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A B S T R A C T   

The spectral power coefficient (η) of the particulate backscattering coefficient (bbp(λ)) is directly estimated from 
the remote sensing reflectance (Rrs(λ)) with a neural network-based scheme (NNη) in this study. Evaluations with 
both synthetic dataset and in-situ measurements show that NNη could significantly improve the accuracy of 
estimated η compared to several conventional schemes reported in the literature that are based on chlorophyll-a 
concentration (Chl), band ratios of Rrs(λ), or remotely sensed bbp(λ). Demonstrations with measurements from 
MODerate resolution Imaging Spectroradiometer (MODIS) Aqua further confirm the robustness of NNη, where 
reasonable spatial distribution and seasonality of η in the global oceans can be acquired by NNη. High and low η 
values are observed in the oligotrophic gyres and the coastal zones, respectively, which are consistent with the 
current understanding of η distribution concluded from theoretic analysis and repeated field measurements in the 
global ocean. Implementation of NNη to 19-year MODIS monthly composite measurements from 2003 to 2021 
reveals strong seasonal variations of η in most of the global ocean, but the decadal changes of η are insignificant 
in the majority (~82.2%) of the global ocean. Similar to any empirical algorithms, the performance of NNη is 
dependent on the training dataset, particularly its range, here a proper upper limit of η for natural waters is 
provided.   

1. Introduction 

1.1. Importance of η 

The spectral backscattering coefficient of marine particles (bbp(λ), in 
m− 1) is of paramount importance to applications of optical remote 
sensing in oceanography as the remote sensing reflectance (Rrs(λ), in 
sr− 1) of the ocean (ocean color) is proportional to bbp(λ) (Morel and 
Prieur, 1977; Gordon et al., 1988). Also, as a proxy of the suspended 
matter in the ocean, bbp(λ) allows for the synoptic estimation of sus
pended particle mass (Boss et al., 2009), particulate organic matter 
(POC) concentration (Stramski et al., 1999; Stramski et al., 2008), and 
primary production (PP) in global oceans (Behrenfeld et al., 2005; 
Westberry et al., 2008), which greatly promotes the understanding of 
the role of ocean biota in the carbon cycle and climate processes 
(Stramski et al., 2004). Theoretical simulations and field measurements 
indicate that bbp(λ), in general, decreases toward longer wavelengths (λ, 
in nm) and can be described as a power-law function of λ (Gordon and 
Morel, 1983; Gordon et al., 1988) 

bbp(λ) = bbp(λ0)(λ/λ0)
− η (1)  

where λ0 is a reference wavelength and η (dimensionless) is the power 
coefficient of spectral bbp(λ), with bbp(λ0) determining the magnitude of 
bbp, while η determines the spectral shape. Thus, an accurate estimation 
of η is critical for the determination of bbp(λ). Also, because Rrs(λ) is a 
function of the total absorption (a(λ), in m− 1) and backscattering co
efficients (bb(λ), in m− 1), which is calculated as the sum of bbp(λ) and the 
backscattering coefficients of pure seawater (bbw(λ), in m− 1), known 
bbp(λ) enables an algebraic calculation of a(λ) from Rrs(λ) (Lee et al., 
2002; Lee et al., 2004). Therefore, η is also one of the uncertainty sources 
in remotely sensed a(λ) (Lee et al., 2010). In addition, the selection of η 
value could be of particular importance for optical-biogeochemical 
modeling (Fujii et al., 2007; Terzić et al., 2021), as well as for the 
closure studies between apparent optical properties (AOPs) and inherent 
optical properties (IOPs) (Tzortziou et al., 2006; Chang et al., 2007; 
Gallegos et al., 2008; Chang and Whitmire, 2009). 

Apart from modeling the spectrum of bbp(λ) from remote sensing, the 
value of η itself is very sensitive to the composition and size of marine 
particles, particularly the relative contribution of small-sized particles to 
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total particle concentrations, with small η values indicating the domi
nance of large-sized particles (Reynolds et al., 2001). Thus, η has been 
widely used to estimate the particle composition (Reynolds et al., 2016), 
the Junge slope of the particle size distribution (Kostadinov et al., 2009; 
Reynolds et al., 2010; Brewin et al., 2011; Kostadinov et al., 2012), and 
the phytoplankton function types (PFTs) (Kostadinov et al., 2010; Fuji
wara et al., 2011). Thus, accurate estimation of η is also strongly desired 
for the characterization of particle-related properties in global oceans. 

Acquiring η via in-situ measurements with oceanographic cruises 
could be quite limited in describing the temporal and large-scale spatial 
variability of η in the world’s oceans, while remote sensing of η provides 
a more effective measure. Conventionally, η was estimated empirically 
from ocean color measurements, such as the chlorophyll-a concentration 
(Ciotti et al., 1999; Morel and Maritorena, 2001), bbp(λ) at a reference 
wavelength (Reynolds et al., 2001), and the band ratio of Rrs(λ) (Carder 
et al., 1999; Lee et al., 2002). Alternatively, η can be calculated by fitting 
remotely sensed bbp(λ) spectrum to the power-law function of Eq. (1) 
over specific ranges of wavelengths (Loisel et al., 2006; Jorge et al., 
2021), or obtained from the inversion of IOPs using spectral optimiza
tion when η is set as a free variable (Yu et al., 2016). However, η derived 
from the above-mentioned schemes could vary largely from each other 
in either the spatial distribution or the ranges of estimated η in global 
oceans (Jorge et al., 2021), it begs a further and more comprehensive 
investigation of the retrieval schemes of η, so that more consistent and 
reasonable η products can be used for subsequent applications. Our aim 
of this study is to propose a new scheme to directly estimate η from Rrs(λ) 
based on a neural network and to evaluate its performance with both in- 
situ measurements and satellite observations from MODerate resolution 
Imaging Spectroradiometer (MODIS) Aqua. Detailed descriptions of 
these schemes are given below. 

1.2. Candidate schemes to estimate η 

1.2.1. Empirical scheme based on the band ratio of Rrs(λ) 
The value of η could not be solved analytically from an Rrs(λ) spec

trum, rather it is commonly estimated empirically, via one step or multi- 
steps, from Rrs(λ). In the quasi-analytical algorithm (QAA) for the 
inversion of IOPs (Lee et al., 2002; Lee et al., 2007), η is estimated 
directly from the blue-green band ratio of Rrs(λ). For the band configu
ration of MODIS, η is estimated as 

η = 2.0
(

1 − 1.2exp
(

− 0.9
rrs(443)
rrs(547)

))

(2)  

where rrs(λ) is the remote sensing reflectance just beneath the water 
surface and can be converted from Rrs(λ) (Lee et al., 2002). The scheme 
based on Eq. (2) is hereafter referred to as QAA, and the range of esti
mated η by Eq. (2) is from − 0.5 to 2.0. 

1.2.2. Empirical scheme based on chlorophyll-a concentration 
For approaches taking multiple steps, one is to estimate η empirically 

from the remotely sensed chlorophyll-a concentration (Chl, in mg m− 3), 
with Chl obtained empirically from Rrs(λ) in the first place using 
retrieval algorithms. Here, Chl is estimated by the Ocean Color Index 
(OCI) algorithm (O’Reilly et al., 1998; Hu et al., 2012), while the 
empirical formula of Morel and Maritorena (2001) is employed to esti
mate η from Chl, 

η = 0.5(0.3 − log10(Chl) ), 0.02 < Chl < 2.0 mg m− 3 (3)  

η = 0,Chl > 2.0 mg m− 3 

The scheme based on Eq. (3) is hereafter referred to as MM01, where 
the estimated η could range between 0 and 1.0. Note that for waters with 
estimated Chl <0.02 mg m− 3, predicted η via MM01 is set to 1.0 in this 
study. 

1.2.3. The two-step scheme (LS2) 
In a more complex scheme, η can be computed from bbp(λ) obtained 

from inverse algorithms that do not require any assumptions about the 
spectral shape of bbp(λ), while relying on empirically estimated diffuse 
attenuation coefficient (Kd(λ), in m− 1) (Loisel and Stramski, 2000; Loisel 
et al., 2018). Specifically, this scheme takes the following steps to esti
mate η: 

Step 1: Kd(λ) at the bands of Rrs(λ) are first estimated empirically 
from Rrs(λ) using either an empirical algorithm (Loisel and Stramski, 
2000; Loisel et al., 2001), or based on a neural network (Jamet et al., 
2012; Loisel et al., 2018), with these two algorithms termed LS1 and 
LS2, respectively; 

Step 2: bb(λ) are calculated semi-anlytically from Rrs(λ) and Kd(λ) 
with a look-up-table for empirical coefficients, where bbp(λ) can be 
subsequently obtained as the difference between bb(λ) and bbw(λ); 

Step 3: η can then be estimated by fitting a linear least squares 
regression through log-transformed bbp(λ) as a function of log- 
transformed λ. 

Since the empirically estimated Kd(λ) (Step 1) plays a key role in the 
calculation of η, this two steps scheme, in essence, could be also 
considered empirical despite that Step 2 and Step 3 are rooted in ocean 
optics. Given that LS2 is an improved version of LS1, we only employ 
LS2 for the schemes inter-comparison in this study. As suggested in 
Loisel et al. (2006) and Jorge et al. (2021), bbp(λ) at blue and red bands 
are not recommended for the estimation of η, as satellite-measured Rrs(λ) 
have relatively large uncertainties in the blue bands due to inadequate 
atmospheric correction (Wei et al., 2020), while having too low signal in 
the red bands in open ocean water. Thus, LS2-derived η was computed 
from bbp(λ) at 443, 488, 531, and 547 nm in this effort by linear least 
squares regression between log(bbp(λ)) and log(λ). Note that only esti
mated η from a good fit (i.e., the determination coefficient of the linear 
fit R2 > 0.6) was considered valid. It is worth pointing out that a poor fit 
does not necessarily mean questionable bbp(λ) retrievals by LS2, as many 
field observations have shown that the spectral bbp(λ) are not always in a 
hyperbolic shape (Kutser et al., 2009; Vadakke-Chanat and Shanmugam, 
2019; Xu et al., 2021). However, we include such a quality control 
measure for a fair comparison with QAA or MM01, as their primary 
objectives of η estimations are for the inversion of IOPs, which assumed 
a hyperbolic shape of bbp(λ). 

