw) in the near- 
infrared (NIR), measurements in the short-wave infrared (SWIR) are usually required to achieve reliable 
remote-sensing reflectance (Rrs). But several ocean color satellite sensors, such as the Sea-viewing Wide Field-of- 
view Sensor (SeaWiFS) and other small satellites, have no bands in the SWIR domain. We here present an at-
mospheric correction algorithm (termed as ACANIR-NN) based on NASA SeaDAS (version 7.5.3), which can 
achieve atmospheric correction seamlessly over clear and turbid waters, even for sensors having no spectral 
bands in SWIR. Specifically, ACANIR-NN uses estimated Rrs(NIR) from available Rrs in the visible bands with a 
specifically designed artificial Neural Networks to carry out atmospheric correction, and the performance of 
ACANIR-NN is evaluated over eight coastal locations having ground measurements by the Aerosol Robotic 
Network-Ocean Color (AERONET-OC) system. It is found that the Mean Absolute Percent Difference (MAPD) of 
Rrs retrievals by ACANIR-NN for this dataset is smaller by a factor of two or more than that by the standard SeaDAS 
algorithm (termed as ACANIR-bio) for each band, especially for Rrs(412) and Rrs(443), which is 7.5% and 7.7%, 
respectively, from ACANIR-NN, but they are 44.0% and 27.5% from ACANIR-bio. We further demonstrated the 
applicability of ACANIR-NN to SeaWiFS measurements over turbid waters, where consistent Rrs products were also 
obtained compared to that generated from the same-day MODerate resolution Imaging Spectrometer (MODIS) 
measurements using SWIR bands. These results indicate that ACANIR-NN can generate reliable Rrs over turbid 
coastal areas, as well as clear ocean waters, for sensors having no SWIR bands.   

1. Introduction 

Due to the coupling role of climate change and anthropogenic ac-
tivities on the ecological environments, it is becoming increasingly 
crucial to wisely manage and monitor coastal water environments (Min 
et al. 2020; Murray et al. 2018; Pettorelli et al. 2018; Zou et al. 2011), a 
task that requires adequate and efficient observations of these vital 
ecosystems. With broad coverage and frequent observations, satellite 
remote sensing is an indispensable system to meet this data demand 
(Mouw et al. 2015). For ocean color remote sensing, while in principle it 
is possible to derive the properties of the atmosphere and ocean 

simultaneously from satellite measurements (Chomko et al. 2003; 
Kuchinke et al. 2009; Steinmetz et al. 2011; Wang et al. 2021a), or 
directly to estimate water properties with artificial Neural Networks 
(NNs) (Fan et al. 2017; Fan et al. 2021; Schroeder et al. 2007), the 
commonly adopted strategy by the community is a two-steps scheme, 
which removes the contributions from the atmosphere before deriving 
water’s optical and biogeochemical properties with various inversion 
algorithms from the remote-sensing reflectance (Rrs) obtained from the 
first step (Hu et al. 2012; Shang et al. 2019; Werdell et al. 2013; Yu et al. 
2019). As such, the performance of the first step, termed as atmospheric 
correction (AC), is critical to obtaining reliable products related to water 
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quality (Bailey et al. 2010; Gordon and Wang 1994; Ruddick et al. 
2000). 

Remote-sensing reflectance is defined as the ratio of water-leaving 
radiance (Lw) to downwelling irradiance just above the surface 
(Ed(0+)), which is equivalent to the ratio of normalized water-leaving 
radiance (Lwn) to extraterrestrial solar irradiance (F0) (Thuillier et al. 
1998). Lw or Lwn is retrieved from the radiance (Lt) measured at the top- 
of-atmosphere (TOA) after eliminating the contributions from air mol-
ecules and aerosols. For open ocean waters, Lw in the near-infrared (NIR) 
bands can be considered negligible due to the high absorption by pure 
(sea)water in this spectral range and low concentrations of suspended 
particulate matters, which is referred to as the black pixel (BP) 
assumption (Gordon and Wang 1994). Therefore, the aerosol type and 
contributions could be estimated using Lt data in the NIR bands along 
with pre-calculated look-up tables (LUTs). However, it has difficulties in 
turbid coastal and inland waters where Lw(NIR) is no longer negligible 
due to high concentrations of suspended particulate matters (Bailey 
et al. 2010; IOCCG 2010; Wang and Shi 2007). 

To process satellite ocean color observations where Rrs(NIR) cannot 
be neglected over coastal waters, several alternative schemes have been 
developed. The commonly used AC algorithm (ACA) is to estimate 
Rrs(NIR) based on bio-optical models (BOMs) with an iterative scheme 
(termed as ACANIR-bio hereafter) (Bailey et al. 2010; Ibrahim et al. 2019; 
Stumpf et al. 2002). ACANIR-bio has been adopted by the National 
Aeronautics and Space Administration (NASA) as the default ACA to 
process measurements from many ocean color sensors, e.g., Sea-viewing 
Wide Field-of-view Sensor (SeaWiFS), MODerate resolution Imaging 
Spectrometer (MODIS), and Visible Infrared Imaging Radiometer Suite 
(VIIRS). However, many studies (Goyens et al. 2013; Jiang and Wang 
2014; Ruddick et al. 2000; Shehhi et al. 2017) have shown that such an 
approach run into difficulties in many turbid waters due to the bio- 
optical relationships are not universal. To overcome this limitation, 
taking advantage of the significantly greater absorption coefficient of 
pure seawater in the shortwave infrared (SWIR) domain, this “BP” 
assumption was extended to the SWIR bands (ACASWIR) in the recent 
decade (Pahlevan et al. 2017; Shi and Wang 2007; Vanhellemont 2020; 
Vanhellemont and Ruddick 2015; Wang 2007; Wang and Shi 2007). 
With a wide range of coastal measurements, the performance of this 
method has been validated with other commonly used ACAs for MODIS 
and SeaWiFS over turbid waters based on the Aerosol Robotic Network- 
Ocean Color (AERONET-OC) measurements (Carswell et al. 2017; 
Goyens et al. 2013; Jamet et al. 2011; Pahlevan et al. 2017). However, a 
key requirement for ACASWIR to work is that an ocean color sensor can 
provide adequate radiance measurements in the SWIR domain. For 
many satellite ocean color sensors, such as SeaWiFS, Medium Resolution 
Imaging Spectrometer (MERIS), Ocean and Land Color Instrument 
(OLCI) onboard Sentinel-3, Geostationary Ocean Color Imager (GOCI), 
Chinese Ocean Color and Temperature Scanner (COCTS), and the small 
satellites (e.g., HawkEye, HiSea-2), there are no bands in the SWIR 
domain, therefore an application of measurements in the NIR bands is 
still the only option for atmospheric correction over turbid coastal wa-
ters for such sensors for the two-steps processing strategy. 

