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A B S T R A C T   

Water-leaving albedo (αw), defined as the ratio of water-leaving irradiance to downwelling irradiance just above 
the surface, is a major component of ocean surface albedo (α) but has long been ignored or underrepresented. A 
semi-analytical scheme based on inherent optical properties (IOPs), termed IOPs-αw, is proposed in this study to 
estimate spectral αw(λ) from ocean color measurements. Evaluations with numerical simulations of radiative 
transfer show that IOPs-αw outperforms the conventional scheme based on chlorophyll-a (Chl) concentration. 
The median absolute percentage difference (MAPD) of derived αw(λ) from IOPs-αw is generally less than 3% in 
the blue-green spectral domain, in comparison to MAPD of over 40% for estimated αw(λ) from the Chl-based 
scheme. IOPs-αw is later implemented to monthly composite data of the Visible Infrared Imaging Radiometer 
Suite (VIIRS), where reasonable spatial distributions and seasonal patterns of αw(λ) are obtained. In particular, 
broadband αw in the visible domain, termed αw_VIS, obtained via IOPs-αw is over 50% higher than the previous 
estimation by the Chl-based scheme in most oceanic waters. Furthermore, this study concludes that αw_VIS could 
contribute up to 20% to α in oceanic waters under low solar-zenith angles. Thus, we suggest that neither the 
spatial variability of αw_VIS nor the contribution of αw_VIS to α shall be neglected, and it is necessary to incorporate 
IOPs-αw into current parameterizations of α in coupled ocean-atmosphere and climate models.   

1. Introduction 

Ocean is the most important heat buffer on Earth and plays a key role 
in modulating the coupled ocean-atmosphere system by reflecting and 
absorbing solar energy (Abraham et al., 2013; Henderson-Sellers and 
Wilson, 1983). A fundamental parameter to quantify the amount of 
ocean-absorbed solar energy is the ocean surface spectral albedo, α(λ), 
which is defined as the ratio of spectral upwelling plane irradiance, Eu(z 
= 0+, λ), to spectral downwelling plane irradiance, Ed(z = 0+, λ), just 
above the sea surface that is indicated by z = 0+, and λ refers to light 
wavelength in vacuum (Payne, 1972). The units of spectral irradiance 
are W m− 2 nm− 1. Note that in-water biogeochemical processes such as 
photosynthesis or photolysis affect α(λ) (Hense et al., 2017), so that 
variations in α(λ) can imply the changes in the primary production and 
ocean carbon uptake (Behrenfeld and Falkowski, 1997; Lee et al., 1996). 
In addition, the integral of α(λ) over the spectrum of 200 – 3000 nm 
weighted by Ed(z = 0+, λ), termed the broadband ocean surface albedo 
(αbroad), is of particular interest to coupled ocean-atmosphere models for 
the determination of solar heating in the upper ocean and radiation 

budget in the atmosphere (Faizal and Rafiuddin Ahmed, 2011; Jin et al., 
2004). Therefore, accurate quantification of α(λ) is strongly desired. 

The majority of peer-reviewed studies on earth albedo focused on 
land, cloud, ice, and snow. Studies of ocean surface albedo are much less 
documented, which is largely attributed to the perception that αbroad is 
considered a constant or can be parameterized with simple terms 
(Bender et al., 2006; Gupta et al., 1999). For instance, many earlier 
schemes assumed that αbroad is only dependent on the solar-zenith angle 
(Briegleb et al., 1986; Taylor et al., 1996), as they deemed the surface- 
reflected solar radiation dominated the upwelling irradiance. Some 
others incorporated wind information based on observations and theo-
retical analysis (Cox and Munk, 1954; Hansen et al., 1983; Jin et al., 
2002), especially for rough sea surfaces with wind-driven foams and 
whitecaps (Koepke, 1984; Li et al., 2006). Scattering of solar radiation 
within the water column was also recognized to contribute to upwelling 
irradiance (see Fig. 1) (Chang and Dickey, 2004; Jin et al., 2002; Ohl-
mann et al., 2000; Payne, 1972), but the incorporation of water-leaving 
radiation to the quantification of α(λ) has long been ignored until 
recently (Feng et al., 2016; Jin et al., 2011; Séférian et al., 2018). 
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The contribution of light scattering in the water column to α(λ), 
termed water-leaving albedo αw(λ), is defined as the ratio of water- 
leaving irradiance Ew(λ) to Ed(z = 0+, λ). Theoretically, Ew(λ) can be 
calculated if the water-leaving radiance (Lw(λ), in W m− 2 nm− 1 sr− 1, see 
Fig. 1), as well as its angular distribution, are known (Mobley, 1994; 
Mobley et al., 1993). Generally, Lw(λ) varies with seawater inherent 
optical properties (IOPs, i.e., absorption and scattering coefficients) and 
solar-sensor geometry, while its angular variation can be represented by 
a bidirectional reflectance distribution function (BRDF) (Morel and 
Gentili, 1991; Morel and Gentili, 1993; Morel and Gentili, 1996). Based 
on the “Case-1” water assumption (Morel and Prieur, 1977), IOPs can be 
parameterized by the concentration of phytoplankton pigment, mostly 
the chlorophyll-a (Chl, in mg m− 3) (Morel and Maritorena, 2001). The 
“Case-1” water assumption was commonly adopted by the previous 
schemes for the estimation of αw(λ) (Feng et al., 2016; Jin et al., 2011; 
Séférian et al., 2018). 

However, there is no clear quantitative boundary of “Case-1” waters 
(IOCCG, 2000), and the covariance between phytoplankton and co- 
existing optically significant constituents, such as colored dissolved 
organic matter (CDOM) and non-algal particulate matter, could be 
complicated even in the open ocean (Bricaud et al., 1981; Lee and Hu, 
2006; Mobley et al., 2004). More importantly, the validity of IOPs 
inferred from Chl relies heavily on the Chl-specific absorption and Chl- 
specific backscattering coefficients, which vary greatly in the global 
ocean (Bricaud et al., 1995; Huot et al., 2008; Loisel and Morel, 1998; 
Reynolds et al., 2001; Stramska et al., 2003). Consequently, large un-
certainties of inferred IOPs from Chl will be propagated to the estimated 
αw(λ), especially when remotely sensed Chl is also subject to large un-
certainties (Carder et al., 1999; O’Reilly et al., 1998). Further, for 
optically complex waters where the covariance between Chl and IOPs of 
other seawater constituents no longer holds, αw(λ) cannot be estimated 
from the above schemes. As an alternative, Feng et al. (2016) empiri-
cally related αw(λ) to remote sensing reflectance (Rrs(λ), in sr− 1), but 
such empirical relationships are always data-driven and have limited 
applicability. Because IOPs are the essential properties to reconstruct 
angular Lw(λ) and can be directly derived from ocean color (Gordon 
et al., 1988; Lee et al., 2002; Loisel and Stramski, 2000; Maritorena 
et al., 2002; Roesler and Perry, 1995; Shi and Wang, 2019), a scheme to 
estimate αw(λ) based on IOPs would be preferred. 

Lee et al. (2011) developed an IOPs-centered system to correct the 
angular effects of Lw(λ), which, in turn, can be used to model angular 
Lw(λ) from known IOPs. Based on Lee et al. (2011), we propose a semi- 

analytical scheme, termed IOPs-αw, to estimate αw(λ) from Rrs(λ). The 
developed scheme is first evaluated with radiative transfer simulated 
datasets using HydroLight and then compared with previous schemes 
based on Chl or Rrs(λ). The sensitivity of IOPs-αw to wind speed, particle 
scattering phase function, Raman scattering, and chlorophyll fluores-
cence are also investigated. IOPs-αw is further applied to the Visible 
Infrared Imaging Radiometer Suite (VIIRS) monthly composite data to 
demonstrate the global distribution of αw(λ) and the seasonal pattern of 
broadband αw in the visible domain (αw_VIS). Finally, the relative 
contribution of αw_VIS to αbroad is discussed. 