1.2.4. One-step scheme based on neural network 
The above-mentioned schemes all estimate η from Rrs(λ), directly or 

indirectly. As algorithms based on neural network (NN) have been 
widely accepted by the ocean color community to derive IOPs and AOPs 
(Ioannou et al., 2013; Chen et al., 2014; Wang et al., 2021), water 
constituents (Buckton et al., 1999; Tanaka et al., 2004), as well as the 
depths of optically shallow waters (Lai et al., 2022), it might be a 
plausible option to estimate η using the neural network by incorporating 
all available Rrs(λ) (Lee et al., 2003). Here, we propose an NN-based 
scheme, termed NNη, to predict η using Rrs(λ) at the six MODIS visible 
bands centered at 412, 443, 488, 531, 547, and 667 nm. A detailed 
description of the structure of the neural network is given in Section 2.5. 

2. Data and method 

2.1. Satellite measurements 

Rrs(λ) products from MODIS Aqua are used in this study to obtain 
various bio-optical properties and the spatial-temporal variation of η in 
the global ocean. Specifically, the level-3 monthly Rrs(λ) products with a 
spatial resolution of 4 km from January 2003 to December 2021 were 
acquired from NASA’s OceanColor Web (oceancolor.gsfc.nasa.gov). 
Note that all MODIS data examined in this study were from the latest 
ocean color reprocessing (R2018.1) by NASA Ocean Biology Processing 
Group (OBPG). The MODIS 4 km resolution monthly Chl products, 
derived from Rrs(λ) using the OCI algorithm (O’Reilly et al., 1998; Hu 
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et al., 2012), over the same period were also acquired from NASA’s 
OceanColor Web for the analysis in this effort. 

As bbw(λ) is sensitive to temperature and salinity (Zhang and Hu, 
2009; Zhang et al., 2009), Sea Surface Temperature (SST, in ◦) and Sea 
Surface Salinity (SSS, in PSU or ‰) in the global oceans were also 
desired for η retrieval, particularly for the Step 2 of LS2. Here, MODIS 
level-3 monthly standard mapped SST products, as well as the clima
tology product, with a spatial resolution of 4 km, were acquired from 
NASA’s OceanColor Web from 2003 to 2021. For SSS, ESA Climate 
Change Initiative (CCI) standard monthly SSS products (v03.21, avail
able at https://climate.esa.int/fr/projects/sea-surface-salinity/), at a 
spatial resolution of 25 km, were acquired for the period between 2010 
and 2020. The SSS data were then interpolated to the 4 km resolution to 
match the grid of MODIS measurements. The monthly climatology of 
SSS product over the global ocean was also calculated as the mean value 
of the monthly SSS data from 2010 to 2020. From the climatology SSS 
and SST data, the median SSS and SST in the global ocean were calcu
lated, which are 15.2◦ and 34.5 PSU, respectively. The median SSS and 
SST values will be used to calculate bbw(λ) when in-situ or satellite- 
measured SSS and SST are absent unless otherwise stated. 

In addition, the MODIS climatology product of phytoplankton ab
sorption coefficient at 443 nm (aph(443), in m− 1) and bbp(443), at 4 km 
spatial resolution, were also downloaded from NASA’s OceanColor Web 
and used in this study. Note that the inversions of aph(443) and bbp(443) 
for the MODIS climatology product employ the generalized IOP (GIOP) 
model (Werdell et al., 2013). 

2.2. In-situ datasets 

To acquire concurrent in-situ measurements of Rrs(λ) and η, we 
assembled a few publicly available datasets for the evaluation of 
different η schemes, which include the NASA bio-Optical Marine Algo
rithm Dataset (NOMAD) (Werdell and Bailey, 2005), measurements 
from the Biogeochemistry and Optics South Pacific Experiment (BIO
SOPE) (Claustre et al., 2008; Stramski et al., 2008), and two compiled 
datasets by Stramski and Reynolds (2018) and Casey et al. (2020). The 
latter two datasets are termed Stramski18 and Casey20, respectively. 
The NOMAD and BIOSOPE datasets can be obtained from the Sea- 
viewing Wide Field of View Sensor (SeaWiFS) Bio-optical Archive and 
Storage System (SeaBASS, seabass.gsfc.nasa.gov), while the Stramski18 
and Casey20 datasets can be acquired from their respective references. 
The following general rules were applied for data screening and quality 
control (QC) to construct the in-situ datasets desired in this effort. 

First, all data records with valid observations of Rrs(λ) at 412, 443, 
488, 531, 547, and 667 nm (or nearby equivalent wavelengths) were 
screened. Second, the quality of spectral Rrs(λ) was examined by the 
quality assurance score (QA), which ranges between 0 and 1 with a 
higher QA score standing for better Rrs(λ) quality (Wei et al., 2016). 
Records with QA scores lower than 0.7 were then discarded. Third, 
bbp(λ) measurements should be available at three or more spectral bands, 
excluding the short-blue (412 nm and shorter wavelengths) and red 
bands (650 nm and longer wavelengths). η was computed by the linear 
fitting between log(bbp(λ)) and log(λ), where only records with the co
efficient of determination (R2) of the linear regression >0.6 remained. 

For the NOMAD dataset, Rrs(λ) were first screened at 411, 443, 489, 
510, 555, and 670 nm from the raw archive (NOMAD v2.b_2010097), 
which were later interpolated to the six MODIS visible bands. bbp(λ) were 
acquired by subtracting bbw(λ) from the fitted bb(λ), at 20 spectral bands 
from 405 to 683 nm, with bbw(λ) calculated from Zhang et al. (2009) 
with in-situ S and T records. For measurements without matched salinity 
records, the global average salinity of 34.5 PSU was used, which was 
calculated from measurements with salinity records. η was later 
computed from bbp(λ) between 443 and 590 nm. After screening the QA 
score of spectral Rrs(λ) and the R2 of the linear regression between log 
(bbp(λ)) and log(λ), 82 records were discarded and 283 matched Rrs(λ) 
and η were retained for NOMAD datasets. 

For the BIOSOPE dataset, vertical profiles of bb(λ) were downloaded 
from the SeaBASS archive (https://seabass.gsfc.nasa.gov/search 
/experiment/BIOSOPE), which include bb(λ) measurements by 
Hydroscat-6 at six wavebands (centered at 420, 442, 470, 550, 589, 620, 
and 671 nm) and two α-βeta sensors for 420 and 510 nm, respectively. In 
this effort, surface bb(λ) from both the downcast and upcast were first 
calculated by averaging bb(λ) measurements between 3 m and 5 m 
beneath the surface. Surface bbp(λ) were then obtained by subtracting 
the values of bbw(λ), which were calculated from in-situ temperature and 
salinity records at each station using Zhang et al. (2009). η was later 
computed from spectral bbp(λ) at 442, 470, 510, 550, and 589 nm. The 
final surface η that matches Rrs(λ) measurements were averaged from the 
upcast and downcast measurements, where records with a deviation of η 
>50% were discarded, with the deviation defined as 200% × |ηupcast – 
ηdowncast| / (ηupcast + ηdowncast). Finally, 19 matched Rrs(λ) and η records, 
out of a total number of 24, were retained after the QC of Rrs(λ) and η 
calculation. 

For the Stramski18 dataset, Rrs(λ) were first screened at 412, 443, 
490, 510, 555, and 670 nm), which were later interpolated to the six 
MODIS visible bands. Both bb(λ) and bbp(λ) are directly available in the 
Stramski18 dataset at 443, 510, 550, and 671 nm, but with missing 
bbp(λ) measurements at some of these wavelengths. Thus, we first filled 
in the missing bbp(λ) values by subtracting bbw(λ) from bb(λ) when bb(λ) 
are available, where bbw(λ) were calculated using the global median SSS 
and SST following Zhang et al. (2009). Note that inclusion of bbp(671) 
would result in overall higher R2 from the linear regression between log 
(bbp(λ)) and log(λ) for the Stramski18 dataset, and resulting in less un
reasonable η calculations that are either >4 or less than − 0.5. Thus, η 
was computed from bbp(λ) at all available wavelengths including 671 nm 
for the Stramski18 dataset. Note that the BIOSOPE measurements were 
also compiled in the Stramski18 dataset, which were then removed here. 
After the QC measures, removing the BIOSOPE measurements, and three 
outliers with η smaller than − 0.5, 91 matched Rrs(λ) and η, out of 117, 
were retained for the Stramski18 dataset. 

For the Casey20 dataset, Rrs(λ) were first extracted or interpolated to 
the six MODIS visible bands and then screened to match bbp(λ) mea
surements. bbp(λ), with valid observations at three or more wavelengths 
between 420 and 640 nm, were used to calculate η. The Rrs(λ) and η 
matchups were further screened by the QC measures, with one outlier at 
station ir2 in Lake Superior removed as the computed η is >6. Finally, 75 
matched Rrs(λ) and η records, out of 93, remained. Note that 10 of the 70 
quality-controlled matchups are repeated records of the Stramski18 
dataset, and thus removed from the Casey20 dataset. The remaining 60 
matchups in the Casey20 dataset are all from measurements in Lake 
Superior. 