In this study, we present a scheme to estimate Rrs(NIR) for atmo-
spheric correction (termed as ACANIR-NN), where Rrs(NIR) of clear to 
turbid waters is estimated from available Rrs in the visible bands with a 
specifically designed Neural Networks. In particular, considering the 
initial Rrs(visible) products are incorrect due to the “BP” assumption no 
longer valid in turbid coastal waters, this NN system was developed with 
error-bearing Rrs(visible) to estimate Rrs(NIR), which is termed as NN- 
EBVR (NN for Rrs(NIR) using error-bearing visible Rrs). The scheme is 
evaluated with a wide range of measurements in turbid coastal regions, 
with its performance also compared with the conventional AC algorithm 
(ACANIR-bio (Bailey et al. 2010)) and the scheme including measure-
ments in the SWIR bands (ACANIR-SWIR (Wang and Shi 2007)). 

2. Methods 

2.1. Background of ACANIR-bio 

A satellite sensor measures radiance at the top of atmosphere (TOA), 
which is commonly converted to reflectance to remove the variations 
associated with solar radiation, and is defined as, 

ρt = πLt/(cos(θs)F0 ) (1)  

with ρt the total reflectance at TOA measured by sensors, θs the solar 
zenith angle and F0 the extraterrestrial solar irradiance (Thuillier et al. 
1998)). 

For ocean color remote sensing, ρt is commonly expressed as a sum of 
the contributions from Rayleigh scattering (ρr), aerosol scattering (ρa), 
the Rayleigh-aerosol inter-scattering (ρra), sun glint (ρsg) and the remote- 
sensing reflectance of the water body, 

ρt(λ) = tg(λ)
[
ρr(λ) + ρa(λ) + ρra(λ) + ts(λ)T(λ)ρsg + ts(λ)tv(λ)πRrs(λ)

]
(2) 

Here tg is the gas transmittance, T is the direct transmittance, and ts 
and tv are the diffuse atmospheric transmittances for solar radiation 
reaching the sea surface and water-leaving radiance reaching the sensor, 
respectively. The influence of whitecaps is ignored here. 

For given sun-sensor positions and atmospheric pressure, along with 
gas information in the atmosphere, tg and ρr can be accurately calculated 
(Gordon et al. 1988; Ibrahim et al. 2018; Wang 2002, 2005), which can 
then be removed from Eq. (2). The influence of ρsg can also be masked or 
corrected based on Wang and Bailey (2001). A critical step to obtaining 
accurate Rrs is to remove ρa and ρra, which is commonly accomplished 
using measurements in the NIR bands (IOCCG 2010), by either assuming 
Rrs(NIR) as 0 (Gordon and Wang 1994) or estimating Rrs(NIR) through 
BOMs along with iterative process when the water is too turbid (Bailey 
et al. 2010; Stumpf et al. 2002). For the ACAs with iterations, it begins 
by assuming Rrs(NIR) = 0, so that an initial set of Rrs(visible) can be 
derived and a second set of Rrs(NIR) is estimated based on the concen-
tration of chlorophyll (Chl) and/or suspended particulate matter (SPM) 
through BOMs (Bailey et al. 2010; Lavender et al. 2005; Xue et al. 2021), 
with both Chl and SPM derived empirically from this Rrs(visible). The 

Fig. 1. The overall flowchart of ACANIR-bio (left side with red arrows for iter-
ation) and ACANIR-NN (right side with blue arrows for iteration). (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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iteration terminates when Rrs at the red bands changes by less than a 
threshold, usually set as 2% (Bailey et al. 2010). For most cases, the 
average number of iterations is 3–4, although 10 is the maximum 
number of iterations set by the algorithm. The overall workflow of these 
AC algorithms is shown in Fig. 1. 

Among these algorithms, either Chl or SPM is estimated empirically 
using two Rrs in the visible bands (Bailey et al. 2010; Lavender et al. 
2005; Xue et al. 2021), where there are always various levels of un-
certainties for different waters, especially for sediment-loaded coastal 
waters. In addition, the bio-optical models used in the system also 
contain uncertainties. Thus, a potentially more applicable approach for 
the estimation of Rrs(NIR) is to (1) use all available Rrs in the visible 
bands; and (2) by-pass the derivation of Chl and/or SPM as well as the 
required bio-optical models. We thus, based on SeaDAS (version 7.5.3), 
propose ACANIR-NN to process ocean color satellite measurements that 
meet the above two desires. 