2. Data and methods 

2.1. Schemes for the spectral water-leaving albedo 

As illustrated in Fig. 1, the upwelling irradiance has two components, 
thus the ocean surface albedo is also composited of surface-reflected 
component and water-leaving component. Here we term the water- 
leaving component as the spectral water-leaving albedo (αw(λ)), which 
is expressed as 

αw(λ, θs) =
Ew(λ, θs)

Ed(z = 0+, λ, θs)
, (1)  

where Ew(λ, θs) is the irradiance leaving the water surface contributed by 
photons scattered within the water column (i.e., a weighted sum of all 
the water-leaving radiance Lw(λ)), Ed(z = 0+, λ, θs) is the downward 
plane irradiance just above the sea surface, and θs is the solar-zenith 
angle. For remote sensing platforms, Ew(λ, θs) cannot be measured 
directly, but can be calculated based on its relationship with Lw(λ), 
which varies with angular geometry, i.e., solar-zenith angle θs, viewing- 
zenith angle θv, and the viewing azimuth angle relative to the solar plane 
φ. Theoretically, Ew(λ, θs) is the integral of Lw(λ, θs, θv, φ) over all 
viewing angles, which correspond to all upwelling directions that pho-
tons travel, weighted by the cosine of θv. In the following, the three 
angles (θs, θv, and φ) are collectively represented as Ω unless further 
clarification is required. Thus, Ew(λ, θs) can be expressed as 

Ew(λ, θs) =

∫2π

0

∫π/2

0

Lw(λ, θs, θv,φ)cosθvsinθvdθvdφ. (2) 

In ocean color remote sensing, remote sensing reflectance Rrs(λ) is 
defined as the ratio of Lw(λ, θs, θv, φ) to Ed(z = 0+, λ, θs) 

Rrs(λ, θs, θv,φ) =
Lw(λ, θs, θv,φ)

Ed(z = 0+, λ, θs)
. (3) 

By substituting Eqs. (2) and (3) into Eq. (1), one can easily obtain 

αw(λ, θs) =

∫2π

0

∫π/2

0

Rrs(λ, θs, θv,φ)cosθvsinθvdθvdφ. (4) 

For efficient computation, the angular distribution of Lw(λ, θs, θv, φ) 
is assumed azimuthally symmetric about the solar plane in this study, 
which is also the default setting in HydroLight (Mobley and Sundman, 
2016). Thus, one can rewrite Eq. (4) as 

αw(λ, θs) = 2
∫π

0

∫π/2

0

Rrs(λ, θs, θv,φ)cosθvsinθvdθvdφ. (5) 

Therefore, the key to estimate αw(λ, θs) is to obtain the angular dis-
tribution of Rrs(λ, θs, θv, φ) for θv ranging from 0◦ to 90◦ and φ from 0◦ to 
180◦. For simplicity, the angular dependency of all radiometric terms is 
omitted in the following text unless further clarification is required. 

2.1.1. IOPs-based scheme (IOPs-αw) 
To explicitly separate the phase function effects resulted from mo-

Fig. 1. Schematic pathways of the surface-reflected radiance (Lr) and the 
water-leaving radiance (Lw), the two components of upwelling irradiance (Eu). 
The symbol Ω refers to the angle dependencies of Lr and Lw. Note that this is a 
simplified plot that does not specifically show various light scattering processes 
in water and atmosphere. 
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lecular and particulate scattering, the angular distribution of Rrs(λ) can 
be modeled from IOPs (Lee et al., 2011) 

Rrs(λ,Ω) =

(

Gw
0 (Ω)+Gw

1 (Ω)
bbw(λ)
κ(λ)

)
bbw(λ)
κ(λ)

+

(

Gp
0(Ω)+Gp

1(Ω)
bbp(λ)
κ(λ)

)
bbp(λ)
κ(λ)

, (6)  

where bbw(λ) and bbp(λ) are the backscattering coefficients of pure 
seawater and particles, respectively. κ(λ) is the sum of total absorption 
coefficient a(λ) and backscattering coefficient bb(λ) (i.e., κ(λ) ≡ a(λ) +
bb(λ)), with bb(λ) = bbw(λ) + bbp(λ). G0

w(Ω), G1
w(Ω), G0

p(Ω), and G1
p(Ω), 

collectively termed G, are model coefficients that are dependent on 
angular geometry and assumed to be independent of IOPs and wave-
length (Lee et al., 2011). The values of G can be retrieved from a look-up- 
table (LUT), termed G-LUT, for given angular geometry. Although a G- 
LUT was provided in Lee et al. (2011), we updated this LUT following 
the same approach in Lee et al. (2011) by expanding viewing angles and 
seawater IOPs using the simulated dataset in this study (described in 
Section 2.2). Specifically, G-LUT in Lee et al. (2011) excludes scenarios 
with large viewing- and solar-zenith angles (i.e., θv > 70◦ and θs > 75◦), 
which need to be expanded for more accurate estimation of αw(λ), 
although Rrs(λ) of extremely large angles contribute much less to αw(λ) 
due to the cosine weighting. Also, the dataset of this study includes more 
optically complex waters, thus the resultant G-LUT could have broader 
applicability. 

With known G values, the remaining unknowns to compute angular 
Rrs(λ) are a(λ) and bb(λ) as shown in Eqs. (5) and (6). Following the 
concept of the quasi-analytical algorithm (QAA) (Lee et al., 2002), a(λ) 
and bb(λ) can be determined algebraically by solving Eq. (6) (detailed 
solutions are given in Eqs. (15) – (20) in Lee et al. (2011)). Note that the 
latest update (version 6) of QAA, available at http://www.ioccg.org/gro 
ups/Software_OCA/QAA_v6_2014209.pdf, is incorporated into the IOP 
inversion algorithm, which is hereafter termed QAA_Lee11. 

The absorption coefficient of “pure” seawater aw(λ) at two reference 
wavelengths (i.e., 550 and 670 nm) and spectral bbw(λ) are required for 
the IOPs retrieval from QAA_Lee11. The values of aw(λ) at 550 and 670 
nm were taken from Pope and Fry (1997) following the recommendation 
of International Ocean Colour Coordinating Group (IOCCG) protocol 
(IOCCG Protocol Series, 2018). Values of bbw(λ) were taken from Zhang 
et al. (2009), which were computed with salinity of 35 PSU and tem-
perature of 20 ◦C. The proposed scheme is hereafter referred to as IOPs- 
αw, which requires inputs of Rrs(λ) and Ω, where Rrs(λ) is used to derive 
IOPs and Ω is used to retrieve G values from G-LUT. 

2.1.2. Chl-based scheme (Chl-αw) 
In a previous αw scheme (Feng et al., 2016), angular Lw(λ) is 

expressed as (Gordon et al., 1988; Morel and Gentili, 1993) 

Lw(λ,Ω)

Ed(z = 0+, λ, θs)
=

{
(1 − ρ)

[
1 − ρ

(
θ’

sθv
) ]

(1 − rR)n2

}
f (θs)

Q
(
θ’

s, θv,φ
)

bb(λ)
a(λ)

, (7)  

where ρ is the air-water Fresnel reflectance at the interface for the whole 
downwelling irradiance (Sun + sky) above the surface, ρ(θs

’,θv) is the 
internal Fresnel reflectance for the associated directions (θs

’,θv), with θs
’ 

the corresponding refracted zenith angle in the water. r is the water-air 
Fresnel reflectance for the whole diffuse upwelling irradiance, R is the 
irradiance reflectance just beneath the surface, and n (= 1.34) is the 
refractive index of water. For simplicity, the reflection-refraction term 
within the braces is replaced by R. Q is the bidirectional function, and f 
is the model factor that governs the magnitude of R with R = f × bb/a. By 
substituting Eq. (3) with Eq. (7), one can rewrite a simple expression to 
describe angular Rrs(λ) 

Rrs(λ,Ω) = ℜ×
f
Q
×

bb(λ)
a(λ)

. (8) 

Thus, R and f/Q at different solar-sensor geometry are required to 
compute angular Rrs(λ). Note that R is slightly dependent on wind speed 
(w, m/s), particularly for large solar-sensor zenith angles (Morel et al., 
2002; Wang, 2006). In this study, R is first computed following the LUT 
provided in Fig. 5 of Gordon (2005) and later corrected for the solar- 
zenith angle effects (Wang, 2006). LUT for f/Q is extracted from Eq. 
(B4) and Table 3 of Morel et al. (2002) for Chl ranging between 0.03 and 
10 mg/m3 and θs ranging between 0 and 87.5◦. For input Chl outside the 
range of 0.03 to 10 mg/m3, the closest boundary Chl is used to retrieve f/ 
Q value from the LUT, following the same practice as l2gen in the Sea- 
viewing Wide Field-of-view Sensor (SeaWiFS) Data Analysis System 
(SeaDAS). 

For schemes based on Chl (Feng et al., 2016; Jin et al., 2011; Séférian 
et al., 2018), IOPs are estimated from Chl using Eqs. (13) and (16) of 
Morel and Maritorena (2001), with Chl first obtained from satellite- 
observed Rrs(λ) using the ocean color index (OCI) algorithm (Hu et al., 
2012; Wang and Son, 2016), which is a merged algorithm of the band- 
ratio OCx algorithm (O’Reilly et al., 1998) and the color index (CI) al-
gorithm (Hu et al., 2012). The scheme proposed in this section is here-
after denoted as Chl-αw. To summarize, Chl-αw requires input Rrs(λ), Ω 
and w, where Rrs(λ) is used to derive Chl, while Ω and w, along with 
derived Chl, are used to retrieve f/Q and R at different Ω to model the 
angular Rrs(λ, Ω). 