In total, 468 matched Rrs(λ) and η from field measurements were 
acquired for the subsequent analysis in this effort, with this compiled 
dataset referred to as the in-situ dataset hereafter. 

2.3. The lower and upper limits of η in natural waters 

The range of η in the training dataset, especially its upper and lower 
boundaries, is important to the predicted range of η by an NN algorithm 
and its applicability. Historically, it is assumed that η is around 1.0 for 
oceanic waters (i.e., λ− 1 dependency) (Gordon et al., 1988; Morel and 
Maritorena, 2001), and ~ 0 for turbid coastal waters (Morel and Mar
itorena, 2001). In recent decades, with the development of multiband 
instruments to measure bbp(λ) in situ, such as Hydroscat-6 (HobiLabs, 
Inc) and ECO BB9 (Sea-Bird Scientific, Inc), values of η can be estimated 
from measured bbp(λ) spectra. The majority of bbp(λ) measurements in 
various oceanic environments showed that η values are generally <3 
(Reynolds et al., 2001; Stramska et al., 2003; Aas et al., 2005; Snyder 
et al., 2008; Kostadinov et al., 2012), while some studies reported 
maximum η as high as ~4 (Loisel et al., 2006; Twardowski et al., 2007; 
Antoine et al., 2011). 

However, our current understanding of the spectral behavior of 
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bbp(λ) in natural waters is quite limited, especially when the exact im
pacts of nonsphericity and anomalous dispersion from particulate ab
sorption structure on the complex index of refraction spectra are still 
poorly understood to date (Twardowski et al., 2007). Theoretical 
modeling, such as the enhanced layered (coated) sphere model, still can 
not fully resolve the backscattering by real biological cells as the cell 
thickness, cell shape, and internal cell structure of different cells can not 
be simply represented in the model (Stramski et al., 2004). Thus, it is 
almost impossible to obtain a theoretical boundary of η for particles in 
natural waters from modeling. Moreover, field measurements of bbp(λ) in 
extremely clear waters, such as the ocean gyres, are quite scarce and 
challenges in obtaining consistent η from measured bbp(λ) in these waters 
further restrain our understanding of the possible upper boundary of η in 
the natural waters. For instance, η is quite sensitive to the wavelength 
range and bbp(λ) values from which it is computed (McKee et al., 2009). 
Thus, measurement uncertainties of bbp(λ) at individual bands could 
have impacts on the estimated η value, especially for measurements in 
extremely clear waters, where very high η values were reported (Morel 
et al., 2007; Twardowski et al., 2007). On one hand, bb(λ) measurements 
in the extremely clear waters (<0.001 m− 1) would be of relatively large 
uncertainties introduced by the random noise of the instrument (McKee 
et al., 2009). The random noise might be partly canceled out with a 
larger integrating time (Antoine et al., 2011), but still, consistent esti
mations of η from measured bbp(λ) in extremely clear waters are chal
lenging. Take the GYR stations (GYR2 - GYR5) of the Biosope dataset for 
example, surface η calculated from the upcast and downcast bbp pro
files, or deployments of different times at the same GYR station, could be 
differed by up to 50% even after the strict quality control described in 
Section 2.2, highlighting the difficulty in obtaining consistent η from 
field bbp(λ) measurements in extremely clear waters.On the other hand, 
as bbw(λ) is the dominant term of bb(λ) in such waters, there could be 
strong difficulties to get reliable bbp(λ) estimations from the difference 
between bb(λ) and bbw(λ), whereas the selection of bbw(λ) values could 
also affect the calculation of η (Morel et al., 2007; Twardowski et al., 
2007; Reynolds et al., 2016). Here, we try to reach a reasonable upper 
boundary of η in natural waters from both field measurements and 
theoretical simulations. 

2.3.1. The range of η from field measurements 
We first analyzed the range of η from the field measurements using 

the in-situ dataset compiled in this study. Note that NOMAD, Stramski18, 
and Casey20 cover a wide range of water types from oceanic to coastal 
and inland lake waters, while BIOSOPE covers the ultra-oligotrophic 
ocean. Fig. 1 shows the scatterplots between η and Chl and bbp(443) 
for the in-situ dataset, from which we can conclude three major findings 
despite the potential uncertainties associated with the field 

measurements:  

1) No clear, robust, relationships between Chl and η, or between 
bbp(443) and η. These data show that seemingly random variations of 
η for any given Chl or bbp(443) are remarkably significant, where the 
standard deviation of η for any given Chl or bbp(443) are 0.42 and 0.5, 
respectively. Here the standard deviation of η was calculated for 
different ranges of Chl (or bbp(443)) with a spacing of log10(0.1) mg 
m− 3 (or m− 1); 

2) η is tilted to higher values for low Chl or low bbp(443), but the de
viation from a mean is large. Thus, the overall trend of higher η for 
oceanic waters and lower value for coastal waters is reasonable, as 
the sizes of particles in coastal waters are generally greater than that 
in oceanic waters;  

3) It appears that the highest η from these measurements is ~3. More 
importantly, for ultra-oligotrophic waters in the South Pacific Gyre 
(SPG) covered in the BIOSOPE dataset, the highest η is only ~2.6, 
which is within a range of 2.1 and 3.1 after considering the standard 
deviation associated with these measurements (up to ~0.5 as dis
cussed earlier). 

Note that Twardowski et al. (2007) reported that η estimated from 
the green-red band ratio of measured bbp(λ) in the SPG could be up to 4 in 
the deep chlorophyll maximum (DCM). However, such estimates could 
be questionable since an λ− 4 dependency of bbp(λ) is almost equivalent to 
molecule scattering (pure water) (Morel, 1974), which is less likely as 
DCM is rich in phytoplankton. Besides, as η is quite sensitive to wave
lengths of bbp(λ) used for its calculation, it might not be a proper com
parison between The larger η estimations in Twardowski et al. (2007) 
could be partly because they calculate η from the band ratio of bbp(λ) 
whereas η is quite sensitive to the wavelengths used for its calculation. 
For instance, the calculated η from the blue-green band ratio of bbp(λ) 
would be up to 4.6 at the GYR stations in the BIOSOPE dataset. 

2.3.2. Implications based on a Kd-closure exercise in the south pacific gyre 
Optical closure has been widely used to derive bio-optical properties 

or evaluate the credibility of in-situ bio-optical measurements (Twar
dowski et al., 2007; Lee et al., 2015). In comparison to the possible 
uncertainties associated with in-situ measured bbp(λ) in extremely clear 
waters, radiance measurements could be of much higher precision and 
consistency (Wei et al., 2021c). We here tried to gain a further under
standing of the upper limit of η through a closure analysis between 
profiling-measured Kd(λ) and that derived from Rrs(λ) for measurements 
within SPG from the BIOSOPE dataset, which is considered the ‘clearest’ 
natural waters (Morel et al., 2007; Twardowski et al., 2007). Specif
ically, a(λ) and bb(λ) were derived from the measured Rrs(λ) spectrum 

Fig. 1. η as a function of Chl (a) and bbp(λ) at 443 nm (bbp(443)) (b) for in-situ measurements from the NOMAD, BIOSOPE, Stramski18, and Casey20 datasets. The 
range of η in the synthetic dataset of this study (Syndata) is also provided as a function of bbp(443) in panel b for comparison. 
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using the latest version of QAA (QAA_v6, available at http://www.ioccg. 
org/groups/Software_OCA/QAA_v6_2014209.pdf) and then used to 
model Kd(λ) with a semi-analytical model (Lee et al., 2005a; Lee et al., 
2005b), which is expressed as 

Kd(λ)= (1+0.005θs)a(λ)+4.259
(

1 − 0.265
bbw(λ)
bb(λ)

)
(
1 − 0.52e− 10.8a(λ) )bb(λ)

(4)  

where θs (in deg) is the solar zenith angle in air and set as 20◦ here. 
Different from the original QAA_v6 where η is parameterized as a 
function of the band ratio of Rrs(λ) (see Eq. (2)) for the estimation of 
spectral bb(λ), here we arbitrarily set η as 1, 2, and 3, respectively, and 
compared the resulted Kd(λ) spectra with that from field measurements. 
Concurrent measurements of profile-measured Kd(λ) and Rrs(λ) at 7 
stations within the SPG from the BIOSOPE dataset were used here to 
demonstrate the range of measured and derived Kd(λ) spectra, with the 
station aliases denoted as STB6, STB7, STB8, GYR2, GYR3, GYR4, and 
GYR5, respectively (locations of these stations can be found in Fig. 5a in 
Loisel et al. (2006) and spectral Rrs(λ) can be found in Fig. 2a). As shown 
in Fig. 2, measured Rrs(λ) at these selected stations are quite consistent, 
while measured Kd(λ) show significant variations in the blue-green 
domain, suggesting the potentially large uncertainties in the Kd(λ) 
measurements, which are likely due to wave focusing. Thus, the median 
Kd(λ) measurements are not used as the reference to evaluate the per
formance of derived Kd(λ) in this effort. Alternatively, we assume that 
the ‘true’ Kd(λ) of these waters should be within the range of measured 
Kd(λ). As shown in Fig. 2b, increasing η values will elevate Kd(λ) in the 
ultraviolet-blue domain. When η is set as 3, the derived Kd(λ) values are 
barely within the range of field-measured Kd(λ), suggesting that an η 
value higher than 3 could result in a more deviated Kd(λ) spectrum from 
the reasonable Kd(λ) range measured from the “clearest” natural waters. 
Thus, we conclude that the upper limit of η in natural waters could be 
~3, or it should not be significantly >3. Nevertheless, more rigorous 
evaluations of the Kd-closure exercise for the “clearest” natural waters 
are still desired and recommended when high-quality measurements of 
both Rrs(λ) and Kd(λ) are acquired. 