2.2. ACA with Neural Networks estimated Rrs(NIR) 

2.2.1. The overall strategy of ACANIR-NN 
The overall strategy for ACANIR-NN is similar to that of ACANIR-bio, 

except that Rrs(NIR) is iteratively estimated from Rrs(visible) by an 
artificial Neural Networks instead of BOMs. In addition, there is no 
artificial switch in the data processing by ACANIR-NN, as Rrs(NIR) is 
estimated for each water pixel regardless if the water is clear or turbid. 
In such a manner, seamless Rrs products can be generated from satellite 
ocean color data, whereas artificial switch could result in abrupt steps in 
an image. Fig. 1 illustrates a schematic data flow chart of this system. 
More importantly, because Rrs(NIR) was assumed as 0 to initiate the 
calculations, which will then result in inaccurate Rrs(visible) from the 
first round of calculation, this NN-EBVR was then developed to specif-
ically use inaccurate Rrs(visible) as inputs to estimate Rrs(NIR) as out-
puts. Using the spectral bands of MODIS Aqua (MODISA) as a 
demonstration, where the two NIR bands are 748 nm and 869 nm, de-
tails of this ACANIR-NN are as below:  

(1) In the first round of the AC procedure, where the Gordon and 
Wang (1994) algorithm is applied, the initial value of Rrs(869) 
(Rrs(869)-0) is set to 0, and the initial value of Rrs(748)-0 is set in 
such a manner: 

Rrs(748)− 0 = (ρrc(748) − ρrc(869) )/π (3)   

where ρrc represents the Rayleigh-corrected reflectance, which is 
obtained by SeaDAS (version 7.5.3). In this way, we initially assumed 
only Rrs(869) as 0, but allowed an estimate for Rrs(748)-0 to facilitate 
the estimation of aerosol properties. With values of Rrs(748)-0 and 
Rrs(869)-0 known, the conventional AC procedure is carried out to 
obtain the first set of Rrs (Rrs-1st) in the visible domain, which are 412, 
443, 488, 531, 547, and 667 nm for the MODIS sensor.  
(2) Rrs-1st(443, 488, 531, 547, 667) are used as the inputs in NN- 

EBVR to obtain Rrs(748)-2nd and Rrs(869)-2nd. Rrs(412) is 
excluded in this NN-EBVR system due to that Rrs(412) is mainly 
driven by colored dissolved organic matter (CDOM), while 
Rrs(NIR) is driven by suspended sediments. In addition, Rrs(412) 
of coastal waters could be negative when processed with the 
conventional AC algorithm.  

(3) These Rrs(748)-2nd and Rrs(869)-2nd values are incorporated into 
the AC process, yielding a new set of Rrs(visible).  

(4) These Rrs(visible) subtracted the value of Rrs(869)-2nd, with the 
results used as the inputs in NN-EBVR to obtain a new set of 
Rrs(NIR), i.e., Rrs(748)-3rd and Rrs(869)-3rd. The reason to subtract 
Rrs(869) for all Rrs(visible) is because that the training of NN- 
EBVR is based on inaccurate Rrs(visible) where all Rrs(869) 
were set as 0.  

(5) Steps 3 and 4 are repeated until the retrieved Rrs(667) differ by 
less than 2% compared to the previous round. 

2.2.2. NN system for the estimation of Rrs(NIR): NN-EBVR 
Similar to all deep-learning systems, the above-mentioned NN-EBVR 

is composed of one input layer (five inaccurate Rrs(visible) at 443, 488, 
531, 547 and 667 nm), various hidden layers that are associated with 
many numbers of neurons, and one output layer (Rrs(NIR) at 748 and 
869 nm in this case). For the NN system, based on the data character-
istics, we selected the Keras library (Choi et al. 2017; Ketkar 2017; 
Moolayil et al. 2019) for the development of NN-EBVR. As a high-level 
Application Programming Interface for Tensorflow used for deep 
learning model construction, debugging, assessment and implementa-
tion, Keras is an open-source artificial Neural Networks library written 
in Python (Choi et al. 2017; Ketkar 2017). To determine the optimal 
number of hidden layers and neurons, we have explored several com-
bination settings. Based on the criteria of performance and computation 
time, the optimal configuration with hidden layers and neurons has been 
adopted to train the NN-EBVR. Eventually, this NN-EBVR system is 
determined to have 4 hidden layers with 256, 64, 32, and 16 neurons 
(see Fig. 2). 

For the training of NN-EBVR, we adopted similar settings (e.g., the 
activation function, the optimization function and the learning rate) as 
that in Wang et al., (2021b). Ultimately, while the implementation of the 
ACANIR-NN followed the data flow as in Bailey et al. (2010) that included 
in SeaDAS (version 7.5.3), this NN-EBVR module replaced the block of 
estimating Rrs(NIR) that uses Chl and bio-optical models. 

3. Data 

3.1. Data for the Neural Networks model 

For the development of all Neural Networks or deep-learning-based 
algorithms, a large and diverse dataset is the key. Here we employ a 
numerically synthetic dataset for the development of NN-EBVR, which 
was further assessed by 20% of the synthetic dataset and in situ 
measurements. 

An Rrs(λ) spectrum is governed by two spectra: the absorption (a(λ)) 
and backscattering (bb(λ)) coefficients of the water body, which are 
termed as the inherent optical properties (IOPs) (Preisendorfer 1976). 
Both a(λ) and bb(λ) vary significantly from oceanic to coastal environ-
ments. Thus, to generate a dataset having a wide range of Rrs(λ), it is key 
to have a wide range of, and reasonable, a(λ) and bb(λ). Both a(λ) and 
bb(λ) are composed of contributions from water itself and water con-
stituents, including phytoplankton pigments, CDOM and detritus- 
minerals. As most details for this synthesizing process are available in 

Fig. 2. Deep learning system for the estimation of Rrs(NIR) from incorrect 
Rrs(visible): NN-EBVR. 
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the literature (IOCCG-OCAG 2003; IOCCG 2006; Lee et al. 1999; Lee 
et al. 2016), some of the components and synthesizing steps are included 
in Supplementary Information available online for quick reference. The 
following lists key information associated with this dataset used for NN- 
EBVR training and evaluation.  

(1) The synthetic dataset consists of 300,000 sets of Rrs spectra, for 
wavelengths in the 400–900 nm domain with 1 nm interval; the 
ranges of a(440) and bb(440) are 0.0074–15.0 m− 1 and 
0.0031–5.0 m− 1, respectively; and the resulted Rrs(869) is in a 
range of 2.6 × 10− 6–0.043 sr− 1, with Rrs(550) in a range of ~3.9 
× 10− 5–0.066 sr− 1. Fig. 3a shows examples of the simulated Rrs 
spectra, with Fig. 3b showing the histogram of Rrs(869), indi-
cating a sizable portion (~25.9%) of the data is highly turbid 
waters (Rrs(869) > 0.02 sr− 1).  