2.1.3. The Jin11 scheme 
Jin et al. (2011) parameterized αw(λ) as two separate components 

contributed by direct and diffuse irradiance incident upon the sea sur-
face, which is hereafter termed the Jin11 scheme. With the consider-
ation of multiple reflections of the upwelling irradiance at the water-air 
interface, Jin et al. (2011) expressed the direct αw(λ), termed αw_dir(λ), as 

αw dir(λ, θs) =

{
(1 − r)(1 − ρ)

(1 − rR)

}

f (θs)
bb(λ)
a(λ)

. (9) 

Here, both r and ρ (notations explained in Section 2.1.2) are cor-
rected for the impacts of wind speed (see Eqs. (1) and (7) in Jin et al. 
(2011)). Different from Chl-αw, the BRDF effect is ignored in Jin11, 
while f in Eq. (9) is expressed as a function of IOPs and θs following Eq. 
(14) of Morel and Gentili (1991). Consistent with Chl-αw, IOPs in Eq. (9) 
are parameterized by Chl, which is derived using the OCI algorithm. The 
diffuse component of αw(λ), termed αw_dif(λ), is equivalent to αw_dir(λ) 
with θs as 47.47◦, which is the effective angle to account for the diffuse 
contribution of the incident irradiance (Morel and Gentili, 1991). αw(λ) 
is then simply a linear combination of αw_dif(λ) and αw_dir(λ), weighted by 
the fraction of diffuse downwelling irradiance (fdif) in the total down-
welling irradiance, 

αw(λ, θs) =
(
1 − fdif

)
αw dir(λ, θs)+ fdif αw dif (λ, θs) (10) 

Note that fdif depends on the atmospheric conditions, wavelength, 
and solar elevation, but it has a relatively small impact on the estimated 
αw(λ) as the estimated αw_dif(λ) and αw_dir(λ) are overall comparable 
(difference within 20% for most waters in the simulated dataset of this 
study). Also, as discussed in Section 3.2.1, the major uncertainties of 
Jin11 are introduced by the Chl-IOPs relationship. Thus, we simply use a 
constant fdif of 0.3, assuming zero cloud fraction (Kasten and Czeplak, 
1980), for easy implementation of Jin11 in this study. 

2.1.4. Empirical scheme (Feng16) 
Given the complexity and computation cost of Chl-αw, Feng et al. 

(2016) also related αw(λ) empirically to nadir-viewed Rrs(λ) using a 
quadratic equation (hereafter denoted Feng16), 

αw(λ, θs) = m1(λ, θs)(πRrs(λ) )2
+m2(λ, θs)(πRrs(λ) ), (11)  

where m1 and m2 are empirical coefficients that can be retrieved from a 
LUT for specific wavelengths and θs. Note that Feng et al. (2016) ob-
tained the empirical coefficients in Eq. (11) by the least-squares fitting 
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from a simulated dataset based on Eq. (7) with different inputs of Chl 
and w. Therefore, Feng16 can also be treated as a variant of the Chl- 
based scheme. In this study, we only evaluate Feng16 for the esti-
mated αw(410) at θs = 30◦, as empirical coefficients are only available 
for this case, with m1 and m2 as − 6.5 and 0.87, respectively (see Fig. 3 of 
Feng et al. (2016)). 

2.1.5. Scheme based on normalized water-leaving reflectance (ρw-αw) 
Assuming an isotropic distribution of water-leaving radiance Lw(λ), 

Ew(λ) would equal to πLw(λ) and αw(λ) can be simply calculated as 
πRrs(λ). Note that satellite Rrs(λ) products are corrected to Rrs(λ) viewed 
at nadir with the Sun at the zenith (Gordon and Wang, 1994), the esti-
mated αw(λ) from satellite Rrs(λ) would be equivalent to the normalized 
water-leaving reflectance ρw(λ) (Wang, 2006). This scheme is hereafter 
referred to as ρw-αw. 

2.2. Simulated datasets via radiative transfer 

Determination of αw(λ) in the field is still challenging as there is no 
practical approach to separate water-leaving irradiance from the total 
upwelling irradiance. Numerical simulations of radiative transfer in the 
ocean with HydroLight code (Mobley and Sundman, 2016) solves the 
scalar radiative transfer equation and provides the angular distribution 
of water-leaving radiance (thus Ew(λ)) as the output, allowing evalua-
tions of different αw(λ) schemes (Chang and Dickey, 2004; Mobley and 
Sundman, 2016; Ohlmann et al., 2000). Note that HydroLight ignores 
the polarization state of radiance, which could introduce errors to the 
simulated radiances at various angles compared to that in the natural 
environment. However, the inaccuracies in the obtained irradiance from 
scalar radiative transfer are negligible because the errors in the radiance 
tend to average out when radiance is integrated over all directions in the 
upper hemisphere. General HydroLight configurations are the same as 
that in Yu et al. (2021), where data are simulated using HydroLight 5.3 
with the option of input IOPs by user-supplied total absorption (a(λ)) 
and attenuation (c(λ)) coefficients. The water column is assumed infi-
nitely deep and homogeneous, and inelastic radiative processes (such as 
Raman scattering by water molecules and chlorophyll fluorescence) are 
excluded. 

IOPs of “pure” seawater are also required for Hydrolight simulations, 
with bbw(λ) employed the same values as that used in IOPs-αw (see 
Section 2.1.1). For the values of spectral aw(λ), although the IOCCG 
protocol recommends the use of Morel et al. (2007) for aw(λ) up to 420 
nm and Pope and Fry (1997) for aw(λ) above 420 nm (IOCCG Protocol 
Series, 2018), there are still debates on the “true” value of the absorption 
coefficients of “pure” water in the blue-green domain, especially for 
“pure” seawater of oceanic environments. Our previous assessments 
show that the aw(λ) values of Lee et al. (2015) could be closer to the 
“true” absorption coefficient of “pure” seawater in the 350 – 550 nm 
domain (Wei et al., 2021; Yu et al., 2019b). Thus, aw(λ) values for 
Hydrolight simulations were adopted from Lee et al. (2015) for 350 – 
550 nm and Pope and Fry (1997) for 550 nm and above. 

The input a(λ) and c(λ) are synthesized based on the 500 IOP data of 
IOCCG report #5 (IOCCG, 2006), where Chl ranges between 0.03 and 
30.0 mg/m3 and IOPs of water constituents are determined randomly, 
with constraints, from Chl. Descriptive files for the IOPs synthesis, 
referred to as the datafile hereafter, can be found at https://www.ioccg. 
org/groups/OCAG_data.html. Different from that described in the 
datafile, we deliberately increase the variation ranges of the absorption 
and backscattering coefficients by non-algal particles in relatively pro-
ductive waters so that the simulations will cover a wider range of water 
types. Specifically, for simulations where input Chl is larger than 1 mg/ 
m3, p1 in Eq. (6) of the datafile, defined as the ratio of non-algal par-
ticulate absorption (often also referred to as detrital absorption) to 
phytoplankton absorption coefficient at 440 nm, is recalculated 
randomly between 0.1 and 2.6. In addition, p4 in Eq. (14) of the datafile, 
determining the ratio of non-algal particulate backscattering coefficient 

at 550 nm to [Chl]0.766, is recalculated randomly between 0.06 and 2.6. 
Other input data used in the HydroLight simulations are listed below:  

• Wavelength: 350 – 750 nm with 10 nm interval.  
• s: 8 values, 0◦ – 75◦ (15◦ increment), 80◦, and 88◦.  
• w: 3 values, 5, 10, and 15 m/s.  
• θv: 10 values, 0◦ – 80◦ (10◦ increment), and 87.5◦ (default in 

HydroLight).  
• φ: 13 values, 0◦ – 180◦ (15◦ increment) (default in HydroLight). 

Note that when viewed at nadir (i.e., θv = 0◦), φ is set to 0◦ in 
HydroLight configuration. Thus, the selected θv and φ values would 
result in 118 combinations of viewing geometries (i.e., 9 θv × 13 φ + 1). 

The default particle scattering phase function for HydroLight simu-
lation is taken from Petzold (1972), with an effective particulate 
backscattering-to-scattering ratio of 1.83%. Thus, a total number of 
12,000 simulations (i.e., 500 IOPs × 8 θs × 3 w) were obtained, which is 
hereafter referred to as SynData. To evaluate the impact of the scattering 
phase function on IOPs-αw, HydroLight was run again with the same 
inputs except that the Fournier-Forand scattering phase function with a 
particulate backscattering-to-scattering ratio of 1% was used (Fournier 
and Forand, 1994), with the resultant dataset denoted as SynData-FF. 
The simulated spectral Rrs(λ) in both SynData and SynData-FF datasets 
are shown in Fig. 2. Due to the modifications of p1 and p4 and different 
scattering phase functions used in this effort, spectral Rrs(λ) in SynData 
(Fig. 2a) show elevated reflectance compared to Rrs(λ) in the IOCCG 
(2006) dataset, suggesting that SynData is representative of broader 
water types and includes optically more complex waters. 