2.4. η for common size distribution based on Mie simulation 

The particle size distributions (PSDs) of ocean surface waters have 
been found to be well approximated by a hyperbolic (Junge-type) dis
tribution (Boss et al., 2001; Twardowski et al., 2001), and the Junge 
slope of the PSD (ξ) is closely related to η (Kostadinov et al., 2009). Thus, 
the range of measured ξ in global oceans could provide some insights 
into the natural range of η. As demonstrated by the simulations based on 
the forward Mie model (see Fig. 1 of Kostadinov et al. (2009)), an η value 
of 3 is equivalent to a ξ value of 6, which is less likely encountered in 

natural waters. Repeated measurements of ξ in the global ocean showed 
that ξ is generally <5 for marine particle populations (Twardowski et al., 
2001; Babin et al., 2003; Boss et al., 2004; Buonassissi and Dierssen, 
2010; Reynolds and Stramski, 2021). More importantly, η for pure 
seawater (molecular scattering) is ~4 (Morel, 1974), with the size of 
water molecules in an order of 10− 10 m. In contrast, common marine 
particles that have significant contributions to bbp(λ) have much larger 
sizes than water molecules (Stramski et al., 2004). Thus, η for common- 
size marine particles should be far <4. The large η values (up to 4) 
calculated from bbp(λ) measurements reported in the literature were 
most likely attributed to measurement uncertainties in bbp(λ) obtained in 
extremely clear waters. 

Following the above observations, we capped the upper η value as 
~3.0 in synthesizing the training data (see Section 2.4) but let η vary 
randomly within a common range for any given water type or Chl value. 
In other words, there was no pre-determination of η value for any given 
water type. 

2.5. Synthesis of the training dataset 

For any empirical algorithms aimed at global applications, no matter 
it is explicit empirical or implicit algorithms based on machine learning, 
a training dataset having “global” coverage is the key. Therefore, 
compared to the earlier practices where algorithms were calibrated or 
trained with limited field measurements, here we use a synthesized 
dataset with 400,000 simulations to account for possible Rrs spectra and 
combinations of IOPs that may be encountered in natural waters. 

The synthetic dataset was generated following the same approach as 
the IOCCG synthetic dataset (IOCCG, 2006), but we employed an Rrs 
model (Lee et al., 2004), rather than Hydrolight (Mobley and Sundman, 
2008), to simulate the spectral of Rrs(λ) from synthesized IOPs for effi
cient computation. Specifically, the relationship between Rrs(λ) and IOPs 
can be expressed as 

rrs(λ) = gw
bbw(λ)

a(λ) + bb(λ)
+ gp(λ)

bbp(λ)
a(λ) + bb(λ)

, (5)  

gp(λ) = G0

[

1 − G1exp
(

− G2
bbp(λ)

a(λ) + bb(λ)

)]

, (6)  

Rrs(λ) =
0.52rrs(λ)

1 − 1.7rrs(λ)
, (7)  

where rrs(λ) is the remote sensing reflectance just below the sea surface. 
gw is the model parameter related to molecular scattering, while gp(λ) 
describes the contribution of particle scattering, with its model constants 
(G0–2) depending on the light geometry and particle scattering phase 
function. The values of gw and G0–2 are set to 0.113, 0.197, 0.636, and 

Fig. 2. Panel (a): spectral Rrs(λ) measured at seven stations in the SPG from BIOSOPE with the black solid line representing the median Rrs(λ) spectrum and the 
shaded area for the range of Rrs(λ). Panel (b): comparison between field-measured Kd(λ) and that derived from Rrs(λ) with η set as constant values at 1, 2, and 3, 
respectively. The shaded area in panel (b) indicates the range of field-measured Kd(λ), while the error bar stands for the standard deviation of derived Kd(λ). 
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2.552, respectively, which were optimized from extensive Hydrolight 
simulations for various water types (Lee et al., 2004). Note that 
Hydrolight simulations in Lee et al. (2004) were run for clear skies, 
constant solar zenith angle (30◦), viewing zenith angle (0◦), wind speed 
(5 m/s), and the Petzold average particle scattering phase function, 
while the bottom reflectance and inelastic scatterings (such as Raman 
scattering and fluorescence) were excluded (Lee et al., 2004). 

A detailed description of the parameterization of component IOPs 
from a known Chl value can be found in (IOCCG-OCAG, 2003). 
Consistent with Wang et al. (2021), the value of absorption coefficient 
by phytoplankton at 440 nm (aph(440)) was used as the input in this 
study, but it can be readily converted to Chl to model component IOPs 
following (IOCCG-OCAG, 2003) 

Chl =
(
20aph(440)

)1.597
. (8) 

A stepwise description to generate the synthetic Rrs(λ) using the Rrs 
model can be found in Appendix A of Wang et al. (2021), while steps to 
model bbp(λ) are briefly described here. Specifically, bbp(λ) can be 
modeled as 

bbp(λ) = bbph(λ)+ bbdm(λ), (9)  

where the subscripts ph and dm stand for contributions from phyto
plankton pigments and the sum of detritus and minerals, respectively. 
Spectral bbph(λ) can be modeled as 

bbph(λ) = Bph
(
cph(λ) − aph(λ)

)
, (10)  

cph(λ) = cph(550)
(

550
λ

)n1

, (11)  

where cph(λ) and aph(λ) are the attenuation and absorption coefficients of 
phytoplankton, respectively. Bph is the backscattering-to-scattering ratio 
of phytoplankton, with a value of 1% employed in this effort. cph(550) 
can be empirically estimated from Chl with a random term (IOCCG- 
OCAG, 2003). n1 is the spectral power coefficient of cph(λ), which largely 
determines the spectral shape of bbph(λ). Similarly, spectral bbdm(λ) can 
be modeled as 

bbdm(λ) = Bp × bdm(550)
(

550
λ

)n2

, (12)  

where Bp is the backscattering-to-scattering ratio of particles and was set 
as 1.83%, which is equivalent to the Petzold average particle scattering 
phase function (Petzold, 1972). bbdm(550) can also be estimated from 
Chl with a random term (IOCCG-OCAG, 2003), while n2 is the spectral 
power of bbdm(λ). Here n1 and n2 were deliberately parameterized so that 
the range of filed-measured η in the four in-situ datasets could be well 
represented by the synthesized η (see Fig. 1b), with n1 and n2 expressed 
as 

n1 = − 0.7+
3.0 + 1.5ℜ
1 +

̅̅̅̅̅̅̅
Chl

√ , (13)  

n2 = − 0.6+
2.2 + 1.5ℜ
1 +

̅̅̅̅̅̅̅
Chl

√ , (14)  

where ℜ is a random value between 0 and 1. 
In this study, 400,000 sets of aph(443) values were randomly selected 

from the MODIS aph(443) monthly climatology product, which were 
approximated as aph(440) and used to generate the hyperspectral Rrs(λ) 
and bbp(λ) for the spectral range of 400–750 nm at an interval of 5 nm. 
The η values matching Rrs(λ) simulations were computed from simulated 
bbp(λ) by the linear fit between log(bbp(λ)) and log(λ), where the 
computed η is generally within − 0.7 and 3.1. The synthesized dataset is 
hereafter referred to as Syndata. Note that pure seawater absorption 
coefficient (aw(λ)) and bbw(λ) are required to model Rrs(λ) from IOPs, 
with aw(λ) values taken from Lee et al. (2015) for 350–550 nm and Pope 

and Fry (1997) for 550 nm and longer wavelengths, while bbw(λ) values 
were calculated from Zhang et al. (2009) using the global median SSS 
(34.5 PSU) and SST (15.2◦). Here, aw(λ) values of Lee et al. (2015) were 
employed due to that they are closer to the pure seawater absorption 
coefficient (Yu et al., 2019b), while the dependence of aw(λ) on tem
perature was omitted as it has negligible impacts on aw(λ) in the visible 
domain (Röttgers et al., 2014; Wei et al., 2021a). 

The validity and performance of an NN-based scheme are largely 
dependent on the representativeness of the training dataset to the actual 
range and distribution of the NN-predicted properties. In this effort, the 
input aph(440) values were obtained from satellite measurements to 
ensure IOPs and AOPs in the synthetic dataset are within reasonable 
ranges. The simulated η in Syndata, approximating a normal distribution 
as shown in Fig. 3a, agrees well with the η distribution in the global 
oceans from field measurements (Fig. 1b). In addition, the frequency 
distribution of simulated Rrs(λ) and bbp(λ) are also in good agreement 
with that in the global ocean measured by MODIS (see comparisons in 
Fig. 3 with Rrs(488) and bbp(443) as examples). More importantly, the 
ranges of simulated Rrs(λ) and bbp(λ) are greater than that from the 
MODIS climatology products of Rrs(λ) and bbp(λ), suggesting that the 
Syndata could represent most water types in natural environments. The 
frequency distribution of aph(443) in Syndata is not shown here, as it has 
a similar pattern as that in Fig. 3d. 

It is necessary to emphasize that for any given input aph(440) (or 
equivalent Chl), there is no predefined value of η in Syndata, rather η 
could vary randomly within a commonly accepted range. For example, 
as shown in Fig. 1b, for bbp(443) within 0.0001–0.1 m− 1, the standard 
deviation of simulated η would be generally between 0.3 and 0.6 for a 
given bbp(443) value. However, given that the square root of Chl is used 
in the denominator to regulate the values of n1 and n2 (see Eq. (13) and 
Eq. (14)), a statistically decreasing trend of η with increasing Chl is 
assigned in the synthetic dataset, which is consistent with field obser
vations (see Fig. 1a). 