(2) For the evaluation of NN-EBVR, in addition to the 20% of the 
synthetic dataset, we also used 243 sets of Rrs spectra measured in 
the Yangtze River Estuary (YRE) and JiuLong River (JLR) (see 
black rectangles in Fig. 4) from twenty-two field campaigns 
during 2004–2018 to validate the performance of NN-EBVR. For 
these Rrs spectra, each Rrs(λ, 350–1050 nm) was obtained by a 
hand-held spectroradiometer (GER-1500) following the standard 

protocol (Mueller et al. 2000) conducted from the field cam-
paigns. For the correction of surface reflectance, we adopted a 
method proposed by Lee et al. (2010), where a second-order 
correction was carried out through spectral optimization. 

The 300,000 synthetic Rrs spectra are divided randomly by the 8:2 
ratio, with 240,000 for training NN-EBVR, and 60,000 for the validation 
of NN-EBVR. For the training of NN-EBVR, to mimic the error-bearing 
Rrs of turbid waters in the initial round of ACANIR-NN (where Rrs(869) 
is assumed as 0 for all waters), the following was calculated for the 
synthetic and ground-measured Rrs, 

R′

rs(visible) = Rrs(visible) − Rrs(869) (4)  

and it is R′

rs used as the inputs to estimate both Rrs(748) and Rrs(869) in 
NN-EBVR. 

3.2. AERONET-OC and MODISA matchup for validating ACANIR-NN 

In addition to the evaluation of NN-EBVR, the ground-measured data 
from the eight AERONET-OC sites (USC_SEAPRISM, Palgrunden, Gloria, 
Helsinki_Lighthouse (Helsinki), WaveCIS_Site_CSI (WaveCIS), LISCO, 
Zeebrugge-MOW1 (MOW1) and Ieodo; see Fig. 4 for locations) during 

Fig. 3. (a) Examples of synthesized Rrs spectra, (b) Statistical distributions of all synthetic Rrs(869).  

Fig. 4. (a) Locations of the AERONET-OC sites (red squares) used in this study. The black squares ((b) for the East China Sea and (c) for the Xiamen Bay area) show 
the coastal areas where the field measurements were obtained in the period of 2004–2018. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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2016–2017 were employed to validate the performance of ACANIR-NN. 
The quality-controlled Level 2.0 normalized Lw were downloaded from 
the AERONET-OC website (http://aeronet.gsfc.nasa.gov/), which are 
converted to Rrs through the following formula: 

Rrs(λ) =
Lwn(λ)
F0(λ)

(5) 

To determine the matchups between AERONET-OC and MODISA, we 
adopted the following criteria following Bailey and Werdell (2006): (1) 
the maximum time difference between the MODISA and AERONET-OC 
measurements is within ±1.5 h. If there are two or more AERONET- 
OC measurements that meet this time difference, we linearly interpo-
lated these AERONET-OC data to the overpass time of the satellite; (2) If 
the following two criteria are satisfied, i.e., there are more than 50% of 
valid pixels for satellite-retrieved Rrs within a 3 × 3 box centered on the 
location of each AERONET-OC site and the coefficient of variation (CV) 
at each wavelength is less than 0.15, the averaged value of these valid 
pixels were used to compare with in situ Rrs. After applying the above 
criteria, a total of 138 matchups between the eight AERONET-OC sites 
and MODISA images during 2016–2017 were assembled. 

To ensure the consistency of evaluation, the AERONET-OC Rrs bands 
must be adjusted to the MODISA bands in order to eliminate the impact 
due to the difference in center wavelengths between AERONET-OC (555 
or 560 nm) and MODISA (531 and 547 nm). Similarly to the method in 
Wang et al. (2021a), we used linear relationships for four-band pairs of 
Rrs (555 nm vs 531 or 547 nm; 560 nm vs 531 or 547 nm; see Fig. 5) 
based on the same in situ dataset to establish conversion relationships 
between these Rrs. Subsequently, the measurements from AERONET-OC 
were converted to equivalent MODISA Rrs for the evaluation of ACANIR- 

NN. 

3.3. Satellite data 

In this study, we apply ACANIR-NN to process MODIS Aqua images 
over coastal areas to demonstrate its effectiveness. MODIS Aqua Level- 
1A images corresponding to the ground measurements were obtained 
from NASA’s OceanColor Web (https://oceancolor.gsfc.nasa.gov/), 
which is supported by the Ocean Biology Processing Group (OBPG) at 
NASA’s Goddard Space Flight Center. In addition to using ACANIR-NN, 
these MODISA images were also processed to Level-2 products using the 
ACANIR-bio and ACANIR-SWIR that are embedded in the SeaDAS (version 
7.5.3) software package. After these processes, we eliminated the low- 
quality Rrs(λ) retrievals from all three ACAs where the l2_flag HILT 
(very high or saturated observed radiance), LAND (land pixel), ATM-
FAIL (atmospheric correction failure), HIGLINT (strong sun glint 
contamination) and CLDICE (probable cloud or ice contamination) 
occurred. The quality-controlled Rrs at bands 412, 443, 488, 531, 547 
and 667 nm from the three ACAs were then compared with each other 
and ground measurements to assess the performances of these AC al-
gorithms. Further, to demonstrate the performance of ACANIR-NN over 
coastal waters for sensors without SWIR bands, we selected one SeaWiFS 
image as an example, with data also downloaded from NASA’s Ocean-
Color Web. The Rrs retrievals at 412, 443, 490, 555 and 670 nm from 
ACANIR-NN were compared with that from the ACANIR-bio. Note that since 
there are no SWIR bands for SeaWiFS, we used the Rrs retrievals from the 
same-day MODISA data (the difference in overpass time between the 
same-day SeaWiFS and MODISA collections is less than 0.5 h) retrieved 
by ACANIR-SWIR as the reference. 