An additional dataset was simulated using the same HydroLight 
configuration as that in SynData but taking into consideration both 
Raman scattering and chlorophyll fluorescence. This new dataset is 
termed SynData-RF hereafter. Note that SynData-RF includes only 800 
simulations, where the input IOPs (a(λ) and c(λ)) were selected as every 
fifth data from the total 500 IOPs data in SynData and the wind speed w 
was set to 5 m/s (i.e., 100 IOPs×8 θs × 1 w). 

2.3. Broadband albedo 

For hyperspectral data, the broadband albedo is simply the integral 
of spectral albedo weighted by Ed(z = 0+, λ) (Ohlmann et al., 2000). 
Thus, the broadband albedo depends on the wavelength ranges over 
which spectral albedo is integrated. This study focuses on the broadband 
αw in the visible domain (i.e., 400 – 700 nm, the major range in ocean 
optics), which is hereafter referred to as αw_VIS. Thus, αw_VIS can be 
calculated following 

αw VIS =

∫ 700
400 αw(λ)Ed(z = 0+, λ)
∫ 700

400 Ed(z = 0+, λ)
. (12) 

For satellite observations, broadband albedo can be empirically 
converted from narrowband albedo with empirical conversion co-
efficients (Liang, 2001), 

αw VIS =
∑5

i=1
kiαw(λi)+ k0, (13)  

where αw(λi) is the narrowband albedo from satellite observation, ki (i =
1 – 5) are conversion coefficients for corresponding spectral bands, and 
k0 is a constant. The spectral bands and the values of ki (i = 0 – 5) are 
dependent on the band configuration of different sensors. ki (i = 0 – 5) 
can be derived using the least-squares fitting from known αw_VIS and 
spectral αw(λ). In this study, αw(λ) from HydroLight outputs at 10 nm 
intervals are first interpolated to 1 nm intervals and then used to 
compute the known αw_VIS using Eq. (12). 
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2.4. Evaluation metrics 

Statistical measures are introduced to quantitatively evaluate the 
performance of αw(λ) schemes, including the slope, coefficient of 
determination (R2), the median absolute percentage difference (MAPD), 
and the bias. Slope and R2 are calculated from linear regression using the 
Model-II regression (Laws, 1997), while MAPD and bias are defined as, 

MAPD = median
{⃒
⃒
⃒
⃒
yi − xi

yi

⃒
⃒
⃒
⃒

}

× 100%, i = 1, 2,…N (14)  

bias = median
{

yi − xi

yi

}

× 100%, i = 1, 2,…N (15)  

where x and y stand for the known and derived properties, respectively, 
N is the total number of samples used for metrics calculation. 

3. Results 

3.1. Evaluation of IOPs-αw 

We first applied the IOPs-αw scheme to SynData, the same dataset 

Fig. 2. Nadir-viewing spectral remote-sensing reflectance Rrs(λ) simulated with HydroLight model using the IOP input data corresponding to different chlorophyll-a 
concentrations as indicated with the color bar scale and two different particle scattering phase functions where the Petzold average function is used in (a) and 
Fournier-Forand (1% particulate backscattering-to-scattering ratio) is used in (b). Only simulations for θs = 30◦ and w = 5 m/s are shown as examples. 

Fig. 3. Validation of derived spectral αw(λ) using IOPs-αw for SynData. The symbol color indicates the input solar-zenith angle.  
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used to update the G-LUT. Note that IOPs-αw can be initiated with 
known Rrs(λ) of any viewing angles, here we used the nadir-viewed 
Rrs(λ), termed Rrs(λ, nadir), as input to derive IOPs from QAA_Lee11 
for demonstration. The angular Rrs(λ) can then be modeled following Eq. 
(6) using derived IOPs and the G-LUT. The scatterplots in Fig. 3 compare 
the estimated αw(λ) from IOPs-αw and the known αw(λ) for five selected 
wavelengths (410, 440, 490, 550, and 670 nm), which represent the 
nominal wavelengths used in most satellite ocean color sensors. The 
known αw(λ) (or reference) were calculated from angular Rrs(λ) provided 
by HydroLight simulations following Eq. (5). Note that both the modeled 
angular Rrs(λ) from IOPs-αw and the known angular Rrs(λ) from Hydro-
Light outputs are only available at 118 viewing angles (i.e., 10 θv values 
from 0◦ – 87.5◦ and 13 φ values from 0◦ – 180◦, see Section 2.2). As αw(λ) 
is the integral of Rrs(λ) of all viewing angles in the upwelling direction, 
prior to the integral of angular Rrs(λ) via Eq. (5), we interpolated the 118 
angular Rrs(λ) to Rrs(λ, θv = 0◦ – 90◦, φ = 0◦ – 180◦) with θv and φ spacing 
at 1◦. The ‘spline’ method in MATLAB was used for the interpolation. 

As shown in Fig. 3, MAPD of derived αw(λ) by IOPs-αw is less than 3% 
in the blue-green bands and is slightly larger for αw(670) with MAPD of 
7.3%. Statistics in Fig. 3 show that the derived αw(λ) agrees excellently 
with known αw(λ), suggesting the robustness of IOPs-αw in all water 
types. The ~3% difference could be explained as the ‘intrinsic’ error 
introduced by G-LUT and the associated uncertainties in the IOPs 
derived from QAA_Lee11. As expressed in Eq. (5), αw(λ) are a function of 
angular Rrs(λ). Thus, the uncertainties of estimated αw(λ) are, to the first 
order, dependent on the accuracy of modeled angular Rrs(λ) from IOPs. 

Given that QAA_Lee11 algebraically solves IOPs from the known 
Rrs(λ, nadir) (Eq. (6)), the modeled Rrs(λ, nadir) from derived IOPs 
would match exactly with the known Rrs(λ, nadir), which is independent 
of the uncertainties in the derived IOPs. However, there might be dis-
crepancies between the known and modeled Rrs(λ) at other viewing 
angles, which is due to the inaccurate characterization of the bidirec-
tional variation of Rrs(λ) using derived IOPs and G-LUT. Statistics in 
Fig. 3 suggest that the uncertainties related to the bidirectional variation 
of Rrs(λ) contribute less than ~3% error to the estimated αw(λ) in the 

blue-green domain. The relatively larger uncertainties for αw(670) are 
likely introduced by the G-LUT. Note that Rrs(670) values are generally 
very small in most natural waters (see Fig. 2), while the optimized G 
values in G-LUT by least-squares fitting could be driven by large Rrs(λ) 
values at the blue-green bands. Therefore, the resultant G values would 
introduce large uncertainties to the modeled angular Rrs(670) and 
αw(670). However, uncertainties in the estimated αw(670) generally 
have negligible impacts on the calculated broadband αw given its very 
small values in most natural waters. 

3.2. Schemes inter-comparison 

3.2.1. Evaluation of Chl-αw and Jin11 
For Chl-based schemes, we first derive Chl from the nadir-viewed 

Rrs(λ) in SynData and subsequently derive IOPs from the obtained Chl. 
Spectral αw(λ) are then estimated from the Chl-inferred IOPs via Chl-αw 
and Jin11, respectively, with evaluation results at 440 and 550 nm 
presented in Fig. 4. Given the fact that uncertainties of modeled angular 
Rrs(λ) from Chl-based schemes would determine the accuracy of the 
estimated αw(λ), we also include the evaluation results of modeled nadir 
Rrs(λ) from Chl-αw in Fig. 4 for comparison. The modeled Rrs(λ) were 
computed via Eq. (8) with the values of R and f/Q taken from the cor-
responding LUTs for nadir viewing geometry. 

It can be found in Fig. 4 that the Chl-inferred bb(λ)/a(λ) from Chl 
differ greatly from the known values, with MAPD values as 43.3% and 
65.3% for 440 and 550 nm, respectively. As angular Rrs(λ) are a function 
of bb(λ)/a(λ) in both Chl-αw and Jin11, large uncertainties of the esti-
mated αw(λ) from both schemes could be expected. For instance, the bias 
of the modeled nadir Rrs(λ) at 440 and 550 nm from Chl-αw are − 37.4% 
and − 60.8%, respectively (see Fig. 4b and Fig. 4f). Thus, uncertainties in 
the Chl-inferred IOPs could explain most of the uncertainties in the 
estimated αw(λ). 

The poor performance of Chl-based schemes in SynData is mainly 
attributed to the fact that for the same input Chl, synthetic IOPs in 
SynData are deliberately set to vary randomly, rather than following the 

Fig. 4. Evaluation of Chl-inferred bb(λ)/a(λ) and modeled nadir-viewed Rrs(λ) using Chl-αw (left two panels) and estimated αw(λ) using Chl-αw and Jin11(right two 
panels). The symbol color indicates the corresponding input Chl for each simulation. 
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“Case 1” empirical relationships reported in Morel and Maritorena 
(2001). Thus, large uncertainties in Chl-inferred IOPs are expected when 
compared to the known values in SynData. In natural waters, variable 
Chl-IOPs relationships are also widely documented as the concentration 
of phytoplankton pigment cannot solely explain the variation of water 
IOPs, given the large variations of the Chl-specific absorption and 
backscattering coefficients (Bricaud et al., 1995; Huot et al., 2008; Loisel 
and Morel, 1998; Reynolds et al., 2001; Stramska et al., 2003). In 
addition, for remote sensing applications, derived Chl itself is subject to 
uncertainties (Carder et al., 1999; O’Reilly et al., 1998), which will be 
propagated to Chl-inferred IOPs. More importantly, there is no optical 
closure between the simulated Rrs(λ) from Chl-inferred IOPs and the 
Rrs(λ) used to derive Chl (see Fig. 4b and Fig. 4f), suggesting that the Chl- 
based schemes are lacking internal consistency. 