2.6. Structure of NNη 

Following the same neural network system used in Wang et al. 
(2021), the architecture of NNη consists of three units: input layer, 
hidden layer, and output layer. The input layer contains 6 neurons, 
corresponding to Rrs(λ) at six MODIS bands centered at 412, 443, 488, 
531, 547, and 667 nm, respectively. The number of hidden layers and 
the number of neurons within each layer were determined following the 
concept of minimum loss, where two hidden layers with 32 and 16 
respective neurons were found optimum for NNη. The output layer 
contains only one neuron, which is the η. Keras, a Python-implemented 
deep learning Application Programming Interface (https://keras.io/), 
was employed in this study for the training of the neural network, which 
is running on top of the machine-learning platform TensorFlow (Abadi 
et al., 2016). Other important configurations of the network are briefly 
described here. The learning rate was set to 0.001, while the optimizer 
employed the Adam algorithm (Kingma and Ba, 2014), with the loss 
function defined as the mean absolute error between the predicted and 
known η. In addition, the Rectified Linear Unit (ReLu) function was used 
as the activation function of each layer (Krizhevsky et al., 2012). The 
training phase is completed when the loss function converges, or the 
iterations reach the maximum of 200 epochs. 

For Syndata, 80% of the simulations are randomly selected and used 
as the training dataset (termed CalSet, N = 320,000), while the rest 
simulations are used for validation (termed ValSet, N = 80,000). The 
performance of the trained network, termed NNη hereafter, is prelimi
narily evaluated with the ValSet, with scatterplots between known and 
predicted η shown in Fig. 4. As shown in the figure, the line representing 
the best linear fit is very close to 1:1 line, suggesting an excellent 
agreement between the predicted and known η. 

The good performance of NNη is also confirmed by the statistical 
measures calculated from the simulated and predicted η. As every single 
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metric has its limitations (Brewin et al., 2015; Seegers et al., 2018), we, 
therefore, employed seven metrics to provide a relatively comprehen
sive evaluation of the model’s performance, which include the Pearson 
correlation coefficient (r), the slope and intercept computed from the 
linear squares fitting using the Type-II regression, the Median Absolute 
Percentage Difference (MAPD), the Root Mean Square Deviation 
(RMSD), bias, and the Median Ratio (MR), with the latter four metrics 
defined as 

MAPD = median
{⃒
⃒
⃒
⃒
yi − xi

xi

⃒
⃒
⃒
⃒

}

× 100%, i = 1, 2,…N (15)  

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(yi − xi)
2

N − 2

√

, i = 1, 2,…N (16)  

bias = median(yi − xi), i = 1, 2,…N (17)  

MR = median(yi/xi), i = 1, 2,…N (18)  

where yi and xi are the predicted and known η, respectively, and N is the 
number of data points used in the metrics calculation. 

3. Results 

3.1. Evaluation of NNη with in-situ measurements 

Dataset, independent of those used in the algorithm’s calibration or 
training, is usually demanded for convincing evaluations of any pro
posed algorithm. Here we apply the three conventional η schemes (LS2, 
MM01, and QAA, as described in Section 1.2) and NNη to the in-situ 
dataset (described in Section 2.2) to demonstrate their respective per
formance and applicability, with scatterplots and statistics shown in 
Fig. 5 for visual inspection. 

As shown in Fig. 5, NNη generally has the best performance among 
these four schemes, with scatters well distributed along the 1:1 line and 
overall least uncertainties in the estimated η. For instance, the statistical 
measures for the estimated η by NNη suggest that NNη outperforms LS2 
and MM01, with much smaller MAPD (= 24.6%), RMSD (= 0.45), and 
bias (= − 0.03), larger r (= 0.62), almost nil intercept (= 0.1), and the 
close-to-unity slope (= 0.92) and MR (= 0.98). Though QAA has rela
tively comparable performance with NNη in terms of MAPD, RMSD, and 
bias, estimations from QAA are less confident in terms of the slope, 
intercept, and r. Also, it is evident that QAA-estimated η saturates at ~2 
from mesotrophic to ultra-oligotrophic waters. Take the BIOSOPE 
dataset for example, the estimated η at 13 out of the 19 stations 
approximated to 2 (see the orange squares in Fig. 5d). Thus, QAA might 
have rather limited applicability in predicting η in mesotrophic to ultra- 
oligotrophic waters, as significant variabilities of η are observed in these 
waters (see Fig. 1b for example). 

Predicted η by LS2 have relatively larger uncertainties than NNη, 
with a more pronounced scatter around the 1:1 line (Fig. 5b). The 

Fig. 3. Histograms showing the frequency distribution of (a) simulated η, (b) simulated Rrs(488), and (c) simulated bbp(443) in the Syndata (N = 400,000). The lower 
panel shows the histogram of (d) aph(443), (e) Rrs(488), and (f) bbp(443) from MODIS climatology product (N ~ 23,000,000), respectively. Note that the histograms 
are normalized by the probability density function. 

Fig. 4. Evaluation of NNη with the ValSet of Syndata (N = 80,000), with the 
color of scatter points indicating the frequency that is normalized to 1. The 
black dashed line indicates a 1:1 relationship, while the red dashed line in
dicates the best linear fit from Type-II regression. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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relatively poor performance of LS2 in the in-situ dataset is also supported 
by the statistical measures, with an MAPD of 41.4%, an RMSD of 0.77, a 
bias of 0.28, and an MR of 1.24 for derived η. More importantly, for the 
468 quality-controlled Rrs(λ) and η matchups in the in-situ dataset, LS2 
failed to provide reasonable estimations of η for 107 of these matchups, 
which is quite significant given the failure ratio (~ 22.9%). The ques
tionable η estimations are mainly due to poor linear fit between log 
(bbp(λ)) and log(λ) with R2 < 0.6 (N = 84), or unreasonable estimates of η 
(η < − 0.5 or η > 4, N = 23). 

At last, estimated η by MM01 are systematically underestimated for 
the in-situ dataset (Fig. 5c), with an MR of only 0.13 between the esti
mated η to known η. Also, MAPD, RMSD, and the absolute bias of the 
estimated η by MM01 are significantly greater than the rest three 
schemes. As shown in Fig. 5c, it can be also concluded that setting η as 
0 for waters with Chl > 2.0 mg m− 3 is not practicable. For instance, there 
exists a large number of data in Fig. 5c with MM01-estimated η as 0 (i.e., 
Chl > 2.0 mg m− 3), but the measured η spans a range roughly between 
0 and 2 (see also Fig. 1a). 

Detailed discussions on the limitations of these schemes are provided 
in Section 4, here we preliminarily conclude from Fig. 5 that NNη might 
be the most appropriate scheme for the estimation of η from ocean color 
remote sensing compared to the three conventional schemes. 

3.2. Global distribution of η 

The four schemes are further implemented to MODIS imagery to 

examine their respective performance in the global oceans, with η 
products of the global ocean by these schemes presented in Fig. 6. Here 
MODIS monthly composite data of May 2018 is employed to facilitate 
direct comparisons with the results presented in Jorge et al. (2021), 
which were generated from monthly composite data of Ocean and Land 
Color Instrument (OLCI) in May 2018 (see their Fig. 12). Results in Fig. 6 
demonstrate that derived η by the four schemes differ a lot from each 
other in both the magnitude and the spatial distribution pattern, which 
deserve further investigations on the applicability of these η schemes in 
global oceans. 

As shown in Fig. 6, the predicted η by NNη, LS2, and MM01 features a 
manifest spatial pattern with large η values observed in the oligotrophic 
gyres, while such a pattern is not observed by QAA. It is commonly 
acknowledged that small-sized phytoplankton dominates in oligotrophic 
water with low Chl, except for bloom scenarios, while coastal and 
nutrient-rich waters, such as the upwelling regions, are characterized by 
the prevalent presence of large-sized phytoplankton groups and much 
higher Chl (Loisel et al., 2006; Buonassissi and Dierssen, 2010). Thus, a 
general decreasing trend of η from the oligotrophic ocean gyres (low 
Chl) to eutrophic waters (high Chl) should be observed, where larger η 
values should be expected in the ocean gyre waters (Ciotti et al., 1999). 
Therefore, the estimated η by NNη, LS2, and MM01 is at least reasonable 
in the spatial pattern. However, the derived η by MM01 is much smaller 
than the common η values in global oceans concluded from either field 
measurements (e.g., Fig. 1b) or theoretical analysis (see Section 2.3 for 
example), while LS2 tends to predict high η values in the oligotrophic 

Fig. 5. Validation of (a) NNη, (b) LS2, (c) MM01, and (d) QAA with the in-situ dataset, with different symbols indicating measurements from NOMAD (circles), 
BIOSOPE (squares), Stramski18 (crosses), and Casey20 (plus sign). 
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ocean gyres and the North Sea that >3 (Fig. 6b). In fact, a majority of η 
retrievals by LS2 in the ocean gyres are even >4, which accounts for 
~4% of all retrievals in the global ocean. As discussed in Section 2.3, an 
upper boundary of η in natural waters could be ~3, or at least not 
significantly >3. Thus, those high η retrievals (> 4) from LS2 should be 
questionable. In addition, ~0.2% of LS2-derived η are found with η less 
than − 1, which are most frequently encountered in the coastal regions. 
In contrast, derived η by NNη is more reasonable in magnitude when 
compared with measurements from the global ocean as shown in the in- 
situ dataset (see Fig. 1b). 