3.4. Statistical metrics for ACANIR-NN and NN-EBVR 

For the statistical evaluations, the performance of each AC approach 
was evaluated using five statistics parameters, including the coefficient 
of determination (R2) in linear regression analysis, Root Mean Square 

Fig. 5. Scatterplots between Rrs(555) and Rrs(531) (or Rrs(547)) (upper panel), between Rrs(560) and Rrs(531) (or Rrs(547)) (lower panel), from in situ hyperspectral 
Rrs data in Lee et al. (2016). M refers to all hyperspectral Rrs dataset in Lee et al. (2016). 
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Difference (RMSD), Mean Absolute Percentage Difference (MAPD), Co-
efficient of Variation and bias (δ). They are defined as follows (N is the 
number of data points): 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Qest,i − Qmea,i

)2

N

√
√
√
√
√

(6a)  

MAPD =
1
N

∑N

i=1

⃒
⃒Qmea,i − Qest,i

⃒
⃒

Qmea,i
× 100\% (6b)  

CV =
RMSD

Mean(Qmea)
× 100% (6c)  

δ =
1
N

∑N

i=1

(
Qest,i − Qmea,i

)
(6d)  

where Qest,i and Qmea,i are derived and known (in situ) values of Rrs, 
respectively. 

Meanwhile, we also adopted similar metrics to validate the accuracy 
of estimated Rrs(NIR) from NN-EBVR, where the Qest,i and Qmea,i are 
estimated and synthesized (or in situ) values of Rrs at the two NIR bands, 
respectively. 

4. Results and discussion 

4.1. Validation of NN-EBVR 

The accuracy of estimated Rrs(NIR) from error-bearing Rrs(visible) by 
NN-EBVR is first evaluated using the 20% synthetic dataset, with results 
for MODISA spectral settings shown in Fig. 6a–6b as examples. It should 
be noted that although the inputs to NN-EBVR is the error-bearing 
Rrs(visible) (R’ rs), it is the true Rrs(NIR) used to compare with the 
estimated Rrs(NIR) from NN-EBVR. Generally, for these validation 

Fig. 6. Scatterplots between NN-EBVR estimated Rrs(NIR) and synthesized Rrs(NIR) for the 20% synthetic dataset. The color in the scatterplot represents the count of 
data points. 

Fig. 7. Scatterplots compare the estimated Rrs(NIR) from NN-EBVR ((a) and (b)) and the estimated Rrs(NIR) from the bio-optical models adopted in ACANIR-bio ((c) 
and (d)) with the true in situ measurements. The black dash line represents the 1:1 line, the red solid line represents the linear regression corresponding to all 
evaluated datasets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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datasets, the values of R2 for these two NIR bands (748 nm and 869 nm) 
are both close to ~0.97, with values of MAPD both less than 20% and 
bias close to 0 (Fig. 6). We also compared the performance of NN-EBVR 
using data from ship-based in situ measurements (243 sets of data from 
twenty-two field campaigns during 2004–2018), with scatterplots and 
statistics shown in Fig. 7a-7b. Compared to using the 20% of the syn-
thetic dataset, MAPD of estimated Rrs(748) and Rrs(869) from NN-EBVR 
with in situ measurements changed to 68.6% and 94.7%, respectively. It 
appears that most of the differences happened to waters with in situ 
Rrs(748) and Rrs(869) larger than 0.004 sr− 1 and 0.002 sr− 1, respec-
tively, suggesting that there are still rooms for NN-EBVR to improve the 

estimation of Rrs(748) and Rrs(869) in highly turbid waters. On the other 
hand, this larger difference could be the result of incomplete correction 
of the residual sun or sky glint in the field measurements of Rrs, which is 
difficult to accurately remove for coastal turbid waters with the above- 
water approach (Kutser et al. 2013; Lee et al. 2010). 

On the other hand, assuming a water body with true Rrs(869) as 
0.008 sr− 1 (about the maximum value within the 243 sets of ship-based 
in situ measurements), for a common aerosol optical depth at 869 nm of 
0.14, the solar zenith angle of 30◦, sensor view zenith angle as 30◦, and 
the standard atmospheric properties, the relative contribution of 
Rrs(869) to ρt(869) is about 52%. For such situations, it is found that 

Fig. 8. Scatterplot comparison between MODISA-retrieved Rrs and in situ Rrs at bands 412, 443, 488, 531, 547 and 667 nm. The black dash line represents the 1:1 
line, the colored solid lines represent the linear regression of the different AC algorithms (red line for ACANIR-SWIR, green line for ACANIR-bio and blue line for ACANIR- 

NN). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Statistics of the accuracy measures for ACANIR-NN and two other atmospheric correction algorithms for six MODISA bands, as gauged using in situ Rrs measurements.   

Band N Slope R2 RMSD (×10− 4) (sr− 1) MAPD (%) Bias (×10− 4) (sr− 1) CV (%) 

ACANIR-NN 412 138  0.95  0.98 3.8 7.5  − 0.70  11.1 
443 138  1.00  0.99 3.2 7.7  0.17  7.8 
488 138  0.99  0.99 2.7 4.4  − 0.39  4.6 
531 138  1.03  0.99 4.5 4.3  − 0.86  6.4 
547 138  1.01  0.99 3.8 4.1  − 0.06  5.2 
667 138  1.01  0.99 3.2 12.4  − 0.08  11.4  

ACANIR-bio 412 138  1.00  0.86 13 43.8  − 3.15  38.0 
443 138  1.07  0.94 11 27.5  1.19  27.7 
488 138  1.05  0.97 11 12.7  0.76  18.4 
531 138  1.08  0.98 12 9.  2.78  16.9 
547 138  1.04  0.98 9.8 8.6  1.36  13.5 
667 138  1.06  0.98 6.4 19.0  0.69  22.9  