3.2.2. Comparison with Feng16 
Evaluation of Feng16 is also performed using SynData, with results 

shown in Fig. 5. As described in Section 2.1.3, for a fair comparison, 
validation of estimated αw(410) by IOPs-αw are screened for θs = 30◦. 

It is found that the empirical relationship developed in Feng et al. 
(2016) systematically underestimates αw(410) for SynData, with a bias of 
− 30.7%. The underestimation of Feng16 is likely because that their 
model coefficients are optimized based on a dataset simulated using Chl- 
αw, which also systematically underestimates αw(λ) (see Fig. 4). In 
contrast, αw(410) derived from IOPs-αw agrees very well with known 
values with a bias of only 1.4% and both the slope and R2 are very close 
to 1. Thus, it can be concluded that empirical expressions between αw(λ) 
and Rrs(λ) will depend on the calibration dataset, which have limited 
applicability. 

3.2.3. Evaluation of ρw-αw 
For the ρw-αw scheme, αw(λ) is simply estimated as πRrs(λ, nadir) with 

Rrs(λ, nadir) taken from SynData, and the evaluation results are pre-
sented in Fig. 6. It can be found that ρw-αw outperforms both Chl-αw and 
Feng16, with MAPD of estimated αw(λ) generally less than 10% in the 
blue-green domain. However, the estimated αw(λ) by ρw-αw still have 
larger uncertainties than those of IOPs-αw (see the comparison between 
Fig. 3 and Fig. 6). Also, it appears that the performance of ρw-αw is 
sensitive to the solar-zenith angle, where smaller αw(λ) values are 
observed at higher solar-zenith angle scenarios. 

Given the fact that the bidirectionality of Rrs(λ) cannot be neglected 
in most natural waters, it is of interest to evaluate the robustness of ρw- 

αw when Rrs(λ) of different viewing geometry is used as model input. 
Here, we simply use the 118 angular Rrs(λ) in SynData to estimate αw(λ) 
using the ρw-αw scheme and then compare them with the known αw(λ) 
values. The 118 angular Rrs(λ) are the combinations of 10 θv and 13 φ 
(see Section 2.2 for details). For each combination of θv and φ, the bias of 
estimated αw(λ) using πRrs(λ, θv, φ) can be calculated following Eq. (15) 
for all the 12,000 simulations in SynData, with the bias of estimated 
αw(λ) for all the 118 scenarios at five selected wavelengths shown in 
Fig. 7. 

As shown in Fig. 7, for small θv scenarios (< 40◦), the bias of esti-
mated αw(λ) using different angular Rrs(λ) as input is generally within 
±10%. However, for large θv scenarios (> 60◦), the bias of estimated 
αw(λ) could range from − 30% to 20%. Consist with the results in Fig. 6, 
ρw-αw could have relatively larger uncertainties for high solar-zenith 
angle scenarios. Results in Fig. 6 and Fig. 7 suggest the strong bidir-
ectionality of Rrs(λ), and the performance of ρw-αw is highly dependent 
on the viewing angle of the input Rrs(λ). Although presently satellite 
Rrs(λ) product is corrected to nadir-viewed Rrs(λ) (Gordon and Wang, 
1994; Wang, 2006), the present in-water BRDF correction scheme used 
for producing nadir-viewed Rrs(λ) product is based on Chl (Gordon et al., 
1988; Morel and Gentili, 1993), which could introduce extra un-
certainties to the nadir-viewed Rrs(λ) (see Section 3.2.1). Also, using 
nadir-viewed Rrs(λ) as input may result in slightly larger errors for ρw-αw 
as shown in Fig. 7. Therefore, ρw-αw could be used as a good approxi-
mation, while IOPs-αw can provide improved estimations with un-
certainties usually within ~3% (see Fig. 3). 

3.3. Global distribution of spectral αw(λ) 

To map the spatial distribution of spectral αw(λ), global products of 
Rrs(λ) and θs are required. Here, VIIRS monthly products of 2019, at a 
spatial resolution of 9 km, are selected as the desired input Rrs(λ). The 
VIIRS monthly Rrs(λ) product is composited from the Level-2 products, 
which are atmospherically corrected by NOAA Multi-Sensor Level-1 to 
Level-2 (MSL12) ocean color data processing system using the combined 
near-infrared and shortwave-infrared (NIR-SWIR) algorithm (Jiang and 
Wang, 2014; Wang and Shi, 2007; Wang, 2007). Note that all Level-2 
Rrs(λ) products are corrected to Rrs(λ) viewed at nadir with the Sun at 
the zenith before being composited to the monthly data. For the solar- 
zenith angle required to calculate αw(λ), we calculate the monthly 
average θs at local noontime for the global ocean that matches the 
geographic coordinates in the VIIRS product. By implementing IOPs-αw 
to VIIRS data, spectral αw(λ) maps at local noontime are obtained and 
presented in Fig. 8. Here, the VIIRS monthly product of March 2019 is 
used for a demonstration. 

As shown in Fig. 8, αw(λ) are characteristic of strong spatial variation 
and wavelength dependence, with spatial distribution pattern generally 
consistent with that of Rrs(λ) (see Fig. 6 of Wang et al. (2009)). Specif-
ically, αw(λ) are much higher at short wavelengths in open oceans and 
decrease toward longer wavelengths. The mapping product of αw(671) is 
not shown because αw(671) values are very small in open oceans. For 
turbid coastal and inland waters, opposite trends of αw(λ) are observed, 
where αw(λ) values are small at blue bands and increase toward longer 
wavelengths. 

3.4. Broadband αw_VIS and its monthly variations 

Broadband albedo is often of greater interest than spectral albedo in 
climate models. Thus, the coefficients of conversion from narrowband 
αw(λ) to αw_VIS (i.e., ki in Eq. (13)) need to be specified. In this study, the 
conversion coefficients are optimized for VIIRS bands using SynData and 
tabulated in Table 1. Conversion coefficients for other operational sat-
ellite sensors are also provided in Table 1 to address different band 
configurations, including the Moderate Resolution Imaging Spectror-
adiometer (MODIS) onboard the Aqua, the Ocean and Land Colour In-
strument (OLCI) onboard the Sentinel-3A, and the Operational Land 

Fig. 5. Comparison of estimated αw(410) by Feng16 and IOPs-αw. Only simu-
lations with input θs of 30◦ are considered here. 
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Fig. 6. Evaluation of ρw-αw using SynData for wavelengths at 410, 440, 490, 550, and 670 nm. The symbol color indicates the input solar-zenith angle.  

Fig. 7. The bias of derived αw(λ) from ρw-αw with input Rrs(λ) of various viewing geometries (i.e., different combinations of viewing zenith angle θv and viewing 
azimuth angle relative to the solar plane φ). The marker color indicates the input φ. 
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Imager (OLI) onboard the Landsat 8. The robustness of these conversion 
coefficients is evaluated by comparing the converted αw_VIS to the known 
αw_VIS calculated by Eq. (12) using the simulated dataset, where MAPD 
of converted αw_VIS is generally around 1% for all sensors. The slope and 
R2 values for the linear regression between converted and ‘true’ αw_VIS 
are also computed with both values close to 1 for all sensors (not shown 
in Table 1). 

Fig. 9 shows the monthly distribution of αw_VIS derived from IOPs-αw 
using VIIRS monthly composite data in 2019. To more explicitly show 
the monthly variation of αw_VIS, we also select three regions of interest 
from the global ocean, highlighted in Fig. 9l, and calculate the median 
αw_VIS of each region, along with the standard deviation. Specifically, 
two subregions in the South Pacific Gyre (SPG, 124◦W–104◦W; 
32◦S–22◦S) and the Yangtze Estuary (YE, 120.7◦E – 123◦E; 29.5◦N – 
32.5◦N) are slected as they appear to have larger αw_VIS than those in 
other open ocean waters. A subregion in the Tropical Pacific Ocean 
(TPO, 175◦W – 145◦W; 2◦S – 2◦N) is also selected for its relatively small 
seasonal variability of αw_VIS. The monthly variations of the median 
αw_VIS in SPG, YE, and TPO are presented in Fig. 10. 