The estimated η by QAA is almost constant for a majority of oceanic 
waters, with 60.3% of all η retrievals by QAA between 1.9 and 2 for the 
MODIS measurement in May 2018. Such a limited spatial variability of η 
contradicts observations from field measurements. For instance, Chl and 
bbp(λ) from the BIOSOPE transect were found with an evident gradient 
for oceanic stations, with measured η from bbp(λ) generally varying 

between 1 and 2.6 (see Fig. 1b). However, the predicted η by QAA at 
these stations all approximate 2 as shown in Fig. 6d. Thus, QAA fails to 
capture the detailed spatial feature of η in open oceans. 

The ranges and frequency distribution of the estimated η by the four 
schemes in global oceans are further illustrated by the histogram of η 
retrievals with results presented in Fig. 7a. In general, the frequency 
distribution of estimated η by NNη, LS2, MM01 could be well approxi
mated by a normal distribution despite the existence of a small peak, but 
with different mean values and standard deviations to describe the 
probability density function. For QAA, it is not surprising that the ma
jority of estimated η fall between 1.8 and 2, and the values of estimated η 
follow a truncated normal distribution with zero probability for η >2. 

Statistically, the median η values in the global ocean are 1.67, 1.46, 
0.59, and 1.94 for η retrievals from NNη, LS2, MM01, and QAA, 
respectively. Here, the largest 0.1% and the smallest 0.1% η retrievals 
from these four schemes were excluded from these calculations to 

Fig. 6. Global distribution of η in May 2018 estimated by (a) NNη, (b) LS2, (c) MM01, and (d) QAA using the MODIS monthly composite data. The four boxes in panel 
(d) highlight the locations of four regions of interest in the Tropic Pacific Ocean (TPO), the South Pacific Gyre (SPG), the North Atlantic Ocean (NAO), and the 
Yangtze Estuary (YE), respectively. Note that panel (b) has a different colorbar scale. 

Fig. 7. Panel (a) shows the histogram of η values in global oceans in May 2018 estimated by NNη, LS2, MM01, and QAA, with results from QAA aligned to the right y- 
axis. Panel (b) presents a direct comparison between the η distribution in Syndata and that in the global ocean obtained by NNη using MODIS data of May 2018. 
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remove possible outliers. The range of estimated η by NNη for MODIS 
data in May 2018 is from − 0.1 to 2.4, which is expected given the range 
of η in the training dataset (Fig. 7b). The ranges of estimated η by MM01 
and QAA also fall into their theoretic boundaries described in Section 
1.2, which are 0–1 and − 0.2–2.0, respectively. In contrast, estimated η 
by LS2 in global oceans ranges between − 4.2 and 6.1, where both the 
maximum and minimum η values far exceed the realistic boundary of η. 
Note that estimated η by LS2 with poor linear fit between log(bbp(λ)) and 
log(λ) were already removed from the calculations. 

3.3. Monthly variation of η 

The monthly variation of η in the four regions of interest (ROIs) 
characterizing distinguished bio-optical features is further analyzed 
using MODIS monthly composite data from January 2003 to December 
2021. These four ROIs are the Tropical Pacific Ocean (TPO, 
175◦W–145◦W; 2◦S–2◦N), the South Pacific Gyre (SPG, 124◦W – 104◦W, 
32◦S – 22◦S), the North Atlantic Ocean (NAO, 55◦W – 45◦W, 43◦N – 
47◦N), and the Yangtze Estuary (YE, 120.7◦E – 123.0◦E, 29.5◦N – 
32.5◦N), respectively. Specifically, TPO represents oceanic waters with 
negligible seasonal cycles of bio-optical properties (Yu et al., 2022); SPG 
represents the ‘clearest’ natural waters (Morel et al., 2007; Twardowski 
et al., 2007); NAO represents optically complex waters with high colored 
dissolved organic matter (CDOM) to Chl ratio (Morel et al., 2010); while 
YE represents one of the most turbid waters in the globe (Yu et al., 
2019a; Wei et al., 2021b). Here, results from all four schemes are 
included in Fig. 8 to demonstrate their applicability in capturing the 
long-term variation of η in the global ocean. 

In TPO, η is relatively stable in the last two decades with no clear 

seasonal cycle observed (see Fig. 8a). For instance, η is almost stabilized 
around 1.6, 0.5, and 1.8 for estimations from NNη, MM01, and QAA, 
respectively. Estimated η by LS2, however, shows relatively larger 
monthly variabilities, with η varying between 0.7 and 2.1. The standard 
deviation for LS2-derived η in TPO at each month is ~0.3, which is also 
significantly greater than that from the rest three schemes. The promi
nent plummet and surge of η in 2010 and 2015 observed from the four 
schemes are highly coincident with the strongest La Niña and El Niño 
events in the last two decades, respectively, which is concluded from the 
sea surface temperature (SST) anomalies in the Niño3.4 region (5◦N – 
5◦S, 170◦W – 120◦W) (data available at psl.noaa.gov/data/timeserie 
s/monthly/NINO34/). During an El Niño event, warming of surface 
water would enhance ocean stratification, which suppresses nutrient 
mixing from subsurface layers and thus limits phytoplankton growth in 
the surface layer (Roxy et al., 2016; Gittings et al., 2018), resulting in 
decreased Chl (smaller phytoplankton) and elevated η. Contrarily, η is 
expected to decrease when SST increases during a La Niña event (e.g., 
from 2010 to 2011). Take η derived from NNη for example, η in TPO is 
inversely correlated with Chl (see Fig. 9a), with a Pearson correlation 
coefficient (r) of − 0.79, suggesting that Chl could be the main factor 
regulating the monthly variability of η. Here, Chl was also calculated as 
the median value of each ROI from the MODIS Chl monthly products. In 
contrast, the Pearson correlation coefficient between η and bbp is only 
− 0.54. The median bbp at 547 nm (bbp(547)) of each ROI is used for the 
scatterplots and correlation analysis in Fig. 9b, with bbp(547) derived 
from the monthly Rrs(λ) using QAA_v6. 

In contrast to the seasonal variation in TPO, η in SPG, NAO, and YE 
present strong seasonal patterns. In SPG, η peaks in austral summer 
(December to February) and attains a minimum in austral winter (June 

Fig. 8. Monthly variation of derived η by NNη, LS2, MM01, and QAA from January 2003 to December 2021 in (a) TPO, (b)SPG, (c) NAO, and (d) YE, respectively. 
The median values of η in the respective ROI are plotted with the solid lines, while the shaded areas indicate the standard deviation. Results from MM01 are aligned 
to the right y-axis, while results from the rest schemes are aligned to the left y-axis. 
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to August), with a much larger seasonal amplitude than that in TPO (see 
Fig. 8b). Take NNη for example, estimated η varied between 1.9 and 2.5, 
with a seasonal amplitude of ~0.6. Estimated η by LS2 and MM01 
present the same seasonal pattern as NNη, but with overall much higher η 
estimations by LS2 and much smaller η estimations by MM01, respec
tively. For LS2, estimated η varied between 2.2 and 6.2 in the last two 
decades with a seasonal amplitude of ~4.0. As discussed in Section 2.3, 
natural waters with η over 4 are hardly possible, given the ~λ− 4 de
pendency of the scattering by water molecules. Thus, predicted η by LS2 
could be questionable in SPG. Consistent with the conclusion in Section 
3.2, estimated η by MM01 are significantly underestimated in SPG, with 
η varying between 0.8 and 1. For QAA, it can be found that predicted η is 
constant at ~2 over the entire period. Thus, QAA fails to capture the 
seasonality of η in SPG. It is worth pointing out that η in SPG is highly 
correlated with Chl (r = 0.95), but is almost independent of bbp(547) (r 
= − 0.01) (see Fig. 9). Thus, it can be concluded that the seasonality of η 
in SPG can be well explained by the changes in Chl. 

The estimated η by NNη and QAA are quite consistent in NAO in both 
the temporal variation and the magnitude, with η generally varying 
between 0.8 and 1.6. In NAO, η features a different seasonal pattern with 
two peaks around March and August, respectively, and the latter peak 
prevails. As shown in Fig. 9a, the seasonality of η in NAO is also largely 
determined by Chl (r = − 0.77), but the correlation with Chl degrades 
compared to that in SPG. This is more likely because NAO is rich in 
CDOM and suspended matters originated from terrestrial inputs (Morel 
et al., 2010). Estimated η by MM01 exhibits similar temporal variations 
but with overall smaller values (~0.3). The seasonal variability of LS2- 
derived η is, however, almost opposite to the rest three schemes, and the 
seasonal amplitude (~2) is also much greater than by NNη and QAA. As η 
is a second-order parameter in LS2, its value is quite sensitive to the 
empirically estimated Kd(λ) and the subsequent bbp(λ) at the four 
selected wavelengths, which might have relatively large uncertainties in 
NAO. Note that the seasonal variability of LS2-derived η would be 
consistent with results from NNη if employing the NN-Kd scheme by 
Jamet et al. (2012) (results not shown here). Thus, further evaluations of 
LS2-derived Kd(λ) and bbp(λ) in NAO would be desired, particularly the 
applicability of the NN-Kd scheme by Jamet et al. (2012) and its updated 
version proposed in Loisel et al. (2018) that employed by LS2 in this 
effort. 