ACANIR-SWIR 412 138  1.00  0.86 13 44.0  − 2.92  37.3 
443 138  1.06  0.94 10 27.3  1.23  25.5 
488 138  1.04  0.98 8.6 12.4  0.68  14.7 
531 138  1.08  0.99 9.5 9.80  2.63  13.7 
547 138  1.03  0.99 8.0 8.5  1.21  11.0 
667 138  1.02  0.99 4.8 18.8  0.38  17.0  
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Fig. 9. Spatial distributions of Rrs (412, 443, 488, 531, 547 and 667 nm) from the ACANIR-NN (left), ACANIR-SWIR (middle) and ACANIR-bio (right) over the East China 
Sea for MODISA image on April 7th, 2013. Grey color for land, white color for pixels flagged out by SeaDAS. The red dots are the locations of a few randomly selected 
pixels (termed as stations A1-A4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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uncertainty of 50% at Rrs(869) causes uncertainty for all Rrs(visible) 
being less than 10%, which, as evidenced later, may not significantly 
impact the AC processes. 

We also compared the estimated Rrs(NIR) using the bio-optical 
models adopted in the conventional ACANIR-bio scheme with results 
shown in Fig. 7c-7d. Note that the inputs for the bio-optical model are 
also the error-bearing Rrs(visible) as that in the NN-EBVR scheme. It is 
found that the estimated Rrs(NIR) from this bio-optical model are in 
general significantly lower than in situ measurements, where for this 
dataset the MAPDs and CVs for both wavelengths are 71.0% and 79.8% 
at 748 nm, and 198.7% and 93.9% at 869 nm, respectively (see Fig. 7c- 
7d). However, for this dataset, it appears that BOM showed good per-
formance for Rrs(748) < ~0.003 sr− 1 or Rrs(869) < ~0.0015 sr− 1. 

4.2. Performance of ACANIR-NN in processing satellite ocean color 
measurements 

4.2.1. Evaluation using AERONET-OC measurements 
For the MODISA measurements described in Section 3, the perfor-

mance of ACANIR-NN was assessed using data from eight AERONET-OC 
sites (a total of 138 matchups from 2016 to 2017) covering various 
coastal waters dominated by Chl or sediments (Zibordi et al. 2009) or 
dominated strongly by CDOM (AERONET-OC site “Helsinki”) (Zibordi 
et al. 2021). Fig. 8 shows MODISA-retrieved Rrs compared with in situ Rrs 
at bands 412, 443, 488, 531, 547 and 667 nm. For the 138 matchups, the 
satellite-retrieved Rrs from ACANIR-NN (termed as Rrs,NIR-NN) at each 
visible band matched very well with in situ measurements (Rrs,insitu), with 
R2 about ~0.98 and RMSD varying from 2.7 × 10− 4 sr− 1 to 4.5 × 10− 4 

sr− 1 and MAPD varying from 4.1% to 12.4% (see Table 1). Specifically, 
due to the maximum Rrs for most matchup in situ measurements being 
generally around 550 nm, the retrieved Rrs,NIR-NN has the best accuracy 
at 488, 531 and 547 nm, with MAPD of 4.4%, 4.3% and 4.1%, respec-
tively. For accuracy of Rrs,NIR-NN retrievals at 412 and 443 nm, compared 
with in situ Rrs measurements, the ACANIR-NN slightly overestimated 
(7.7%) Rrs(443) (see Fig. 8b), while slightly underestimated (7.5%, see 
Fig. 8a) Rrs(412), where such kind of differences suggest highly consis-
tent determination of Rrs between MODISA and AERONET-OC 
measurements. 

We also assessed the performance of ACANIR-bio (its results are 

termed as Rrs,NIR-bio) and ACANIR-SWIR (its results are termed as Rrs,NIR- 

SWIR) for the same matchup dataset, with results also included in Fig. 8 
and statistical measures presented in Table 1. For ACANIR-bio, the lowest 
R2 value is 0.86 while the highest MAPD is 43.8% (both occurred at 412 
nm). Meanwhile, ACANIR-SWIR also exhibits the worst performance at 
412 nm with R2 as 0.86 and MAPD as 44.0%. Note that ACANIR-SWIR is a 
combination of ACANIR-bio and ACASWIR, where ACASWIR is used for data 
processing only when the Turbid Water Index (Tind) meets the threshold 
(usually 1.3) (Wang and Shi 2007), otherwise, it is ACANIR-bio employed. 
For this dataset, with ACANIR-SWIR, only 19 matchups used ACASWIR 
while the other 119 matchups still used ACANIR-bio, therefore the sta-
tistics measurements for ACANIR-bio and ACANIR-SWIR are similar. 

For such coastal waters, not surprisingly, the retrieved Rrs,NIR-bio and 
Rrs,NIR-SWIR show better agreement with the in situ measurements for 
wavelengths longer than 443 nm, with MAPDs being less than 28%. In 
general, for these AERONET-OC sites, it appears that ACANIR-bio and 
ACANIR-SWIR exhibit lower accuracy than ACANIR-NN, where the MAPD 
values of Rrs retrievals by ACANIR-bio and ACANIR-SWIR are larger by a 
factor of two or three than that by ACANIR-NN for each band, e.g., 44.0% 
vs 7.5% at 412 nm, or 8.6% vs 4.1% at 547 nm (Table 1). For the band at 
412 nm, although these three AC algorithms generally underestimate 
Rrs(412) retrievals, the bias of Rrs,NIR-bio(412) and Rrs,NIR-SWIR(412) is 
larger than that of Rrs,NIR-NN(412), which are − 3.15 × 10− 4 sr− 1 and 
− 2.92 × 10− 4 sr− 1, respectively (Table 1), even sometimes negative 
retrievals occurring for Rrs,NIR-bio(412) and Rrs,NIR-SWIR(412), a result not 
shown from ACANIR-NN. On the other hand, it is necessary to keep in 
mind that these AERONET-OC sites do not cover extremely turbid wa-
ters, how ACANIR-NN behaves in such environments remains to be seen. 