It is clearly demonstrated in Fig. 9 that αw_VIS is characteristic of 
strong spatial-temporal variability. For the open ocean, αw_VIS could vary 
by an order of magnitude from 0.003 to 0.02, with larger αw_VIS observed 
mainly in the ocean gyres and the Southern Ocean. Seasonal variation of 
αw_VIS is also predominant in subtropical gyre waters and coastal oceans. 
As shown in Fig. 10, αw_VIS in SPG peaked in austral summer (~0.018) 
and reached the minimum in austral winter (~0.012) in 2019, with the 
amplitude of αw_VIS variation around 0.006. For turbid coastal waters, 

such as the Yangtze Estuary, αw_VIS is much larger (up to ~0.09) and 
shows strong seasonal variations, with an amplitude of ~0.07. αw_VIS in 
TPO does not show an apparent seasonal pattern, with αw_VIS generally 
varying between 0.009 and 0.01 across all months in 2019. Note that the 
distance to the equator might affect the mean water-incident radiance 
distribution, which could potentially contribute to the seasonal cycle of 
αw_VIS observed in Fig. 10. For instance, the mean distances between the 
three subregions and the equator are 3000 km, 3400 km, and 0 km for 
SPG, YE, and TPO, respectively, whereas αw_VIS in TPO shows a very 
weak seasonal variation. Nevertheless, results in Fig. 9 and Fig. 10 
highlight the necessity of considering the spatial-temporal variation of 
αw_VIS in climate models as it could vary by orders of magnitude in global 
oceans in different regions and seasons. 

4. Discussion 

4.1. Robustness of IOPs-αw 

The validity of IOPs-αw depends on whether the angular distribution 
of Rrs(λ) for all viewing directions can be accurately reconstructed from 
IOPs under various scenarios that could be encountered in natural wa-
ters. Therefore, the robustness and applicability of the default G-LUT 
need to be evaluated. It appears that the developed G-LUT is robust for 
all solar-zenith angle scenarios, as derived αw(λ) from all θs cases are 
quite consistent and are not biased for high θs cases (see Fig. 2). Thus, 
the developed IOPs-αw scheme and G-LUT should be applicable to 
measurements under all θs scenarios. It is worthy to point out that in 

Fig. 8. Global distribution of spectral αw(λ) derived from IOPs-αw using VIIRS monthly composite data of March 2019.  

Table 1 
Optimized empirical coefficients (Coeff.) for spectral αw(λ) to αw_VIS conversion for various satellite sensors.   

VIIRS MODIS OLCI OLI  

Band (nm) Coeff. Band (nm) Coeff. Band (nm) Coeff. Band (nm) Coeff. 

k1 410 0.0793 412 0.0581 413 0.1111   
k2 443 0.1105 443 0.1730 443 0.0839 443 0.2004 
k3 486 0.1765 488 0.1188 490 0.1884 482 0.1899 
k4 551 0.2962 547 0.3187 560 0.2827 562 0.2770 
k5 671 0.4155 678 0.4197 674 0.3966 655 0.3090 
k0  2E-05  4E-05  2E-05  -3E-05 
MAPD (%)  1.0  1.2  1.0  0.9  
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Fig. 9. Monthly variation of global αw_VIS in 2019 mapped by IOPs-αw using VIIRS composite data. The red, magenta and black boxes in panel (l) highlight the 
locations of three regions of interest in the South Pacific Gyre (SPG), the Tropical Pacific Ocean (TPO), and the Yangtze Estuary (YE), respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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remote sensing applications, present satellite Rrs(λ) products are subject 
to large uncertainties at high θs scenarios (He et al., 2018; Mikelsons 
et al., 2020), which will introduce uncertainties to the derived αw(λ). 
However, obtaining accurate satellite Rrs(λ) is out of the scope of this 
study. Thus, in the following text, we mainly evaluate the impacts of 
wind speed, particle scattering phase function, and inelastic scattering 
on the derived αw(λ) using IOPs-αw. 

4.1.1. Impact of wind speed 
Wind speed is a key parameter in the Chl-αw as it affects the reflec-

tion–refraction term R in Eq. (8) (Morel et al., 2002). However, it is also 
reported that, for not very large solar- and sensor-zenith angles, R is 
nearly independent of w (Gordon, 2005; Wang, 2006). Here, we inves-
tigate preliminarily the effects of wind speed using HydroLight simula-
tions. Specifically, in addition to the default G-LUT that employs all 
simulations for LUT development, three separate G-LUTs were also 
developed from SynData for screened simulations with wind speed of 5, 
10, and 15 m/s, respectively. The resultant G-LUTs are termed G-LUT- 
w5, G-LUT-w10, and G-LUT-w15. Table 2 tabulates the MAPD values of 
derived αw(λ) by IOPs-αw with different G-LUTs employed. 

Results in Table 2 show that MAPD for αw(λ) derived using different 
G-LUTs is in general consistent, except for relatively larger MAPD for 
retrievals using G-LUT-w15. However, using G-LUT-w15 only accounts 
for 1% ~ 2% increase of MAPD compared to that using the default G- 
LUT, while using the other two G-LUTs generally changes MAPD by less 
than 1%, except for αw(671). Thus, we can conclude that IOPs-αw is 
slightly dependent on wind speed, and the impact of wind speed can be 
safely neglected, at least for the simulated dataset of this study. 

4.1.2. Impact of particle scattering phase functions 
Particle volume scattering phase function (β, in sr− 1) determines the 

distribution of photons scattering into different angles by particles sus-
pended within the water column, and hence affects the distribution of 
water-leaving radiance above the sea surface. Therefore, β could affect 
the G values (Lee et al., 2011). Given that β varies largely in natural 
waters (Sullivan and Twardowski, 2009; Twardowski et al., 2007; Zhang 
and Gray, 2015), it is not practical to develop G-LUT for all possible 
particle scattering phase functions. Here we try to briefly characterize 
the impact of β on the estimated αw(λ) from IOPs-αw. As a demonstra-
tion, we applied IOPs-αw to SynData-FF using the default G-LUT devel-
oped from SynData and calculated MAPD for derived αw(λ) for the five 
selected wavelengths (see Table 3). 

Comparing to the estimated αw(λ) in SynData, implementation of 
IOPs-αw to SynData-FF only result in slight increases in MAPD by ~1% 
for the derived αw(λ) in most wavelengths (see Table 3). Such increases 
in MAPD are relatively insignificant given the large difference between 
the two particle scattering phase functions, where the particulate 
backscattering-to-scattering ratio for β used in SynData is almost 
doubled compared to that in SynData-FF (i.e., 1.83% vs. 1%). Therefore, 
it can be concluded that IOPs-αw is only slightly dependent on β, and the 
impact of β can also be safely neglected. 

4.1.3. Impact of Raman scattering and chlorophyll fluorescence 
The existence of Raman scattering could result in elevated reflec-

tance in the green-red domain (Gordon, 2014), while the existence of 
chlorophyll fluorescence typically increases the reflectance around 683 
nm (Gower et al., 1999; Hoge and Swift, 1987). Therefore, Raman 
scattering and chlorophyll fluorescence could result in larger αw(λ) in 
the longer wavelengths, and it is necessary to investigate the impacts of 
these two inelastic scattering on the performance of IOPs-αw. We applied 
IOPs-αw to the SynData-RF dataset and calculated the statistical metrics 
of derived αw(λ), with results shown in Fig. 11. Note that only three 
wavelengths (440, 550, and 680 nm) are selected here as demonstra-
tions. The first two wavelengths represent the blue-green domain, while 

Fig. 10. Monthly variation of the median αw_VIS in SPG, TPO, and YE in 2019, with the error bars showing the standard deviation. The locations of the three 
subregions are highlighted in Fig. 9l. 

Table 2 
MAPD and bias for αw(λ) derived from IOP-αw using different G-LUTs. The 
default G-LUT employs all simulations, while the three other LUTs employ 
screened simulations with wind speed of 5, 10, and 15 m/s, respectively. The 
numbers within parentheses are the bias.  

Wavelength (nm) MAPD (bias) (%) 

G-LUT (default) G-LUT-w5 G-LUT-w10 G-LUT-w15 

410 2.9 (2.0) 2.5 (0.8) 2.9 (1.9) 3.7 (3.4) 
440 2.6 (1.8) 2.2 (0.5) 2.6 (1.7) 3.6 (3.3) 
490 1.8 (1.1) 2.0 (0.1) 1.8 (1.0) 3.0 (2.6) 
550 2.5 (2.0) 2.4 (1.1) 2.4 (2.0) 3.3 (3.2) 
670 7.3 (7.1) 5.3 (4.8) 7.2 (7.0) 9.6 (9.5)  

Table 3 
Statistics of derived αw(λ) from IOPs-αw for implementation in SynData-FF. 
Statistics of derived αw(λ) for SynData are also included for comparison.  