For the turbid waters in YE, estimated η by both NNη and LS2 pre
sents a strong seasonal cycle (see Fig. 8d), with η peaking in boreal 
spring and summer from April to June and reaching a minimum in 
boreal winter from December to February. However, significant dis
crepancies are observed for the median value and the amplitude of 
derived η by NNη and LS2 in the last two decades. In contrast, MM01 

predicts a constant η of 0 in YE with no seasonal variability. Predicted η 
by QAA shows no clear seasonal pattern but with overall high η values 
(~0.6). On one hand, given that YE is characteristic of high turbidity and 
turbid waters usually have relatively flatter backscattering spectra (Lobo 
et al., 2014), estimated η by NNη, with a median η value of ~ − 0.05 in 
the last two decades, appears more reasonable than predictions by QAA 
and LS2. In particular, LS2-derived η in YE ranges between ~ − 2 and 0, 
with a median value of − 0.81, which could be questionable and prob
ably a result of the limited applicability of LS2 in extremely turbid 
waters. On the other hand, the seasonal cycle of η obtained from NNη is 
also more reasonable from the oceanographic point of view. Since 
higher turbidity results in flatter backscattering spectra (i.e., smaller, 
close to nil, η) (Lobo et al., 2014), an inverse correlation between η and 
turbidity should be expected in turbid waters in YE, which is confirmed 
by the strong and inverse correlation between bbp(547) and η by NNη (r 
= − 0.9) (see Fig. 9b). The seasonal cycle of bbp(547) in YE can also be 
reasonably explained by the seasonal changes in turbidity observed from 
either satellite retrievals (Shen et al., 2010; Wei et al., 2021b) or field 
observations (Chen et al., 2003). Specifically, in boreal spring and 
summer, large amounts of freshwater discharge would dilute the con
centration of suspended sediment (flood season), resulting in overall low 
turbidity in YE, while high turbidity in boreal winter is due to wind- 
driven resuspension of suspended sediment and less freshwater 
discharge (dry season) (Chen et al., 2003). Thus, we can conclude that 
the seasonal cycle of η in YE can be well represented by NNη and the 
seasonality of η is mostly regulated by turbidity (or bbp). 

Comparisons among the four schemes suggest that NNη might be the 
best scheme to approach reasonable η estimations in terms of the spatial 
pattern, magnitude, and seasonality of η in the global ocean, while the 
rest three schemes all have limitations. Detailed discussions on the 
limitations of all four schemes can be found in Sections 4.1 and 4.2. 

3.4. Decadal changes of η 

The long-term variations of η might be useful to interpret the changes 
in the suspended particulate matter pool in the global ocean (Van
trepotte et al., 2011). Thus, we employ a simple trend analysis to 
investigate the decadal changes of η in the global ocean using NNη- 
derived η from the 19-year MODIS monthly series, with results 
demonstrated in Fig. 10. Here, the Matlab function trend within the 
Climate Data Toolbox was used for the trend analysis in this effort 
(Greene et al., 2019), and the trend of η was calculated only for grid cells 
with at least 50% valid η retrievals over the timespan. 

As shown in Fig. 10, the annual trends of η in the majority of the 
global waters (~82.2%) were not statistically significant from 2003 to 
2021 (i.e., grey areas in Fig. 10), which were also reported in the pre
vious calculations using the SeaWiFS monthly series from 1997 to 2007 
(Vantrepotte et al., 2011). Take the four ROIs of this study as examples, 

Fig. 9. Panel (a) shows the correlation between Chl and NNη-derived η in the 
four ROIs using the MODIS monthly composite data from January 2003 to 
December 2021. The dashed lines represent the best linear fit between Chl and η 
using Type-II regression for each of the ROI. Panel (b) is the same as panel (a) 
but for the correlation between bbp(547) and η. 

Fig. 10. Significant monotonic trends of NNη-derived η (p < 0.05, in % yr− 1) in 
the global ocean from MODIS monthly composites (from January 2003 to 
December 2021). The white areas indicate grid cells without valid or enough (>
50%) η retrievals over the timespan for the trend analysis, while the grey areas 
indicate no significant trends. 
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the slopes of the annual changes of η in TPO, SPG, NAO, and YE are 
0.012% yr− 1, − 0.15% yr− 1, − 0.35% yr− 1, and − 0.23% yr− 1, respec
tively, but these changes are not statistically significant (p > 0.1). On the 
other hand, the results of this effort and that of Vantrepotte et al. (2011) 
indicate overall decreasing trends of η for those waters with significant η 
changes (p < 0.05), especially in the southern hemisphere, such as the 
Southeast Pacific Ocean, the South Atlantic Ocean, and the South Indian 
Ocean. 

However, discrepancies are also found between these two studies, 
most notably in the Western Pacific Warm Pool (WPWP), where a sig
nificant increasing trend was reported in Vantrepotte et al. (2011) (>
4% yr− 1), while a slightly decreasing trend was observed in this effort (~ 
− 0.2% yr− 1, see Fig. 10). These discrepancies might be largely due to 
different periods investigated in these two studies, as trend analysis 
could be drastically impacted by events occurring over specific periods. 
In addition, as discussed in Vantrepotte et al. (2011), the annual changes 
of η in WPWP could reflect large-scale oscillations in the physical 
environment, such as the El Nino-Southern Oscillation (ENSO). Thus, 
the discrepancies observed in WPWP between this study and that in 
Vantrepotte et al. (2011) could also be related to ENSO. Take the 
Nino3.4 index for example, a significant increasing trend of the Nino3.4 
index was observed for the timespan (from November 1997 to October 
2007) used for the trend analysis in Vantrepotte et al. (2011), with a 
slope of 5.6% yr− 1 (p = 0.04). In contrast, the changes in the Nino3.4 
index were not statistically significant for the timespan from January 
2003 to December 2021 (slope = 0.0004% yr− 1, p = 1). However, to 
further explore the relationships between the seasonality of η and large- 
scale oscillations and climate indices, a comprehensive and dedicated 
analysis would be required, especially for different oceanic domains, 
which is out of the scope of this study. 

4. Discussion 

4.1. Limitations and uncertainties associated with conventional η schemes 

The four schemes for η estimation examined in this study are 
fundamentally empirical, and thus their performances in global oceans 
are largely determined by the data used for model training and the al
gorithm architecture. For both MM01 and QAA, where the primary 
objective of η is to model spectral bbp(λ), η is simply estimated from the 
blue-green band ratio of Rrs(λ), which, to the first order, represents an 
overall loading of the constituents suspended or dissolved in oceanic 
waters (Shang et al., 2019). Thus, a simple blue-green ratio of Rrs does 
not have the flexibility to estimate the widely varying η (Lee et al., 
2003), which can be observed in Fig. 5d and Fig. 6d. For example, QAA 
failed to interpret the seasonality of η in ocean gyres while MM01 failed 
in turbid coastal waters (Fig. 8). Furthermore, when an intermediate 
variable, such as Chl in MM01 and Kd(λ) in LS2, is introduced in the 
process, it would probably increase the uncertainties for the estimated η. 
For instance, uncertainties of derived Chl by the OCI algorithm could be 
considerably large, especially in optically complex waters (Cota et al., 
2004; Le et al., 2013; Shang et al., 2019). Likewise, empirically esti
mated Kd(λ) in LS2, and the subsequent semi-analytically estimated 
bbp(λ), could be also of large uncertainties, with these uncertainties 
being propagated to the estimated η. 

Though the two steps scheme (LS2) could allow better interpretation 
of the spectral behavior of bbp(λ) as they are estimated independently at 
each band, the estimated η is more sensitive to noise by model con
struction, particularly the uncertainties in the empirically estimated 
Kd(λ) and subsequent bbp(λ). As discussed earlier, the implementation of 
a different version of the NN-Kd scheme (i.e., Jamet et al. (2012)) would 
even alter the seasonal variability LS2-derived η (see Section 3.3). In 
addition, as η is calculated from LS2-derived log(bbp(λ)) and log(λ) via 
linear regression, the wavelengths used in the linear fitting would 
significantly alter the interpretation of η in the global ocean (Loisel et al., 
2006; Vantrepotte et al., 2011; Jorge et al., 2021). For instance, the 

spatial distribution of LS2-derived η acquired from MODIS in this study 
is quite different from that observed using OLCI (Jorge et al., 2021), 
which could probably be attributed to the band configurations in these 
two sensors. In particular, OLCI has radiometric measurements at 510 
nm, but not 532 nm compared to MODIS. Note that Dr. Daniel Jorge also 
implemented LS2 to the same MODIS Rrs(λ) measurements in the SPG 
region, and consistent η estimations were obtained with the results of 
this study (results not shown here). 

Moreover, the spatial pattern of LS2-derived η presented in this study 
is quite consistent with the result reported by Loisel et al. (2006) using 
SeaWiFS measurements at 490, 510, and 555 nm, with the latter pre
senting overall smaller η retrievals in the extremely clear waters (η =
3.5–4). The discrepancies between LS2-estimated η in this effort and that 
in Loisel et al. (2006) could be mainly attributed to the fact that Loisel 
et al. (2006) excluded bbp(λ) at ~440 nm from the calculation of η due to 
strong absorption by phytoplankton at this band. For example, if 
bbp(443) is excluded in this effort, LS2-derived η from MODIS would be 
significantly increased, with a global mean of ~3.5 for the same MODIS 
measurement in May 2018. In addition, the values of bbw(λ) employed in 
LS2 also have significant impacts on the estimated η. For example, 
employing the constant bbw(λ) values of Morel (1974) in this effort 
would result in ~0.5 smaller η on average for the global ocean compared 
to that using salinity- and temperature-dependent bbw(λ). Thus, the se
lection of different bbw(λ) values could also partly explain the overall 
higher η estimation in this study compared to that in Loisel et al. (2006), 
with the latter employing the constant bbw(λ) values of Morel (1974). 
Thus, the different η estimations by LS2 in these reports could be mainly 
attributed to the inversion system, particularly the wavelengths and 
bbw(λ) values used for η calculation, rather than the differences in the 
satellite measurements. 