4.2.2. Evaluation using MODISA data over turbid waters 
Since the locations of the above AERONET-OC sites do not cover 

highly turbid waters, we selected Yangtze River Estuary and adjacent 
coastal waters in the East China Sea, a well-known environment of 
extremely turbid waters (Wang et al. 2007), to further evaluate the 
performance of ACANIR-NN. In this process, we used Rrs results from 
ACANIR-SWIR as the reference due to no concurrent field measurements. 
For the MODISA image obtained on April 7, 2013, Figs. 9 and 10 shows 
the spatial distribution of Rrs at 412, 443, 488, 531, 547, 667, 745 and 
869 nm generated by ACANIR-NN (left column), which also included Rrs 

Fig. 10. Same as Fig. 9, but for Rrs at 748 and 869 nm.  
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generated by ACANIR-SWIR (middle column) and ACANIR-bio (right col-
umn) for comparison. Fig. 11 shows scatterplots of Rrs between ACANIR- 

NN and ACANIR-SWIR, with detailed statistics presented in Table 2. 
Overall, although there are some differences in Rrs values at each band 
between ACANIR-NN and ACANIR-SWIR, the retrieved Rrs from the two 
schemes are highly consistent in the visible (MAPD values generally 
<9.8%) (see Table 2). Again, due to the maximum Rrs generally 
appearing in the green–red domain for these turbid waters, the best 
agreement between Rrs,NIR-NN and Rrs,NIR-SWIR is found at the green and 

red bands (Fig. 11d–11f), with MAPDs of 4.2%, 4.0% and 6.6% and 
RMSDs of 0.0014 sr− 1, 0.0014 sr− 1 and 0.0010 sr− 1, respectively. 

In addition to the overall consistency of satellite-retrieved Rrs be-
tween ACANIR-NN and ACANIR-SWIR, the spatial coverage of valid data is 
also an important metric. It is found that, Rrs retrievals at each band 
derived from ACANIR-NN are absent in a portion of Subei Shoal (SBS), the 
mouth of Yangtze River Estuar, HangZhou Bay (HZB) and Taihu Lake. 
These absence of Rrs from ACANIR-NN are results of saturated signals 
(resulted in invalid data) at the two MODISA NIR bands caused by highly 

Fig. 11. Scatterplot comparisons of Rrs at 412, 443, 488, 531, 547, 667, 748 and 869 nm between retrievals from ACANIR-SWIR (x-axis) and ACANIR-NN (y-axis), for the 
MODISA image on April 7th, 2013 over the East China Sea. The color in the scatterplots represents the density of the points. 
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turbid waters, consequently no Rrs at other visible bands could be 
retrieved by ACANIR-NN. In contrast, because ACANIR-SWIR used data in 
the SWIR bands to carry out atmosphere correction and there are valid 
data at the SWIR bands over these coastal areas, there are valid Rrs,NIR- 

SWIR retrievals in the visible bands for these areas (except 547 nm band), 
although no valid data either at the two NIR bands. For Rrs(547) (see 
Fig. 9m-9n), both ACANIR-NN and ACANIR-SWIR have no valid data over 
most portion of HZB, due to that the values of Rrs from these two ACAs 
reached the maximum threshold (~0.12 sr− 1) set in SeaDAS (version 
7.5.3). 

The above comparisons are further highlighted using Rrs spectra at 
four sites (see red dots Fig. 9a) covering various turbidities, with A1 in 
HZB for extremely turbid water, while A4 in the East China Sea for 
moderate turbid water. The averaged Rrs spectra within a 3 × 3 window 
centered at the four locations are shown in Fig. 12. Generally, except A1, 
the Rrs spectra retrieved by ACANIR-NN and ACANIR-SWIR match each other 
very well. For location A1 (see Fig. 12a), as described above, there are no 
valid Rrs at 547 nm due to that it reached the maximum threshold of Rrs 

retrievals. On the other hand, the spectral shapes of Rrs,NIR-NN and Rrs,NIR- 

SWIR are quite similar, although the former is higher in values. Based on 
report in the literature (Chen et al. 2014; Pan et al. 2017), the value of 
Rrs,NIR-NN(869) for A1 is more reasonable. 

Further, as presented in many studies (Jiang and Wang 2014; Rud-
dick et al. 2000; Shehhi et al. 2017; Xue et al. 2021), it is found that 
ACANIR-bio failed to produce Rrs for many turbid areas (see Figs. 9 and 10, 
right column). For some less turbid waters (the right portion of the 
image), although there are Rrs data products from ACANIR-bio, it is found 
that the values of Rrs,NIR-bio are significantly lower than that of Rrs,NIR- 

SWIR or Rrs,NIR-NN, even negative for some areas (see Fig. 9c, 9l and 9o). 
The above comparisons highlight a significant improvement of ACANIR- 

NN over ACANIR-bio for these turbid waters, although both used the same 
measurements as inputs for data processing. 

In addition to comparing the magnitude and spatial distribution of 
Rrs retrievals from all three algorithms, we also counted the total number 
of iterations of ACANIR-NN and ACANIR-bio for processing an image with 
500 × 400 pixels. It is found that on average ACANIR-NN took 2–3 iter-
ations for each pixel, while ACANIR-bio took 3–4 iterations, so the total 
number of iterations (391,302) of ACANIR-NN is a factor of two fewer 
than that (721,527) of ACANIR-bio, suggesting ACANIR-NN is also more 
efficient in data processing. 