Wavelength (nm) MAPD (bias) (%) 

αw(λ) αw(λ) (SynData) 

410 4.1 (1.5) 2.9 (2.0) 
440 3.7 (1.4) 2.6 (1.8) 
490 2.8 (0.9) 1.8 (1.1) 
550 2.4 (1.2) 2.5 (2.0) 
670 6.3 (5.8) 7.3 (7.1)  
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680 nm is representative of the red domain and is also close to the 
chlorophyll fluorescence peak. For proper comparisons, simulations in 
the SynData were screened for the same IOPs and wind speed as that 
used in SynData-RF, and a subset of SynData matching SynData-RF was 
obtained, termed SynData-sub hereafter. Statistical metrics of derived 
αw(λ) for SynData-sub are also included in Fig. 11 for comparisons. 

As shown in Fig. 11, for the blue-green bands, the MAPD and bias of 
derived αw(λ) from IOPs-αw are very comparable for SynData-RF and 
SynData-sub with the respective differences in MAPD and bias are less 
than 0.5%, which is expected as Rrs(λ) in the blue-green domain is only 
slightly affected by Raman scattering. For αw(λ) at 680 nm, where 
Raman scattering and chlorophyll fluorescence together contribute to 
~26% increase of the αw(λ) in terms of bias (see Fig. 11d), the imple-
mentation of IOPs-αw to SynData-RF results in only slightly larger un-
certainties in the estimated αw(λ), with MAPD of derived αw(680) 
increasing from 8.8% in SynData-sub to 11.5% in SynData-RF. The 
increment of 2.7% in MAPD and 2.8% in bias for the derived αw(680) 
suggest that the current IOPs-αw, developed from SynData, is applicable 
for waters with the existence of Raman scattering and chlorophyll 
fluorescence. More importantly, as shown in Fig. 11c, the larger values 
of MAPD and bias for derived αw(680) are mainly due to an over-
estimation of αw(680) for simulations representing oceanic waters (i.e., 
small αw(680) values). Thus, the relatively larger uncertainties in 
αw(680) could have limited impacts on the computed broadband water- 
leaving albedo, such as αw_VIS, given the relatively small values of 
αw(680) in oceanic waters compared to αw(λ) at short wavelengths. 

It is recognized that the existence of Raman scattering and chloro-
phyll fluorescence would result in larger uncertainties in the derived 

IOPs from Rrs(λ) (Lee et al., 2005; Lee et al., 2015). However, despite the 
large uncertainties in the derived IOPs, IOPs-αw, or specifically QAA_-
Lee11, can ensure an optical closure between the input Rrs(λ) and the 
modeled Rrs(λ) of the same viewing angle, where contributions of 
Raman scattering and chlorophyll fluorescence are included. In other 
words, the modeled Rrs(680) at nadir from derived IOPs is the same as 
the input Rrs(680) from Hydrolight simulations. As discussed in Section 
3.1, uncertainties in the modeled Rrs(680) at other viewing angles are 
mainly attributed to the modeled BRDF variation of Rrs(λ), which is only 
slightly dependent on the accuracy of derived IOPs. Therefore, the 
estimated αw(680) by IOPs-αw for SynData-RF is just slightly different 
from that for SynData-sub (see Fig. 11c). It is worthy to point out that 
IOPs can also be derived from Eq. (6) using spectral optimization 
(Werdell et al., 2013; Yu et al., 2016), but these approaches are not 
recommended for the estimation of αw(λ) since an optical closure of 
Rrs(λ) cannot be guaranteed. 

For satellite remote sensing, because here the focus is the estimation 
of αw(λ), which is directly related to Rrs(λ) (see Eq. (5)), not the IOPs, it is 
not recommended to correct the effects of Raman scattering and chlo-
rophyll fluorescence for the retrieval of IOPs with QAA_Lee11. Note that 
CDOM fluorescence also results in elevated water-leaving reflectance, 
especially in the ultraviolet-blue domain (Lee et al., 1994; Vodacek 
et al., 1994), but its impact on the estimated αw(λ) can also be neglected 
when IOPs-αw is employed, the same way as the impacts of Raman 
scattering and chlorophyll fluorescence. 

Fig. 11. Evaluation of the derived αw(λ) from IOPs-αw for SynData-RF and SynData-sub, with panels (a)–(c) showing the results of derived αw(λ) at 490, 550, and 680 
nm, respectively. Panel (d) shows the comparison of known αw(680) in the SynData-RF and SynData-sub datasets. 
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4.2. Underrepresented contribution of αw_VIS by previous schemes 

As IOPs in SynData were determined randomly from Chl, evaluation 
with SynData may not provide a fair assessment of Chl-αw. Here, we 
implement Chl-αw to the VIIRS monthly data and compare the resultant 
spatial distribution of derived αw_VIS with that from IOPs-αw, which 
could imply the difference of both schemes in natural waters. As an 
example, both IOPs-αw and Chl-αw are applied to the VIIRS monthly data 
of March 2019, with generated αw_VIS mapping products presented in 
Fig. 12. Input wind speed for Chl-αw is set to 10 m/s, while input θs for 
both schemes is the average θs at noontime in March 2019. For easier 
interpretation of their difference, the ratio of derived αw_VIS by Chl-αw 
and that by IOPs-αw is also computed and included in Fig. 12d. The 
mapping product of derived αw_VIS by Jin11 is not presented as it is 
comparable with Chl-αw. The mapping product of αw_VIS derived from 
the ρw-αw scheme is also included in Fig. 12c for comparison, with 
Fig. 12e showing the ratio of αw_VIS derived from ρw-αw to αw_VIS derived 
from IOPs-αw. 

Comparing to IOPs-αw, Chl-αw overall yields smaller αw_VIS in most of 
the global ocean, except for waters in some coastal regions and the 
northern hemisphere above the latitudinal line of 30◦N (see dark pixels 
in Fig. 12d). For the ocean gyres and the Southern Ocean, collectively 
accounting for more than 40% of the global ocean in the surface area, 
αw_VIS derived from IOPs-αw is almost twice as high as that from Chl-αw. 
As discussed in section 3.2.1, a fixed Chl-IOPs relationship could 

introduce large errors in the estimated αw_VIS for global applications. For 
turbid coastal waters where Chl-αw is deemed inapplicable, IOPs-αw still 
provides reasonable spatial distribution of αw_VIS, with αw_VIS over 0.1 in 
extremely turbid waters (such as the Yangtze Estuary), which is 
consistent with the estimations by Fogarty et al. (2018). In contrast, the 
estimated αw_VIS by Chl-αw is less than 0.01 in these waters, which is 
difficult to justify. It is worthy to point out that in extremely turbid 
waters, such as the Yangtze Estuary where the suspended sediment 
concentration could be over 2000 mg/L (Yu et al., 2019a), strong 
backscattering by particles in the NIR domain (elevated reflectance) 
could contribute substantially to the water-leaving albedo, resulting in a 
much higher proportion of water-leaving albedo to αbroad. It is thus 
required to include the NIR contribution by IOPs-αw for future appli-
cations in these waters. 

The spatial variation of the αw_VIS ratio (Fig. 12d) confirms that it is 
inappropriate to use fixed Chl-IOPs relationships to infer IOPs for global 
oceans. Note that αw(λ) is governed by total absorption and backscat-
tering coefficients, not individual seawater constituents. In addition to 
the large variations of the Chl-specific absorption and backscattering 
coefficients of suspended particles, the relative proportion of CDOM to 
Chl also varies largely in the global ocean (Morel et al., 2010), which 
introduces additional uncertainties to the inferred a(λ) by Chl. Note that 
the fraction of CDOM to Chl is considered a constant in Morel and 
Maritorena (2001), which could vary significantly in natural waters 
(Morel et al., 2010; Morel and Gentili, 2009). As expressed in Eq. (8), 

Fig. 12. Global mapping products of αw_VIS in March 2019 derived from (a) IOPs-αw, (b) Chl-αw, and (c) ρw-αw using the VIIRS data. Panels (d) and (e) show the ratio 
of (a) to (b), and (a) to (c), respectively. The red color in panels (d) and (e) indicates pixels where estimated αw_VIS from different schemes agree with each other (ratio 
between 0.99 and 1.01). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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αw(λ) derived from Chl-αw is dependent on the ratio of total backscat-
tering to total absorption coefficients. Thus, underestimation of CDOM 
contribution results in larger αw, and vice versa. For instance, pixels with 
dark colors in Fig. 12d are coincident with high CDOM-to-Chl propor-
tion waters, as shown in Fig. 1b of Morel et al. (2010). Given that IOPs 
can be semi-analytically derived from ocean color measurements, it is 
unnecessary to infer IOPs from Chl as extra uncertainties will be 
introduced. 