4.2. Dependency of NNη on the training dataset 

The applicability and uncertainty of the estimated η by NNη are 
largely determined by the representativeness of the dataset used in the 
training process. To evaluate the dependency of the proposed NNη on the 
training dataset, a new batch of 400,000 simulations was generated, 
where n1 and n2 were modeled following the default parametrizations in 
IOCCG-OCAG (2003), 

n1 = − 0.4+
1.6 + 1.2R

1 +
̅̅̅̅̅̅̅
Chl

√ , (19)  

n2 = − 0.5+
2.0 + 1.2ℜ
1 +

̅̅̅̅̅̅̅
Chl

√ . (20) 

With Eq. (19) and Eq. (20), the simulated η is found within in range 
of − 0.6–2.3 and the resulting simulations are hereafter referred to as 
Syndata-new. Following the same network configuration as NNη, a 
separate neural network, termed NNη-new, was trained using 80% of the 
simulations in Syndata-new (randomly selected). 

We implemented NNη-new to the MODIS monthly composite data in 
May 2018 and compared the derived η in global oceans with that using 
NNη. As shown in Fig. 11, the estimated η by NNη-new in the global 
ocean is almost linearly correlated with that by NNη (r = 0.99), but NNη- 
new predicts systematically smaller η than NNη, especially in the 
oligotrophic oceans (high η values). The median ratio between estimated 
η by NNη and NNη-new is 1.34 (see Fig. 11), which is highly coincident to 
the ratio (~1.38) of median synthetic η values in Syndata and Syndata- 
new, which are 1.59 and 1.15, respectively. Also, as shown in the insert 
figure of Fig. 11, the median η value in the global ocean estimated by 
NNη (~1.6) is ~0.4 larger than that estimated by NNη-new (~1.2) (see 
also the histogram for the difference between estimated η by NNη and 
NNη-new), suggesting the dependency of NNη on the training dataset. 
However, it is worth pointing out that the overall changes in the esti
mated η by NNη and NNη-new in global oceans are still within the un
certainties obtained from field measurements. 
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It is always preferred to have a training dataset that is as represen
tative of the natural waters as possible for the robust performance of a 
neural network-based scheme. In this study, the uncertainties in the 
estimated η by NNη associated with the dependency of the training 
dataset could be within an acceptable range. On one hand, the range of 
the synthetic η in Syndata was delicately simulated to cover the range of 
η obtained from the in-situ measurements in the global ocean (see 
Fig. 1b). On the other hand, the upper limit of η was determined by 
theoretic analysis (see Section 2.3). Thus, simulations in Syndata could 
be representative of most waters in the natural environment and the 
predicted η by NNη could be more reliable than that by NNη-new. 
However, the performance of NNη could be further improved by 
updating the training dataset with more reliable field measurements of 
Rrs(λ) and η from the global ocean. 

4.3. Implication for the inversion of IOPs 

In most IOPs retrieval algorithms, spectral bbp(λ) is obtained from 
bbp(λ0) and η (Lee et al., 2002; Werdell et al., 2013). Thus, uncertainties 
in η would have direct impacts on the inverted bbp(λ) and a(λ) (Lee et al., 
2010), especially for the wavelengths that are far from the reference 
wavelength (Yu et al., 2021). Here we try to demonstrate the potential 
impacts of η on the inversed IOPs by evaluating the performance of 
QAA_v6 in the global ocean but with η adopting the values estimated 
from NNη, with the new algorithm termed QAA_NN as in Lee et al. 
(2003). The performance of QAA_NN is evaluated by the median per
centage difference (MPD) of derived IOPs by QAA_NN for a(λ) and bbp(λ) 
at three MODIS bands centered at 412, 443, and 488 nm, with MPD 
calculated as 100% × median [(QAA_NN – QAA_v6) / QAA_v6]. Sta
tistics of inversed IOPs for the four ROIs and the global oceans are 
tabulated in Table 1. Note that statistics for derived IOPs at 547 and 667 
nm are not shown here as they are used as the reference wavelengths in 
QAA_v6 for clear and turbid waters, respectively. Thus, derived IOPs at 
547 nm will not be affected by the selection of η values in clear waters 
and the same for derived IOPs at 667 nm for turbid waters. 

For the four ROIs, η estimated by NNη and QAA are overall compa
rable in SPG (MPD = 3.3%), while significant divergences are found in 

coastal and tropic oceans, especially in YE (MPD = − 64.2%). As a result, 
derived bbp(λ) by QAA_NN differ largely from that by QAA_v6 in YE with 
MPD of derived bbp(412) approximating − 19.0%. In comparison, the 
MPD of derived bbp(412) by QAA_NN in TPO, NAO, and SPG are − 7.5%, 
− 3.3, and 1.9, respectively, with the minimal difference found in SPG. 
On average, the estimated bbp(λ) by QAA_NN at 412 nm is 5.5% smaller 
than that by QAA_v6 in global oceans, and their differences narrow 
down toward longer wavelengths. Since a(λ) is derived algebraically 
from Rrs(λ) and bbp(λ), the changes in η would also affect the retrieved a 
(λ), but the impacts are smaller than that on derived bbp(λ) as shown in 
Table 1. The negligible impact of η on retrieved a(λ) in SPG (MPD < 1%) 
is mainly because bbw(λ) is the dominant factor for the inversion of a(λ) 
as the values of bbw(λ) at these bands are overall greater than bbp(λ) in 
oligotrophic ocean gyres. Compared to the MPD values of η in the four 
ROIs, it can be found that η is a secondary parameter in regulating the 
retrievals of IOPs in QAA (Lee et al., 2002), especially for wavelengths 
close to the reference wavelength. 

Nevertheless, as shown in Table 1, employing η values from NNη 
would alter the retrieved values of IOPs, particularly for retrievals in 
turbid waters in YE, which will subsequently affect the quantitative 
evaluations of bbp(λ) derivative products, such as POC (Stramski et al., 
1999) and particle mass concentrations (Boss et al., 2009). Thus, accu
rate estimations of η in the global ocean are certainly desired. Based on 
evaluations with the in-situ dataset and satellite imagery discussed in 
this effort, estimated η by NNη could be more accurate and reasonable 
than that in QAA for the global ocean and is thus recommended for the 
retrieval of IOPs by QAA_v6 or GIOP in the future applications. 

5. Conclusions 

In this study, the spectral Rrs(λ) at six MODIS visible bands were used 
to estimate η with a scheme based on a neural network (NNη). Evaluation 
results with field measurements, synthetic datasets, and MODIS imagery 
show that NNη could have overall better performance than the con
ventional schemes (LS2, MM01, and QAA) with improved retrieval ac
curacy when validated with quality-controlled field measurements. 
More importantly, η estimated by NNη presents more reasonable pat
terns in both the spatial distribution and the seasonal variability, which 
are consistent with field observations and can be well explained. In 
contrast, the conventional schemes, with their limitation and un
certainties discussed in detail in this effort, predict questionable η in the 
global ocean in either the magnitude or the spatial distribution pattern. 
In particular, the comparison between NNη and LS2 shows that it is 
better to directly estimate η from Rrs(λ) when a neural network-based 
scheme is employed, as intermediate products, such as Rrs-derived 
Kd(λ) and bbp(λ) in LS2, could introduce extra uncertainties to the esti
mated η. With the implementation of NNη to the MODIS monthly com
posites from 2003 to 2021, we show that η features strong seasonal 
cycles in most of the global ocean, but the decadal changes in η are 
rather insignificant in the majority of the global oceans, at least for the 
period investigated in this effort. 

Fig. 11. Scatterplot between estimated η by NNη and NNη-new in global oceans 
using the MODIS monthly composite data in May 2018. The color of the scatter 
point indicates the frequency that is normalized to 1. The black dashed line 
indicates a 1:1 relationship, while the red dashed line indicates the best linear 
fit from Type-II regression. The insert figure shows the histograms of estimated 
η by NNη and NNη-new of the same MODIS data, as well as the difference be
tween estimated η by the two schemes (i.e., NNη – NNη-new). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1 
The median percentage difference (MPD) of derived IOPs by QAA_NN in com
parison to that by QAA_v6. Statistics are presented for the four regions of interest 
and the global ocean for a(λ) and bbp(λ) at 412, 443, and 488 nm, respectively. 
The last row presents the MPD of η estimated by NNη compared to that by 
QAA_v6.  

MPD (%) TPO SPG NAO YE Global 

bbp(412) − 7.5 1.9 − 3.3 − 19.0 − 5.5 
bbp(443) − 5.7 1.5 − 2.5 − 16.4 − 4.1 
bbp(488) − 3.1 0.9 − 1.4 − 12.8 − 2.3 
a(412) − 3.1 0.9 − 1.6 − 18.0 − 2.3 
a(443) − 2.6 0.8 − 1.3 − 15.8 − 1.9 
a(488) − 1.5 0.6 − 0.8 − 12.4 − 1.2 
η − 14.5 3.3 − 7.1 − 64.2 − 11.2  
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It is worth pointing out that NNη, the same as other algorithms based 
on NN, is dependent on the training dataset, particularly the range of η in 
the training dataset. As the training dataset (Syndata) for NNη covers a 
rather broader range of water types that could be encountered in natural 
waters, the applicability of NNη in the global ocean is ensured. Further 
efforts are still required to obtain reliable bbp(λ) measurements in 
various types of water in the global ocean to 1) evaluate the performance 
of NNη, and 2) expand the training dataset used in this effort. 
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