4.3. Application to SeaWiFS images 

To further demonstrate the performance of ACANIR-NN to satellite 
sensors without SWIR bands, as an example, we used a SeaWiFS image 
over the mouth of the Amazon River and adjacent waters on June 25, 
2003, which was processed by both ACANIR-NN (the NN-EBVR was 
revised to match wavelength band settings of SeaWiFS) and ACANIR-bio. 
Since the difference in overpass time between the same-day SeaWiFS 
and MODISA collections is less than 0.5 h, we used the Rrs products from 
the same-day MODISA image retrieved by ACANIR-SWIR as the reference 
(included in Fig. 13). The left (by ACANIR-NN) and middle (by ACANIR-bio) 
panels of Fig. 13 show the spatial distribution of Rrs at 412, 443, 490, 
555 and 670 nm over the mouth of the Amazon River from the SeaWiFS 
measurements, while the right panel shows the spatial distribution of Rrs 
at similar wavelengths retrieved by ACANIR-SWIR of the same area from 
the concurrent MODISA measurements. Meanwhile, Fig. 14 shows 

Table 2 
Same as Table 1, but for comparison between Rrs retrieved by ACANIR-SWIR (x- 
axis) and ACANIR-NN or ACANIR-bio (y-axis) for MODISA image on April 7th, 2013 
over the East China Sea.   

Band Slope R2 RMSD (sr− 1) MAPD (%) CV (%) 

ACANIR-NN 412  0.93  0.55  0.0022  9.8  13.6 
443  0.99  0.58  0.0020  7.7  11.0 
488  0.97  0.72  0.0017  5.4  8.1 
531  0.97  0.91  0.0014  4.2  5.8 
547  0.98  0.95  0.0014  4.0  5.1 
667  0.98  0.98  0.0010  6.6  5.4 
748  0.90  0.94  9.6 × 10− 4  22.6  25.4 
869  0.87  0.91  6.5 × 10− 4  19.3  26.6  

ACANIR-bio 412  0.82  0.51  0.0045  31.6  33.2 
443  0.76  0.35  0.0043  23.6  24.5 
488  0.74  0.40  0.0034  14.1  14.3 
531  1.05  0.73  0.0022  13.1  12.8 
547  0.95  0.82  0.0021  12.6  12.2 
667  1.03  0.96  0.0013  13.7  14.6 
748  − 0.12  0.95  0.0509  904.3  953.8 
869  − 0.05  0.93  0.0481  70.7  77.3  

Fig. 12. Comparison of Rrs spectra from ACANIR-NN and ACANIR-SWIR for the four selected locations in Fig. 9a.  
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scatterplots between Rrs from the SeaWiFS image by ACANIR-NN and Rrs 
from the MODISA image by ACANIR-SWIR. 

It is found that for these turbid waters, Rrs,NIR-NN are very consistent 
with Rrs,NIR-SWIR, especially for the green–red bands, which have R2 

values as high as ~0.93, a slope close to 1.0, and a near-zero bias, 
although they were obtained from two sensors with different AC 
schemes. Larger difference happened at the 412 nm band, where Rrs,NIR- 

NN from SeaWiFS are much higher than Rrs,NIR-SWIR from MODISA (see 
Fig. 13a), with the MAPD value as high as 246.3%. This larger difference 
is in part due to that, for many coastal pixels Rrs,NIR-SWIR from MODISA 
are negative (truncated in the scatterplots) or close to 0, but there are no 
negative Rrs,NIR-NN from SeaWiFS. It requires analysis of a large number 
of concurrent SeaWiFS and MODISA images in order to have a complete 
understanding of these differences, which is underway but out of the 
scope of this effort. 

For the retrievals by the standard ACANIR-bio, the spatial patterns in 
general are similar to that of ACANIR-NN and ACANIR-SWIR for offshore 
waters (see Fig. 13, middle panel, R2 value as high as ~0.61). However, 
over the mouth of Amazon River, the values of Rrs,NIR-bio are lower than 
both Rrs,NIR-NN and Rrs,NIR-SWIR. Especially for the blue bands, the 
retrieved Rrs,NIR-bio is negative for a larger portion of the image (see 
Fig. 13B1–13B3), which echoes findings in previous studies that ACANIR- 

bio has difficulties in processing highly turbid waters (Jiang and Wang 
2014; Ruddick et al. 2000; Shehhi et al. 2017; Xue et al. 2021). 

5. Conclusions 

In ocean color remote sensing, it is still a challenge for atmospheric 
correction in turbid coastal areas where water-leaving radiance in the 
NIR (sometimes even SWIR) bands are no longer negligible due to high 

Fig. 13. Spatial distributions of Rrs retrieved by ACANIR-NN (left panel), ACANIR-bio (middle panel), and ACANIR-SWIR (right panel) over the mouth of Amazon River and 
adjacent waters on June 25, 2003. The left and middle panels correspond to the SeaWiFS image, while the right panel corresponds to the concurrent MODISA image. 
Grey color for land, white color for pixels flagged out by SeaDAS (version 7.5.3). 
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concentrations of suspended particulate matters. In this paper, based on 
SeaDAS (version 7.5.3), we present a scheme, ACANIR-NN, to estimate 
Rrs(NIR) for atmospheric correction, where Rrs(NIR) is estimated from 
available Rrs in the visible bands with specifically designed Neural 
Networks (NN-EBVR). The performance of ACANIR-NN was evaluated 
using MODISA measurements over eight different AERONET-OC sites. It 
is found that the MAPD of Rrs obtained from ACANIR-NN at each visible 
band is less than 12.4%, but the MAPD values of Rrs in the visible band 
obtained by ACANIR-bio could be a factor of two higher than that from 
ACANIR-NN. We further demonstrated the applicability of ACANIR-NN over 
turbid waters for MODISA (East China Sea) and SeaWiFS images (the 
mouth of Amazon River). The spatial patterns and values of Rrs retrievals 
by ACANIR-NN show similar characteristics to that of ACANIR-SWIR, even 
over highly turbid areas. These results demonstrated that ACANIR-NN 
(based on SeaDAS (version 7.5.3)) is a viable option to generate prom-
ising Rrs in turbid coastal waters for sensors having no SWIR bands. 
Further, because ACANIR-NN can also estimate Rrs(NIR) of clear waters, 
there is no need to have an artificial switch between clear and turbid 
waters in the data processing, therefore seamless Rrs data products can 
be generated when a satellite ocean color image covers both clear and 
turbid waters. 
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