The resultant αw_VIS map derived from the ρw-αw scheme is overall 
comparable with that from the IOPs-αw scheme in both the spatial dis-
tribution and the magnitude of αw_VIS, particularly for the low latitude 
regions. It shows that ρw-αw scheme is a good approximation for deriving 
αw(λ). As shown in Fig. 12e, the difference between estimated αw_VIS 
from ρw-αw and IOPs-αw are usually within ~10% in low latitude oceans 
(e.g., 30◦S – 30◦N), and ρw-αw overall predicts slightly smaller αw_VIS 
compared to that from IOPs-αw. Consistent with Fig. 6, it can be found 
that the underestimation of αw_VIS is particularly significant in high 
latitude oceans, corresponding to high noontime solar-zenith angle. For 
instance, estimated αw_VIS from ρw-αw may be underestimated by ~40% 
compared with those derived from IOPs-αw for waters approaching polar 
regions. In addition, ρw-αw tends to underestimate αw_VIS in coastal 
waters, which further limits its global applications. Given that an 
isotropic distribution of Lw(λ) is rarely encountered in natural waters 
(Morel and Gentili, 1993), which is also confirmed in Fig. 7, it is 
desirable to use the semi-analytical IOPs-αw scheme for accurate αw(λ) 
computations. 

4.3. Contribution of αw_VIS to αbroad and impact factors 

The significance of αw_VIS relies on its relative contribution to αbroad, 
which is the desired parameter in climate models. Many previous 
schemes of αbroad simply ignored the contribution of αw_VIS. Even for the 
schemes taking account of water-leaving irradiance (Feng et al., 2016; 
Jin et al., 2011; Séférian et al., 2018), their assessments underrepre-
sented or misrepresented the contribution of αw_VIS to αbroad due to the 
underestimation of αw(λ). For instance, Feng et al. (2016) concluded that 
αw_VIS contributes less than 10% to αbroad in oceanic waters, while Jin 
et al. (2011) suggested that αw_VIS has limited spatial variations and a 
constant value of 0.006 can be used to calculate αbroad for global oceans. 
However, results of this study show that Chl-based αw schemes could 
underestimate αw_VIS by up to 50% in oceanic waters (see Fig. 12), thus 
undermining the contribution of αw_VIS to αbroad. Based on the global 
distribution and the magnitude of αw_VIS derived from IOPs-αw (e.g., 
Fig. 12a), it is fair to conclude that neither the spatial variation of αw_VIS 
nor the contribution of αw_VIS to αbroad shall be negligible. 

Due to the absence of field measurements, especially when 
measuring αw(λ) is not yet practical, HydroLight simulations are used 
here to preliminarily examine the relative contribution of αw_VIS to αbroad 
and the potential impact factors. Scatter plots of the ratio between αw_VIS 
and αVIS (broadband α in the visible domain) in SynData are presented in 
Fig. 13, with three different symbols representing three different values 
of wind speed and the color scale representing the variation in solar- 
zenith angle. Consistent with previous suggestions, θs is the dominant 
factor determining the ratio of αw_VIS to αVIS, as surface Fresnel reflec-
tance increases rapidly with the increase of solar-zenith angle (Payne, 
1972). Wind speed, on the other hand, has very limited impacts on 
αw_VIS/αVIS, except for high θs cases. For the bluish symbols in Fig. 13, 
where θs is generally less than 45◦, simulations with the same IOPs but 
different w almost overlap. For high θs cases, higher w results in larger 
αw_VIS/αVIS, which can be explained as increasing w (roughened sea 
surface) could result in small surface Fresnel reflectance under high θs 
scenarios (Jin et al., 2011). 

Quantitatively, αw_VIS could contribute over 40% to αVIS in oceanic 
waters (Chl < 0.2 mg/m3) for small solar-zenith angles, and the 
contribution of αw_VIS would be increased to over 80% in productive 
waters for the simulated dataset of this study (see Fig. 13). To 

understand the contribution of water-leaving albedo to αbroad, the ratio 
of the broadband αw in the shortwave domain αw_broad to αbroad is 
desired. By definition, αw_broad can be calculated as 

αw broad =

∫ 3000
200 αw(λ)Ed(z = 0+, λ)
∫ 3000

200 Ed(z = 0+, λ)
. (16) 

Given that visible radiation accounts for 42.3% of the total solar 
energy reaching Earth’s surface (Gibson, 2003), i.e., 

∫ 700
400 Ed(z = 0+,λ) =

0.423 
∫ 3000

200 Ed(z = 0+,λ), one would expect that αw_broad is larger than 
αw_VIS/0.423, as 

∫ 3000
200 αw(λ)Ed(z = 0+,λ) is greater than 

∫ 700
400 αw(λ)Ed(z =

0+,λ) due to contributions of water-leaving reflectance from the ultra-
violet (UV) and near-infrared (NIR) domains. In addition, it is suggested 
that the values of αbroad are comparable with αVIS in most natural waters 
with Chl < 3 mg/m3 (see Table 1 of Ohlmann et al. (2000)). Thus, the 
ratio of αw_broad/αbroad would be greater than 0.423 αw_VIS/αVIS. Ac-
cording to Fig. 13, it is safe to conclude that αw_broad could contribute up 
to 20% to αbroad in oceanic waters for small solar-zenith angles, which is 
much higher compared with the previous estimations by Feng et al. 
(2016) and Jin et al. (2011). 

As αw(λ) is generally a function of Rrs(λ), αw(λ) in the UV domain 
could be an important component of αw_broad in oceanic waters, while 
αw(λ) in the NIR domain are not negligible in extremely turbid waters. As 
a demonstration of αw(λ) contribution in the UV domain, we re- 
calculated αw_VIS for 350 – 700 nm following Eq. (12), the ratio of new 
αw_VIS to αVIS could increase by ~6.7% based on the SynData-sub for 
simulations with Chl < 0.2 mg/m3. In other words, the ratio of αw_broad 
to αbroad only increase by up to ~1.3% in oceanic waters when αw(λ) in 
the UV domain is considered (i.e., from ~20% to ~21.3%). Thus, the use 
of αw_VIS could provide sufficient understanding of αw_broad contribution 
to αbroad regarding its spatial-temporal variations. However, further 
incorporation of αw(λ) in both the UV and NIR domains is certainly 
preferred for more accurate quantification of αw_broad, especially when 
VIIRS Rrs(λ) products at both the UV and NIR domains can be acquired 
(Barnes et al., 2021; Wang et al., 2020). 

Note that HydroLight simplifies the impact of wind speed on surface 
reflectance, such as reflectance of wind-induced foams and whitecaps 
are not considered (Mobley and Sundman, 2016), suggesting that the 
calculated αVIS from HydroLight simulations would be smaller than that 
measured in natural waters for the same observational condition. 
However, the ~20% contribution of αw_VIS to αbroad in oceanic waters 
could be reasonable for low wind speed scenarios where whitecap 

Fig. 13. The ratio of αw_VIS to αVIS in response to different inputs of solar-zenith 
angle, wind speeds, and Chl. For conciseness, every tenth simulation from the 
total number of 12,000 simulations in SynData are plotted here. 
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reflectance can be neglected (Koepke, 1984). Thus, results presented in 
this study highlight that the contribution of αVIS to αbroad cannot be 
neglected, especially for small θs and w scenarios, when the solar radi-
ation and upwelling irradiance assume the highest values. 

5. Conclusions 

Many efforts acknowledged the contribution of αw(λ) to broadband 
ocean surface albedo (Jin et al., 2002; Payne, 1972), but these studies 
obtained questionable αw(λ) of the global oceans due to the use of Chl- 
based schemes (Feng et al., 2016; Jin et al., 2011; Séférian et al., 
2018). The proposed IOPs-αw scheme in this study has shown signifi-
cantly improved accuracy in the estimation of αw(λ) compared with Chl- 
based schemes. More importantly, IOPs-αw has broader applicability and 
can provide satisfying estimations of αw(λ) for both oceanic and coastal 
waters. The resulted αw(λ) from IOPs-αw is found slightly dependent on 
particle scattering phase function, wind speed, and solar-zenith angle, at 
least for the simulated dataset (assuming accurate Rrs(λ) can be derived). 
Further efforts are still required for more rigorous evaluations, espe-
cially with field measurements. 

Although results in this study are primarily based on numerical 
simulations, the significance of IOPs-αw is highlighted in its imple-
mentation to VIIRS data, where reasonable global distribution and 
seasonal pattern of αw(λ) are presented. Comparison with previous 
studies shows that the Chl-based scheme could underestimate αw_VIS by 
more than 50% in oceanic waters, thus undermine the relative contri-
bution of water-leaving albedo to ocean surface albedo. Results of this 
study show that αw_VIS could contribute up to 20% to αbroad in oceanic 
waters under small solar-zenith angles. The magnitude and the spatial- 
temporal variation of αw_VIS derived from IOPs-αw suggest that neither 
the spatial variability of αw_VIS nor the contribution of αw_VIS to αbroad 
shall be neglected. 

MATLAB scripts for IOPs-αw, the associated G-LUT, and the monthly 
αw_VIS products derived using IOPs-αw in 2019 from VIIRS data are all 
made available online (https://github.com/oceanopticsxmu/osaw) to 
facilitate further evaluation and assessment. 
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